Skip to main content
Top
Published in: Breast Cancer Research 1/2021

01-12-2021 | Breast Cancer | Research article

Sensitivity to targeted therapy differs between HER2-amplified breast cancer cells harboring kinase and helical domain mutations in PIK3CA

Authors: Joseph P. Garay, Rebecca Smith, Kaylyn Devlin, Daniel P. Hollern, Tiera Liby, Moqing Liu, Shanta Boddapati, Spencer S. Watson, Amanda Esch, Ting Zheng, Wallace Thompson, Darcie Babcock, Sunjong Kwon, Koei Chin, Laura Heiser, Joe W. Gray, James E. Korkola

Published in: Breast Cancer Research | Issue 1/2021

Login to get access

Abstract

Background

HER2-amplified breast cancer is a clinically defined subtype of breast cancer for which there are multiple viable targeted therapies. Resistance to these targeted therapies is a common problem, but the mechanisms by which resistance occurs remain incompletely defined. One mechanism that has been proposed is through mutation of genes in the PI3-kinase pathway. Intracellular signaling from the HER2 pathway can occur through PI3-kinase, and mutations of the encoding gene PIK3CA are known to be oncogenic. Mutations in PIK3CA co-occur with HER2-amplification in ~ 20% of cases within the HER2-amplified subtype.

Methods

We generated isogenic knockin mutants of each PIK3CA hotspot mutation in HER2-amplified breast cancer cells using adeno-associated virus-mediated gene targeting. Isogenic clones were analyzed using a combinatorial drug screen to determine differential responses to HER2-targeted therapy. Western blot analysis and immunofluorescence uncovered unique intracellular signaling dynamics in cells resistant to HER2-targeted therapy. Subsequent combinatorial drug screens were used to explore neuregulin-1-mediated resistance to HER2-targeted therapy. Finally, results from in vitro experiments were extrapolated to publicly available datasets.

Results

Treatment with HER2-targeted therapy reveals that mutations in the kinase domain (H1047R) but not the helical domain (E545K) increase resistance to lapatinib. Mechanistically, sustained AKT signaling drives lapatinib resistance in cells with the kinase domain mutation, as demonstrated by staining for the intracellular product of PI3-kinase, PIP3. This resistance can be overcome by co-treatment with an inhibitor to the downstream kinase AKT. Additionally, knockout of the PIP3 phosphatase, PTEN, phenocopies this result. We also show that neuregulin-1, a ligand for HER-family receptors, confers resistance to cells harboring either hotspot mutation and modulates response to combinatorial therapy. Finally, we show clinical evidence that the hotspot mutations have distinct expression profiles related to therapeutic resistance through analysis of TCGA and METABRIC data cohorts.

Conclusion

Our results demonstrate unique intracellular signaling differences depending on which mutation in PIK3CA the cell harbors. Only mutations in the kinase domain fully activate the PI3-kinase signaling pathway and maintain downstream signaling in the presence of HER2 inhibition. Moreover, we show there is potentially clinical importance in understanding both the PIK3CA mutational status and levels of neuregulin-1 expression in patients with HER2-amplified breast cancer treated with targeted therapy and that these problems warrant further pre-clinical and clinical testing.
Appendix
Available only for authorised users
Literature
4.
go back to reference Roh H, Pippin J, Drebin JA. Down-regulation of HER2/neu expression induces apoptosis in human cancer cells that overexpress HER2/neu. Cancer research. 2000;60(3):560–5.PubMed Roh H, Pippin J, Drebin JA. Down-regulation of HER2/neu expression induces apoptosis in human cancer cells that overexpress HER2/neu. Cancer research. 2000;60(3):560–5.PubMed
6.
go back to reference Fendly BM, Winget M, Hudziak RM, Lipari MT, Napier MA, Ullrich A. Characterization of murine monoclonal antibodies reactive to either the human epidermal growth factor receptor or HER2/neu gene product. Cancer research. 1990;50(5):1550–8.PubMed Fendly BM, Winget M, Hudziak RM, Lipari MT, Napier MA, Ullrich A. Characterization of murine monoclonal antibodies reactive to either the human epidermal growth factor receptor or HER2/neu gene product. Cancer research. 1990;50(5):1550–8.PubMed
7.
go back to reference Rusnak DW, Lackey K, Affleck K, Wood ER, Alligood KJ, Rhodes N, et al. The effects of the novel, reversible epidermal growth factor receptor/ErbB-2 tyrosine kinase inhibitor, GW2016, on the growth of human normal and tumor-derived cell lines in vitro and in vivo. Molecular cancer therapeutics. 2001;1(2):85–94.PubMed Rusnak DW, Lackey K, Affleck K, Wood ER, Alligood KJ, Rhodes N, et al. The effects of the novel, reversible epidermal growth factor receptor/ErbB-2 tyrosine kinase inhibitor, GW2016, on the growth of human normal and tumor-derived cell lines in vitro and in vivo. Molecular cancer therapeutics. 2001;1(2):85–94.PubMed
8.
go back to reference Moulder SL, Borges VF, Baetz T, McSpadden T, Fernetich G, Murthy RK, et al. Phase I study of ONT-380, a HER2 inhibitor, in patients with HER2(+)-advanced solid tumors, with an expansion cohort in HER2(+) metastatic breast cancer (MBC). Clinical cancer research : an official journal of the American Association for Cancer Research. 2017;23(14):3529–36. https://doi.org/10.1158/1078-0432.CCR-16-1496.CrossRef Moulder SL, Borges VF, Baetz T, McSpadden T, Fernetich G, Murthy RK, et al. Phase I study of ONT-380, a HER2 inhibitor, in patients with HER2(+)-advanced solid tumors, with an expansion cohort in HER2(+) metastatic breast cancer (MBC). Clinical cancer research : an official journal of the American Association for Cancer Research. 2017;23(14):3529–36. https://​doi.​org/​10.​1158/​1078-0432.​CCR-16-1496.CrossRef
14.
go back to reference Kataoka Y, Mukohara T, Shimada H, Saijo N, Hirai M, Minami H. Association between gain-of-function mutations in PIK3CA and resistance to HER2-targeted agents in HER2-amplified breast cancer cell lines. Annals of oncology : official journal of the European Society for Medical Oncology. 2010;21(2):255–62. https://doi.org/10.1093/annonc/mdp304.CrossRef Kataoka Y, Mukohara T, Shimada H, Saijo N, Hirai M, Minami H. Association between gain-of-function mutations in PIK3CA and resistance to HER2-targeted agents in HER2-amplified breast cancer cell lines. Annals of oncology : official journal of the European Society for Medical Oncology. 2010;21(2):255–62. https://​doi.​org/​10.​1093/​annonc/​mdp304.CrossRef
19.
go back to reference Zardavas D, Te Marvelde L, Milne RL, Fumagalli D, Fountzilas G, Kotoula V, et al. Tumor PIK3CA genotype and prognosis in early-stage breast cancer: a pooled analysis of individual patient data. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2018;36(10):981–90. https://doi.org/10.1200/JCO.2017.74.8301.CrossRef Zardavas D, Te Marvelde L, Milne RL, Fumagalli D, Fountzilas G, Kotoula V, et al. Tumor PIK3CA genotype and prognosis in early-stage breast cancer: a pooled analysis of individual patient data. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2018;36(10):981–90. https://​doi.​org/​10.​1200/​JCO.​2017.​74.​8301.CrossRef
28.
31.
go back to reference Amin DN, Sergina N, Ahuja D, McMahon M, Blair JA, Wang D, et al. Resiliency and vulnerability in the HER2-HER3 tumorigenic driver. Science translational medicine. 2010;2(16):16ra17.CrossRef Amin DN, Sergina N, Ahuja D, McMahon M, Blair JA, Wang D, et al. Resiliency and vulnerability in the HER2-HER3 tumorigenic driver. Science translational medicine. 2010;2(16):16ra17.CrossRef
40.
go back to reference Tanioka M, Fan C, Parker JS, Hoadley KA, Hu Z, Li Y, et al. Integrated analysis of RNA and DNA from the phase III trial CALGB 40601 identifies predictors of response to trastuzumab-based neoadjuvant chemotherapy in HER2-positive breast cancer. Clinical cancer research : an official journal of the American Association for Cancer Research. 2018;24(21):5292–304. https://doi.org/10.1158/1078-0432.CCR-17-3431.CrossRef Tanioka M, Fan C, Parker JS, Hoadley KA, Hu Z, Li Y, et al. Integrated analysis of RNA and DNA from the phase III trial CALGB 40601 identifies predictors of response to trastuzumab-based neoadjuvant chemotherapy in HER2-positive breast cancer. Clinical cancer research : an official journal of the American Association for Cancer Research. 2018;24(21):5292–304. https://​doi.​org/​10.​1158/​1078-0432.​CCR-17-3431.CrossRef
41.
go back to reference Lesurf R, Griffith OL, Griffith M, Hundal J, Trani L, Watson MA, et al. Genomic characterization of HER2-positive breast cancer and response to neoadjuvant trastuzumab and chemotherapy-results from the ACOSOG Z1041 (Alliance) trial. Annals of oncology : official journal of the European Society for Medical Oncology. 2017;28(5):1070–7. https://doi.org/10.1093/annonc/mdx048.CrossRef Lesurf R, Griffith OL, Griffith M, Hundal J, Trani L, Watson MA, et al. Genomic characterization of HER2-positive breast cancer and response to neoadjuvant trastuzumab and chemotherapy-results from the ACOSOG Z1041 (Alliance) trial. Annals of oncology : official journal of the European Society for Medical Oncology. 2017;28(5):1070–7. https://​doi.​org/​10.​1093/​annonc/​mdx048.CrossRef
45.
go back to reference Scaltriti M, Nuciforo P, Bradbury I, Sperinde J, Agbor-Tarh D, Campbell C, et al. High HER2 expression correlates with response to the combination of lapatinib and trastuzumab. Clinical cancer research : an official journal of the American Association for Cancer Research. 2015;21(3):569–76. https://doi.org/10.1158/1078-0432.CCR-14-1824.CrossRef Scaltriti M, Nuciforo P, Bradbury I, Sperinde J, Agbor-Tarh D, Campbell C, et al. High HER2 expression correlates with response to the combination of lapatinib and trastuzumab. Clinical cancer research : an official journal of the American Association for Cancer Research. 2015;21(3):569–76. https://​doi.​org/​10.​1158/​1078-0432.​CCR-14-1824.CrossRef
Metadata
Title
Sensitivity to targeted therapy differs between HER2-amplified breast cancer cells harboring kinase and helical domain mutations in PIK3CA
Authors
Joseph P. Garay
Rebecca Smith
Kaylyn Devlin
Daniel P. Hollern
Tiera Liby
Moqing Liu
Shanta Boddapati
Spencer S. Watson
Amanda Esch
Ting Zheng
Wallace Thompson
Darcie Babcock
Sunjong Kwon
Koei Chin
Laura Heiser
Joe W. Gray
James E. Korkola
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Breast Cancer Research / Issue 1/2021
Electronic ISSN: 1465-542X
DOI
https://doi.org/10.1186/s13058-021-01457-0

Other articles of this Issue 1/2021

Breast Cancer Research 1/2021 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine