Skip to main content
Top
Published in: Breast Cancer Research 1/2022

Open Access 01-12-2022 | Breast Cancer | Research article

Selective pressure of endocrine therapy activates the integrated stress response through NFκB signaling in a subpopulation of ER positive breast cancer cells

Authors: Svetlana E. Semina, Purab Pal, Nidhi S. Kansara, Rosemary J. Huggins, Elaine T. Alarid, Geoffrey L. Greene, Jonna Frasor

Published in: Breast Cancer Research | Issue 1/2022

Login to get access

Abstract

Background

While estrogen receptor (ER) positive breast tumors generally respond well to endocrine therapy (ET), up to 40% of patients will experience relapse, either while on endocrine therapy or after ET is completed. We previously demonstrated that the selective pressure of tamoxifen activates the NFκB pathway in ER + patient tumors, breast cancer cell lines, and breast cancer xenograft tumors, and that this activation allows for survival of a subpopulation of NFκB + cells that contribute to cell regrowth and tumor relapse after ET withdrawal. However, the mechanisms contributing to the expansion of an NFκB + cell population on ET are unknown.

Methods

Here, we utilized single-cell RNA sequencing and bioinformatics approaches to characterize the NFκB + cell population and its clinical relevance. Follow-up studies were conducted to validate our findings and assess the function of the integrated stress response pathway in breast cancer cell lines and patient-derived models.

Results

We found that the NFκB + population that arises in response to ET is a preexisting population is enriched under the selective pressure of ET. Based on the preexisting NFκB + cell population, we developed a gene signature and found that it is predictive of tumor relapse when expressed in primary ER + tumors and is retained in metastatic cell populations. Moreover, we identified that the integrated stress response (ISR), as indicated by increased phosphorylation of eIF2α, occurs in response to ET and contributes to clonogenic growth under the selective pressure of ET.

Conclusions

Taken together, our findings suggest that a cell population with active NFκB and ISR signaling can survive and expand under the selective pressure of ET and that targeting this population may be a viable therapeutic strategy to improve patient outcome by eliminating cells that survive ET. Understanding the mechanisms by which breast cancer cells survive the selective pressure of ET may improve relapse rates and overall outcome for patients with ER + breast tumors.
Appendix
Available only for authorised users
Literature
1.
go back to reference Yu K-D, Wu J, Shen Z-Z, Shao Z-M. Hazard of breast cancer-specific mortality among women with estrogen receptor-positive breast cancer after five years from diagnosis: implication for extended endocrine therapy. J Clin Endocrinol Metab. 2012;97(12):E2201–9.PubMedCrossRef Yu K-D, Wu J, Shen Z-Z, Shao Z-M. Hazard of breast cancer-specific mortality among women with estrogen receptor-positive breast cancer after five years from diagnosis: implication for extended endocrine therapy. J Clin Endocrinol Metab. 2012;97(12):E2201–9.PubMedCrossRef
2.
go back to reference Jatoi I, Anderson WF, Jeong JH, Redmond CK. Breast cancer adjuvant therapy: time to consider its time-dependent effects. J Clin Oncol. 2011;29(17):2301–4.PubMedPubMedCentralCrossRef Jatoi I, Anderson WF, Jeong JH, Redmond CK. Breast cancer adjuvant therapy: time to consider its time-dependent effects. J Clin Oncol. 2011;29(17):2301–4.PubMedPubMedCentralCrossRef
3.
go back to reference Dunnwald LK, Rossing MA, Li CI. Hormone receptor status, tumor characteristics, and prognosis: a prospective cohort of breast cancer patients. Breast cancer research : BCR. 2007;9(1):R6.PubMedPubMedCentralCrossRef Dunnwald LK, Rossing MA, Li CI. Hormone receptor status, tumor characteristics, and prognosis: a prospective cohort of breast cancer patients. Breast cancer research : BCR. 2007;9(1):R6.PubMedPubMedCentralCrossRef
4.
go back to reference Saphner T, Tormey DC, Gray R. Annual hazard rates of recurrence for breast cancer after primary therapy. J Clin Oncol. 1996;14(10):2738–46.PubMedCrossRef Saphner T, Tormey DC, Gray R. Annual hazard rates of recurrence for breast cancer after primary therapy. J Clin Oncol. 1996;14(10):2738–46.PubMedCrossRef
5.
go back to reference Early Breast Cancer Trialists' Collaborative G. Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet. 2005;365(9472):1687–1717. Early Breast Cancer Trialists' Collaborative G. Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet. 2005;365(9472):1687–1717.
6.
go back to reference Davies C, Pan H, Godwin J, et al. Long-term effects of continuing adjuvant tamoxifen to 10 years versus stopping at 5 years after diagnosis of oestrogen receptor-positive breast cancer: ATLAS, a randomised trial. Lancet. 2013;381(9869):805–16.PubMedPubMedCentralCrossRef Davies C, Pan H, Godwin J, et al. Long-term effects of continuing adjuvant tamoxifen to 10 years versus stopping at 5 years after diagnosis of oestrogen receptor-positive breast cancer: ATLAS, a randomised trial. Lancet. 2013;381(9869):805–16.PubMedPubMedCentralCrossRef
7.
go back to reference Johnston SR, Saccani-Jotti G, Smith IE, et al. Changes in estrogen receptor, progesterone receptor, and pS2 expression in tamoxifen-resistant human breast cancer. Can Res. 1995;55(15):3331–8. Johnston SR, Saccani-Jotti G, Smith IE, et al. Changes in estrogen receptor, progesterone receptor, and pS2 expression in tamoxifen-resistant human breast cancer. Can Res. 1995;55(15):3331–8.
9.
go back to reference Haque MM, Desai KV. Pathways to endocrine therapy resistance in breast cancer. Front Endocrinol. 2019;10:573.CrossRef Haque MM, Desai KV. Pathways to endocrine therapy resistance in breast cancer. Front Endocrinol. 2019;10:573.CrossRef
10.
go back to reference El-Shennawy L, Dubrovskyi O, Kastrati I, et al. Coactivation of estrogen receptor and ikkbeta induces a dormant metastatic phenotype in ER-Positive Breast Cancer. Can Res. 2018;78(4):974–84.CrossRef El-Shennawy L, Dubrovskyi O, Kastrati I, et al. Coactivation of estrogen receptor and ikkbeta induces a dormant metastatic phenotype in ER-Positive Breast Cancer. Can Res. 2018;78(4):974–84.CrossRef
11.
go back to reference Lupien M, Meyer CA, Bailey ST, et al. Growth factor stimulation induces a distinct ER(alpha) cistrome underlying breast cancer endocrine resistance. Genes Dev. 2010;24(19):2219–27.PubMedPubMedCentralCrossRef Lupien M, Meyer CA, Bailey ST, et al. Growth factor stimulation induces a distinct ER(alpha) cistrome underlying breast cancer endocrine resistance. Genes Dev. 2010;24(19):2219–27.PubMedPubMedCentralCrossRef
12.
go back to reference Ross-Innes CS, Stark R, Teschendorff AE, et al. Differential oestrogen receptor binding is associated with clinical outcome in breast cancer. Nature. 2012;481(7381):389–93.PubMedPubMedCentralCrossRef Ross-Innes CS, Stark R, Teschendorff AE, et al. Differential oestrogen receptor binding is associated with clinical outcome in breast cancer. Nature. 2012;481(7381):389–93.PubMedPubMedCentralCrossRef
13.
go back to reference Franco HL, Nagari A, Kraus WL. TNFalpha signaling exposes latent estrogen receptor binding sites to alter the breast cancer cell transcriptome. Mol Cell. 2015;58(1):21–34.PubMedPubMedCentralCrossRef Franco HL, Nagari A, Kraus WL. TNFalpha signaling exposes latent estrogen receptor binding sites to alter the breast cancer cell transcriptome. Mol Cell. 2015;58(1):21–34.PubMedPubMedCentralCrossRef
14.
go back to reference Stender JD, Nwachukwu JC, Kastrati I, et al. Structural and molecular mechanisms of cytokine-mediated endocrine resistance in human breast cancer cells. Mol Cell. 2017;65(6):1122–35.PubMedPubMedCentralCrossRef Stender JD, Nwachukwu JC, Kastrati I, et al. Structural and molecular mechanisms of cytokine-mediated endocrine resistance in human breast cancer cells. Mol Cell. 2017;65(6):1122–35.PubMedPubMedCentralCrossRef
15.
go back to reference Bhat-Nakshatri P, Wang G, Appaiah H, et al. AKT alters genome-wide estrogen receptor alpha binding and impacts estrogen signaling in breast cancer. Mol Cell Biol. 2008;28(24):7487–503.PubMedPubMedCentralCrossRef Bhat-Nakshatri P, Wang G, Appaiah H, et al. AKT alters genome-wide estrogen receptor alpha binding and impacts estrogen signaling in breast cancer. Mol Cell Biol. 2008;28(24):7487–503.PubMedPubMedCentralCrossRef
16.
go back to reference Smart E, Semina SE, Frasor J. Update on the role of NFkappaB in promoting aggressive phenotypes of estrogen receptor-positive breast cancer. Endocrinology. 2020;161(10). Smart E, Semina SE, Frasor J. Update on the role of NFkappaB in promoting aggressive phenotypes of estrogen receptor-positive breast cancer. Endocrinology. 2020;161(10).
17.
go back to reference Kastrati I, Joosten SEP, Semina SE, et al. The NFkappaB pathway promotes tamoxifen tolerance and disease recurrence in estrogen receptor-positive breast cancers. Mol Cancer Res. 2020. Kastrati I, Joosten SEP, Semina SE, et al. The NFkappaB pathway promotes tamoxifen tolerance and disease recurrence in estrogen receptor-positive breast cancers. Mol Cancer Res. 2020.
18.
19.
go back to reference Wuerzberger-Davis SM, Chang PY, Berchtold C, Miyamoto S. Enhanced G2-M arrest by nuclear factor-{kappa}B-dependent p21waf1/cip1 induction. Mol Cancer Res. 2005;3(6):345–53.PubMedCrossRef Wuerzberger-Davis SM, Chang PY, Berchtold C, Miyamoto S. Enhanced G2-M arrest by nuclear factor-{kappa}B-dependent p21waf1/cip1 induction. Mol Cancer Res. 2005;3(6):345–53.PubMedCrossRef
20.
go back to reference Hafemeister C, Satija R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 2019;20(1):296.PubMedPubMedCentralCrossRef Hafemeister C, Satija R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 2019;20(1):296.PubMedPubMedCentralCrossRef
21.
go back to reference Liberzon A, Birger C, Thorvaldsdottir H, Ghandi M, Mesirov JP, Tamayo P. The molecular signatures database (MSigDB) hallmark gene set collection. Cell Syst. 2015;1(6):417–25.PubMedPubMedCentralCrossRef Liberzon A, Birger C, Thorvaldsdottir H, Ghandi M, Mesirov JP, Tamayo P. The molecular signatures database (MSigDB) hallmark gene set collection. Cell Syst. 2015;1(6):417–25.PubMedPubMedCentralCrossRef
22.
go back to reference Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545–50.PubMedPubMedCentralCrossRef Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545–50.PubMedPubMedCentralCrossRef
23.
24.
go back to reference Chen F, Ding K, Priedigkeit N, et al. Single-Cell Transcriptomic Heterogeneity in Invasive Ductal and Lobular Breast Cancer Cells. Can Res. 2021;81(2):268–81.CrossRef Chen F, Ding K, Priedigkeit N, et al. Single-Cell Transcriptomic Heterogeneity in Invasive Ductal and Lobular Breast Cancer Cells. Can Res. 2021;81(2):268–81.CrossRef
25.
go back to reference Dwyer AR, Truong TH, Kerkvliet CP, et al. Insulin receptor substrate-1 (IRS-1) mediates progesterone receptor-driven stemness and endocrine resistance in oestrogen receptor+ breast cancer. Br J Cancer. 2021;124(1):217–27.PubMedCrossRef Dwyer AR, Truong TH, Kerkvliet CP, et al. Insulin receptor substrate-1 (IRS-1) mediates progesterone receptor-driven stemness and endocrine resistance in oestrogen receptor+ breast cancer. Br J Cancer. 2021;124(1):217–27.PubMedCrossRef
26.
go back to reference Kramer A, Green J, Pollard J Jr, Tugendreich S. Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics. 2014;30(4):523–30.PubMedCrossRef Kramer A, Green J, Pollard J Jr, Tugendreich S. Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics. 2014;30(4):523–30.PubMedCrossRef
27.
go back to reference Pereira B, Chin SF, Rueda OM, et al. The somatic mutation profiles of 2,433 breast cancers refines their genomic and transcriptomic landscapes. Nat Commun. 2016;7:11479.PubMedPubMedCentralCrossRef Pereira B, Chin SF, Rueda OM, et al. The somatic mutation profiles of 2,433 breast cancers refines their genomic and transcriptomic landscapes. Nat Commun. 2016;7:11479.PubMedPubMedCentralCrossRef
28.
go back to reference Rueda OM, Sammut SJ, Seoane JA, et al. Dynamics of breast-cancer relapse reveal late-recurring ER-positive genomic subgroups. Nature. 2019;567(7748):399–404.PubMedPubMedCentralCrossRef Rueda OM, Sammut SJ, Seoane JA, et al. Dynamics of breast-cancer relapse reveal late-recurring ER-positive genomic subgroups. Nature. 2019;567(7748):399–404.PubMedPubMedCentralCrossRef
29.
go back to reference Schaefer CF, Anthony K, Krupa S, et al. PID: the Pathway interaction database. Nucleic Acids Res. 2009;37(Database issue):D674–679. Schaefer CF, Anthony K, Krupa S, et al. PID: the Pathway interaction database. Nucleic Acids Res. 2009;37(Database issue):D674–679.
30.
go back to reference Osawa Y, Nagaki M, Banno Y, et al. Expression of the NF-kappa B target gene X-ray-inducible immediate early response factor-1 short enhances TNF-alpha-induced hepatocyte apoptosis by inhibiting Akt activation. J Immunol. 2003;170(8):4053–60.PubMedCrossRef Osawa Y, Nagaki M, Banno Y, et al. Expression of the NF-kappa B target gene X-ray-inducible immediate early response factor-1 short enhances TNF-alpha-induced hepatocyte apoptosis by inhibiting Akt activation. J Immunol. 2003;170(8):4053–60.PubMedCrossRef
31.
go back to reference Zhou A, Scoggin S, Gaynor RB, Williams NS. Identification of NF-kappa B-regulated genes induced by TNFalpha utilizing expression profiling and RNA interference. Oncogene. 2003;22(13):2054–64.PubMedCrossRef Zhou A, Scoggin S, Gaynor RB, Williams NS. Identification of NF-kappa B-regulated genes induced by TNFalpha utilizing expression profiling and RNA interference. Oncogene. 2003;22(13):2054–64.PubMedCrossRef
32.
go back to reference Jassal B, Matthews L, Viteri G, et al. The reactome pathway knowledgebase. Nucleic Acids Res. 2020;48(D1):D498–503.PubMed Jassal B, Matthews L, Viteri G, et al. The reactome pathway knowledgebase. Nucleic Acids Res. 2020;48(D1):D498–503.PubMed
33.
go back to reference Rabouw HH, Langereis MA, Anand AA, et al. Small molecule ISRIB suppresses the integrated stress response within a defined window of activation. Proc Natl Acad Sci U S A. 2019;116(6):2097–102.PubMedPubMedCentralCrossRef Rabouw HH, Langereis MA, Anand AA, et al. Small molecule ISRIB suppresses the integrated stress response within a defined window of activation. Proc Natl Acad Sci U S A. 2019;116(6):2097–102.PubMedPubMedCentralCrossRef
35.
go back to reference Clarke R, Shajahan AN, Wang Y, et al. Endoplasmic reticulum stress, the unfolded protein response, and gene network modeling in antiestrogen resistant breast cancer. Horm Mol Biol Clin Investig. 2011;5(1):35–44.PubMedPubMedCentral Clarke R, Shajahan AN, Wang Y, et al. Endoplasmic reticulum stress, the unfolded protein response, and gene network modeling in antiestrogen resistant breast cancer. Horm Mol Biol Clin Investig. 2011;5(1):35–44.PubMedPubMedCentral
36.
go back to reference Hu R, Warri A, Jin L, et al. NF-κB signaling is required for XBP1 (unspliced and spliced)-mediated effects on antiestrogen responsiveness and cell fate decisions in breast cancer. Mol Cell Biol. 2015;35(2):379–90.PubMedCrossRef Hu R, Warri A, Jin L, et al. NF-κB signaling is required for XBP1 (unspliced and spliced)-mediated effects on antiestrogen responsiveness and cell fate decisions in breast cancer. Mol Cell Biol. 2015;35(2):379–90.PubMedCrossRef
37.
go back to reference Pratt MA, Bishop TE, White D, et al. Estrogen withdrawal-induced NF-kappaB activity and bcl-3 expression in breast cancer cells: roles in growth and hormone independence. Mol Cell Biol. 2003;23(19):6887–900.PubMedPubMedCentralCrossRef Pratt MA, Bishop TE, White D, et al. Estrogen withdrawal-induced NF-kappaB activity and bcl-3 expression in breast cancer cells: roles in growth and hormone independence. Mol Cell Biol. 2003;23(19):6887–900.PubMedPubMedCentralCrossRef
38.
go back to reference Zhu Y, Singh B, Hewitt S, et al. Expression patterns among interferon regulatory factor-1, human X-box binding protein-1, nuclear factor kappa B, nucleophosmin, estrogen receptor-alpha and progesterone receptor proteins in breast cancer tissue microarrays. Int J Oncol. 2006;28(1):67–76.PubMed Zhu Y, Singh B, Hewitt S, et al. Expression patterns among interferon regulatory factor-1, human X-box binding protein-1, nuclear factor kappa B, nucleophosmin, estrogen receptor-alpha and progesterone receptor proteins in breast cancer tissue microarrays. Int J Oncol. 2006;28(1):67–76.PubMed
39.
go back to reference Sidrauski C, McGeachy AM, Ingolia NT, Walter P. The small molecule ISRIB reverses the effects of eIF2alpha phosphorylation on translation and stress granule assembly. Elife. 2015;4. Sidrauski C, McGeachy AM, Ingolia NT, Walter P. The small molecule ISRIB reverses the effects of eIF2alpha phosphorylation on translation and stress granule assembly. Elife. 2015;4.
40.
go back to reference Deng J, Lu PD, Zhang Y, et al. Translational repression mediates activation of nuclear factor kappa B by phosphorylated translation initiation factor 2. Mol Cell Biol. 2004;24(23):10161–8.PubMedPubMedCentralCrossRef Deng J, Lu PD, Zhang Y, et al. Translational repression mediates activation of nuclear factor kappa B by phosphorylated translation initiation factor 2. Mol Cell Biol. 2004;24(23):10161–8.PubMedPubMedCentralCrossRef
41.
go back to reference Cook KL, Soto-Pantoja DR, Clarke PA, et al. Endoplasmic reticulum stress protein GRP78 modulates lipid metabolism to control drug sensitivity and antitumor immunity in breast cancer. Can Res. 2016;76(19):5657–70.CrossRef Cook KL, Soto-Pantoja DR, Clarke PA, et al. Endoplasmic reticulum stress protein GRP78 modulates lipid metabolism to control drug sensitivity and antitumor immunity in breast cancer. Can Res. 2016;76(19):5657–70.CrossRef
42.
go back to reference Parmar JH, Cook KL, Shajahan-Haq AN, et al. Modelling the effect of GRP78 on anti-oestrogen sensitivity and resistance in breast cancer. Interface Focus. 2013;3(4):20130012.PubMedPubMedCentralCrossRef Parmar JH, Cook KL, Shajahan-Haq AN, et al. Modelling the effect of GRP78 on anti-oestrogen sensitivity and resistance in breast cancer. Interface Focus. 2013;3(4):20130012.PubMedPubMedCentralCrossRef
44.
go back to reference Cook KL, Clarke PA, Clarke R. Targeting GRP78 and antiestrogen resistance in breast cancer. Future Med Chem. 2013;5(9):1047–57.PubMedCrossRef Cook KL, Clarke PA, Clarke R. Targeting GRP78 and antiestrogen resistance in breast cancer. Future Med Chem. 2013;5(9):1047–57.PubMedCrossRef
45.
go back to reference Clarke R, Shajahan AN, Riggins RB, et al. Gene network signaling in hormone responsiveness modifies apoptosis and autophagy in breast cancer cells. J Steroid Biochem Mol Biol. 2009;114(1–2):8–20.PubMedPubMedCentralCrossRef Clarke R, Shajahan AN, Riggins RB, et al. Gene network signaling in hormone responsiveness modifies apoptosis and autophagy in breast cancer cells. J Steroid Biochem Mol Biol. 2009;114(1–2):8–20.PubMedPubMedCentralCrossRef
46.
go back to reference Mao C, Livezey M, Kim JE, Shapiro DJ. Antiestrogen resistant cell lines expressing estrogen receptor alpha mutations upregulate the unfolded protein response and are killed by BHPI. Sci Rep. 2016;6:34753.PubMedPubMedCentralCrossRef Mao C, Livezey M, Kim JE, Shapiro DJ. Antiestrogen resistant cell lines expressing estrogen receptor alpha mutations upregulate the unfolded protein response and are killed by BHPI. Sci Rep. 2016;6:34753.PubMedPubMedCentralCrossRef
47.
go back to reference Zheng X, Andruska N, Yu L, et al. Interplay between steroid hormone activation of the unfolded protein response and nuclear receptor action. Steroids. 2016;114:2–6.PubMedPubMedCentralCrossRef Zheng X, Andruska N, Yu L, et al. Interplay between steroid hormone activation of the unfolded protein response and nuclear receptor action. Steroids. 2016;114:2–6.PubMedPubMedCentralCrossRef
48.
go back to reference Boumahdi S, de Sauvage FJ. The great escape: tumour cell plasticity in resistance to targeted therapy. Nat Rev Drug Discov. 2019. Boumahdi S, de Sauvage FJ. The great escape: tumour cell plasticity in resistance to targeted therapy. Nat Rev Drug Discov. 2019.
49.
50.
51.
go back to reference Erstad DJ, Cusack JC Jr. Targeting the NF-kappaB pathway in cancer therapy. Surg Oncol Clin N Am. 2013;22(4):705–46.PubMedCrossRef Erstad DJ, Cusack JC Jr. Targeting the NF-kappaB pathway in cancer therapy. Surg Oncol Clin N Am. 2013;22(4):705–46.PubMedCrossRef
52.
go back to reference de Castro Barbosa ML, da Conceicao RA, Fraga AGM, et al. NF-kappaB signaling pathway inhibitors as anticancer drug candidates. Anticancer Agents Med Chem. 2017;17(4):483–90.PubMedCrossRef de Castro Barbosa ML, da Conceicao RA, Fraga AGM, et al. NF-kappaB signaling pathway inhibitors as anticancer drug candidates. Anticancer Agents Med Chem. 2017;17(4):483–90.PubMedCrossRef
Metadata
Title
Selective pressure of endocrine therapy activates the integrated stress response through NFκB signaling in a subpopulation of ER positive breast cancer cells
Authors
Svetlana E. Semina
Purab Pal
Nidhi S. Kansara
Rosemary J. Huggins
Elaine T. Alarid
Geoffrey L. Greene
Jonna Frasor
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Breast Cancer Research / Issue 1/2022
Electronic ISSN: 1465-542X
DOI
https://doi.org/10.1186/s13058-022-01515-1

Other articles of this Issue 1/2022

Breast Cancer Research 1/2022 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine