Skip to main content
Top
Published in: Journal of Hematology & Oncology 1/2023

Open Access 01-12-2023 | Breast Cancer | Review

Recent advances in targeted strategies for triple-negative breast cancer

Authors: Shuangli Zhu, Yuze Wu, Bin Song, Ming Yi, Yuheng Yan, Qi Mei, Kongming Wu

Published in: Journal of Hematology & Oncology | Issue 1/2023

Login to get access

Abstract

Triple-negative breast cancer (TNBC), a highly aggressive subtype of breast cancer, negatively expresses estrogen receptor, progesterone receptor, and the human epidermal growth factor receptor 2 (HER2). Although chemotherapy is the main form of treatment for patients with TNBC, the effectiveness of chemotherapy for TNBC is still limited. The search for more effective therapies is urgent. Multiple targeted therapeutic strategies have emerged according to the specific molecules and signaling pathways expressed in TNBC. These include PI3K/AKT/mTOR inhibitors, epidermal growth factor receptor inhibitors, Notch inhibitors, poly ADP-ribose polymerase inhibitors, and antibody–drug conjugates. Moreover, immune checkpoint inhibitors, for example, pembrolizumab, atezolizumab, and durvalumab, are widely explored in the clinic. We summarize recent advances in targeted therapy and immunotherapy in TNBC, with the aim of serving as a reference for the development of individualized treatment of patients with TNBC in the future.
Literature
1.
go back to reference Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73:17–48.PubMedCrossRef Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73:17–48.PubMedCrossRef
2.
go back to reference Yi M, Li T, Niu M, et al. Epidemiological trends of women’s cancers from 1990 to 2019 at the global, regional, and national levels: a population-based study. Biomark Res. 2021;9:55.PubMedPubMedCentralCrossRef Yi M, Li T, Niu M, et al. Epidemiological trends of women’s cancers from 1990 to 2019 at the global, regional, and national levels: a population-based study. Biomark Res. 2021;9:55.PubMedPubMedCentralCrossRef
3.
go back to reference Goldhirsch A, Winer EP, Coates AS, et al. Personalizing the treatment of women with early breast cancer: Highlights of the St Gallen international expert consensus on the primary therapy of early breast cancer 2013. Ann Oncol. 2013;24:2206–23.PubMedPubMedCentralCrossRef Goldhirsch A, Winer EP, Coates AS, et al. Personalizing the treatment of women with early breast cancer: Highlights of the St Gallen international expert consensus on the primary therapy of early breast cancer 2013. Ann Oncol. 2013;24:2206–23.PubMedPubMedCentralCrossRef
4.
go back to reference Borri F, Granaglia A. Pathology of triple negative breast cancer. Semin Cancer Biol. 2021;72:136–45.PubMedCrossRef Borri F, Granaglia A. Pathology of triple negative breast cancer. Semin Cancer Biol. 2021;72:136–45.PubMedCrossRef
5.
go back to reference Poteat TC, Adams MA, Malone J, et al. Delays in breast cancer care by race and sexual orientation: results from a national survey with diverse women in the United States. Cancer. 2021;127:3514–22.PubMedCrossRef Poteat TC, Adams MA, Malone J, et al. Delays in breast cancer care by race and sexual orientation: results from a national survey with diverse women in the United States. Cancer. 2021;127:3514–22.PubMedCrossRef
6.
go back to reference Perou CM, Sørlie T, Eisen MB, et al. Molecular portraits of human breast tumours. Nature. 2000;406:747–52.PubMedCrossRef Perou CM, Sørlie T, Eisen MB, et al. Molecular portraits of human breast tumours. Nature. 2000;406:747–52.PubMedCrossRef
7.
go back to reference Morris GJ, Naidu S, Topham AK, et al. Differences in breast carcinoma characteristics in newly diagnosed african-american and caucasian patients: a single-institution compilation compared with the national cancer institute’s surveillance, epidemiology, and end results database. Cancer. 2007;110:876–84.PubMedCrossRef Morris GJ, Naidu S, Topham AK, et al. Differences in breast carcinoma characteristics in newly diagnosed african-american and caucasian patients: a single-institution compilation compared with the national cancer institute’s surveillance, epidemiology, and end results database. Cancer. 2007;110:876–84.PubMedCrossRef
8.
go back to reference Dent R, Trudeau M, Pritchard KI, et al. Triple-negative breast cancer: Clinical features and patterns of recurrence. Clin Cancer Res. 2007;13:4429–34.PubMedCrossRef Dent R, Trudeau M, Pritchard KI, et al. Triple-negative breast cancer: Clinical features and patterns of recurrence. Clin Cancer Res. 2007;13:4429–34.PubMedCrossRef
9.
go back to reference Schmid P, Adams S, Rugo HS, et al. Atezolizumab and Nab-Paclitaxel in advanced triple-negative breast cancer. N Engl J Med. 2018;379:2108–21.PubMedCrossRef Schmid P, Adams S, Rugo HS, et al. Atezolizumab and Nab-Paclitaxel in advanced triple-negative breast cancer. N Engl J Med. 2018;379:2108–21.PubMedCrossRef
10.
go back to reference Duffy MJ, McGowan PM, Crown J. Targeted therapy for triple-negative breast cancer: Where are we? Int J Cancer. 2012;131:2471–7.PubMedCrossRef Duffy MJ, McGowan PM, Crown J. Targeted therapy for triple-negative breast cancer: Where are we? Int J Cancer. 2012;131:2471–7.PubMedCrossRef
11.
go back to reference Wu Q, Qian W, Sun X, Jiang S. Small-molecule inhibitors, immune checkpoint inhibitors, and more: FDA-approved novel therapeutic drugs for solid tumors from 1991 to 2021. J Hematol Oncol. 2022;15:143.PubMedPubMedCentralCrossRef Wu Q, Qian W, Sun X, Jiang S. Small-molecule inhibitors, immune checkpoint inhibitors, and more: FDA-approved novel therapeutic drugs for solid tumors from 1991 to 2021. J Hematol Oncol. 2022;15:143.PubMedPubMedCentralCrossRef
12.
go back to reference Garrido-Castro AC, Lin NU, Polyak K. Insights into molecular classifications of triple-negative breast cancer: improving patient selection for treatment. Cancer Discov. 2019;9:176–98.PubMedPubMedCentralCrossRef Garrido-Castro AC, Lin NU, Polyak K. Insights into molecular classifications of triple-negative breast cancer: improving patient selection for treatment. Cancer Discov. 2019;9:176–98.PubMedPubMedCentralCrossRef
13.
go back to reference Leon-Ferre RA, Goetz MP. Advances in systemic therapies for triple negative breast cancer. BMJ. 2023;381:e071674.PubMedCrossRef Leon-Ferre RA, Goetz MP. Advances in systemic therapies for triple negative breast cancer. BMJ. 2023;381:e071674.PubMedCrossRef
14.
go back to reference Kumar H, Gupta NV, Jain R, et al. A review of biological targets and therapeutic approaches in the management of triple-negative breast cancer. J Adv Res; 2023. Kumar H, Gupta NV, Jain R, et al. A review of biological targets and therapeutic approaches in the management of triple-negative breast cancer. J Adv Res; 2023.
15.
16.
go back to reference Spínola-Lasso E, Montero JC, Jiménez-Monzón R, et al. Chemical-proteomics identify Peroxiredoxin-1 as an actionable target in triple-negative breast cancer. Int J Biol Sci. 2023;19:1731–47.PubMedPubMedCentralCrossRef Spínola-Lasso E, Montero JC, Jiménez-Monzón R, et al. Chemical-proteomics identify Peroxiredoxin-1 as an actionable target in triple-negative breast cancer. Int J Biol Sci. 2023;19:1731–47.PubMedPubMedCentralCrossRef
18.
19.
go back to reference Jiang YZ, Ma D, Suo C, et al. Genomic and transcriptomic landscape of triple-negative breast cancers: subtypes and treatment strategies. Cancer Cell. 2019;35(428–40): e5. Jiang YZ, Ma D, Suo C, et al. Genomic and transcriptomic landscape of triple-negative breast cancers: subtypes and treatment strategies. Cancer Cell. 2019;35(428–40): e5.
20.
21.
22.
go back to reference Li J, Jiang Z. Chinese society of clinical oncology breast cancer (CSCO BC) guidelines in 2022: Stratification and classification. Cancer Biol Med. 2022;19:769–73.PubMedPubMedCentralCrossRef Li J, Jiang Z. Chinese society of clinical oncology breast cancer (CSCO BC) guidelines in 2022: Stratification and classification. Cancer Biol Med. 2022;19:769–73.PubMedPubMedCentralCrossRef
23.
go back to reference Turner NC, Reis-Filho JS. Tackling the diversity of triple-negative breast cancer. Clin Cancer Res. 2013;19:6380–8.PubMedCrossRef Turner NC, Reis-Filho JS. Tackling the diversity of triple-negative breast cancer. Clin Cancer Res. 2013;19:6380–8.PubMedCrossRef
24.
go back to reference Lehmann BD, Bauer JA, Chen X, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 2011;121:2750–67.PubMedPubMedCentralCrossRef Lehmann BD, Bauer JA, Chen X, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 2011;121:2750–67.PubMedPubMedCentralCrossRef
25.
go back to reference Liu YR, Jiang YZ, Xu XE, et al. Comprehensive transcriptome analysis identifies novel molecular subtypes and subtype-specific RNAs of triple-negative breast cancer. Breast Cancer Res. 2016;18:33.PubMedPubMedCentralCrossRef Liu YR, Jiang YZ, Xu XE, et al. Comprehensive transcriptome analysis identifies novel molecular subtypes and subtype-specific RNAs of triple-negative breast cancer. Breast Cancer Res. 2016;18:33.PubMedPubMedCentralCrossRef
26.
go back to reference Zhao S, Ma D, Xiao Y, et al. Molecular subtyping of triple-negative breast cancers by immunohistochemistry: molecular basis and clinical relevance. Oncologist. 2020;25:e1481–91.PubMedPubMedCentralCrossRef Zhao S, Ma D, Xiao Y, et al. Molecular subtyping of triple-negative breast cancers by immunohistochemistry: molecular basis and clinical relevance. Oncologist. 2020;25:e1481–91.PubMedPubMedCentralCrossRef
27.
go back to reference Jiang YZ, Liu Y, Xiao Y, et al. Molecular subtyping and genomic profiling expand precision medicine in refractory metastatic triple-negative breast cancer: the future trial. Cell Res. 2021;31:178–86.PubMedCrossRef Jiang YZ, Liu Y, Xiao Y, et al. Molecular subtyping and genomic profiling expand precision medicine in refractory metastatic triple-negative breast cancer: the future trial. Cell Res. 2021;31:178–86.PubMedCrossRef
28.
go back to reference Li T, Wang X, Qin S, et al. Targeting PARP for the optimal immunotherapy efficiency in gynecologic malignancies. Biomed Pharmacother. 2023;162:114712.PubMedCrossRef Li T, Wang X, Qin S, et al. Targeting PARP for the optimal immunotherapy efficiency in gynecologic malignancies. Biomed Pharmacother. 2023;162:114712.PubMedCrossRef
30.
go back to reference Luo L, Keyomarsi K. PARP inhibitors as single agents and in combination therapy: The most promising treatment strategies in clinical trials for BRCA-mutant ovarian and triple-negative breast cancers. Expert Opin Investig Drugs. 2022;31:607–31.PubMedPubMedCentralCrossRef Luo L, Keyomarsi K. PARP inhibitors as single agents and in combination therapy: The most promising treatment strategies in clinical trials for BRCA-mutant ovarian and triple-negative breast cancers. Expert Opin Investig Drugs. 2022;31:607–31.PubMedPubMedCentralCrossRef
31.
go back to reference Eikesdal HP, Yndestad S, Elzawahry A, et al. Olaparib monotherapy as primary treatment in unselected triple negative breast cancer. Ann Oncol. 2021;32:240–9.PubMedCrossRef Eikesdal HP, Yndestad S, Elzawahry A, et al. Olaparib monotherapy as primary treatment in unselected triple negative breast cancer. Ann Oncol. 2021;32:240–9.PubMedCrossRef
32.
go back to reference Robson M, Im SA, Senkus E, et al. Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. N Engl J Med. 2017;377:523–33.PubMedCrossRef Robson M, Im SA, Senkus E, et al. Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. N Engl J Med. 2017;377:523–33.PubMedCrossRef
33.
go back to reference Robson ME, Tung N, Conte P, et al. Olympiad final overall survival and tolerability results: Olaparib versus chemotherapy treatment of physician’s choice in patients with a germline BRCA mutation and HER2-negative metastatic breast cancer. Ann Oncol. 2019;30:558–66.PubMedPubMedCentralCrossRef Robson ME, Tung N, Conte P, et al. Olympiad final overall survival and tolerability results: Olaparib versus chemotherapy treatment of physician’s choice in patients with a germline BRCA mutation and HER2-negative metastatic breast cancer. Ann Oncol. 2019;30:558–66.PubMedPubMedCentralCrossRef
34.
35.
36.
go back to reference Litton JK, Scoggins ME, Hess KR, et al. Neoadjuvant Talazoparib for patients with operable breast cancer with a germline BRCA pathogenic variant. J Clin Oncol. 2020;38:388–94.PubMedCrossRef Litton JK, Scoggins ME, Hess KR, et al. Neoadjuvant Talazoparib for patients with operable breast cancer with a germline BRCA pathogenic variant. J Clin Oncol. 2020;38:388–94.PubMedCrossRef
37.
go back to reference Beniey M, Hubert A, Haque T, et al. Sequential targeting of PARP with carboplatin inhibits primary tumour growth and distant metastasis in triple-negative breast cancer. Br J Cancer. 2023;128:1964–75.PubMedPubMedCentralCrossRef Beniey M, Hubert A, Haque T, et al. Sequential targeting of PARP with carboplatin inhibits primary tumour growth and distant metastasis in triple-negative breast cancer. Br J Cancer. 2023;128:1964–75.PubMedPubMedCentralCrossRef
38.
go back to reference Bianchini G, De Angelis C, Licata L, Gianni L. Treatment landscape of triple-negative breast cancer - expanded options, evolving needs. Nat Rev Clin Oncol. 2022;19:91–113.PubMedCrossRef Bianchini G, De Angelis C, Licata L, Gianni L. Treatment landscape of triple-negative breast cancer - expanded options, evolving needs. Nat Rev Clin Oncol. 2022;19:91–113.PubMedCrossRef
39.
go back to reference Gerratana L, Basile D, Buono G, et al. Androgen receptor in triple negative breast cancer: a potential target for the targetless subtype. Cancer Treat Rev. 2018;68:102–10.PubMedCrossRef Gerratana L, Basile D, Buono G, et al. Androgen receptor in triple negative breast cancer: a potential target for the targetless subtype. Cancer Treat Rev. 2018;68:102–10.PubMedCrossRef
40.
go back to reference Khadela A, Chavda VP, Soni S, et al. Anti-androgenic therapies targeting the luminal androgen receptor of a typical triple-negative breast cancer. Cancers (Basel). 2022;15:233.PubMedCrossRef Khadela A, Chavda VP, Soni S, et al. Anti-androgenic therapies targeting the luminal androgen receptor of a typical triple-negative breast cancer. Cancers (Basel). 2022;15:233.PubMedCrossRef
41.
go back to reference Shi Y, Yang F, Huang D, Guan X. Androgen blockade based clinical trials landscape in triple negative breast cancer. Biochim Biophys Acta Rev Cancer. 2018;1870:283–90.PubMedCrossRef Shi Y, Yang F, Huang D, Guan X. Androgen blockade based clinical trials landscape in triple negative breast cancer. Biochim Biophys Acta Rev Cancer. 2018;1870:283–90.PubMedCrossRef
42.
go back to reference Gucalp A, Tolaney S, Isakoff SJ, et al. Phase ii trial of bicalutamide in patients with androgen receptor-positive, estrogen receptor-negative metastatic breast cancer. Clin Cancer Res. 2013;19:5505–12.PubMedPubMedCentralCrossRef Gucalp A, Tolaney S, Isakoff SJ, et al. Phase ii trial of bicalutamide in patients with androgen receptor-positive, estrogen receptor-negative metastatic breast cancer. Clin Cancer Res. 2013;19:5505–12.PubMedPubMedCentralCrossRef
43.
go back to reference Traina TA, Miller K, Yardley DA, et al. Enzalutamide for the treatment of androgen receptor-expressing triple-negative breast cancer. J Clin Oncol. 2018;36:884–90.PubMedPubMedCentralCrossRef Traina TA, Miller K, Yardley DA, et al. Enzalutamide for the treatment of androgen receptor-expressing triple-negative breast cancer. J Clin Oncol. 2018;36:884–90.PubMedPubMedCentralCrossRef
44.
go back to reference Bonnefoi H, Grellety T, Tredan O, et al. A phase II trial of abiraterone acetate plus prednisone in patients with triple-negative androgen receptor positive locally advanced or metastatic breast cancer (UCBG 12–1). Ann Oncol. 2016;27:812–8.PubMedCrossRef Bonnefoi H, Grellety T, Tredan O, et al. A phase II trial of abiraterone acetate plus prednisone in patients with triple-negative androgen receptor positive locally advanced or metastatic breast cancer (UCBG 12–1). Ann Oncol. 2016;27:812–8.PubMedCrossRef
45.
go back to reference Min A, Jang H, Kim S, et al. Androgen receptor inhibitor enhances the antitumor effect of PARP inhibitor in breast cancer cells by modulating DNA damage response. Mol Cancer Ther. 2018;17:2507–18.PubMedCrossRef Min A, Jang H, Kim S, et al. Androgen receptor inhibitor enhances the antitumor effect of PARP inhibitor in breast cancer cells by modulating DNA damage response. Mol Cancer Ther. 2018;17:2507–18.PubMedCrossRef
46.
47.
go back to reference Lehmann BD, Abramson VG, Sanders ME, et al. TBCRC 032 Ib/II multicenter study: Molecular insights to AR antagonist and PI3K inhibitor efficacy in patients with AR (+) metastatic triple-negative breast cancer. Clin Cancer Res. 2020;26:2111–23.PubMedCrossRef Lehmann BD, Abramson VG, Sanders ME, et al. TBCRC 032 Ib/II multicenter study: Molecular insights to AR antagonist and PI3K inhibitor efficacy in patients with AR (+) metastatic triple-negative breast cancer. Clin Cancer Res. 2020;26:2111–23.PubMedCrossRef
48.
go back to reference Choupani E, Madjd Z, Saraygord-Afshari N, Kiani J, Hosseini A. Combination of androgen receptor inhibitor enzalutamide with the CDK4/6 inhibitor ribociclib in triple negative breast cancer cells. PLoS ONE. 2022;17:e0279522.PubMedPubMedCentralCrossRef Choupani E, Madjd Z, Saraygord-Afshari N, Kiani J, Hosseini A. Combination of androgen receptor inhibitor enzalutamide with the CDK4/6 inhibitor ribociclib in triple negative breast cancer cells. PLoS ONE. 2022;17:e0279522.PubMedPubMedCentralCrossRef
49.
go back to reference Bury M, Le Calvé B, Ferbeyre G, Blank V, Lessard F. New insights into CDK regulators: novel opportunities for cancer therapy. Trends Cell Biol. 2021;31:331–44.PubMedCrossRef Bury M, Le Calvé B, Ferbeyre G, Blank V, Lessard F. New insights into CDK regulators: novel opportunities for cancer therapy. Trends Cell Biol. 2021;31:331–44.PubMedCrossRef
50.
go back to reference Beykou M, Arias-Garcia M, Roumeliotis TI, et al. Proteomic characterization of triple negative breast cancer cells following CDK4/6 inhibition. Sci Data. 2022;9:395.PubMedPubMedCentralCrossRef Beykou M, Arias-Garcia M, Roumeliotis TI, et al. Proteomic characterization of triple negative breast cancer cells following CDK4/6 inhibition. Sci Data. 2022;9:395.PubMedPubMedCentralCrossRef
51.
go back to reference Asghar US, Barr AR, Cutts R, et al. Single-cell dynamics determines response to CDK4/6 inhibition in triple-negative breast cancer. Clin Cancer Res. 2017;23:5561–72.PubMedPubMedCentralCrossRef Asghar US, Barr AR, Cutts R, et al. Single-cell dynamics determines response to CDK4/6 inhibition in triple-negative breast cancer. Clin Cancer Res. 2017;23:5561–72.PubMedPubMedCentralCrossRef
52.
go back to reference Abdelmalak M, Singh R, Anwer M, et al. The renaissance of CDK inhibitors in breast cancer therapy: An update on clinical trials and therapy resistance. Cancers (Basel). 2022;14:5388.PubMedCrossRef Abdelmalak M, Singh R, Anwer M, et al. The renaissance of CDK inhibitors in breast cancer therapy: An update on clinical trials and therapy resistance. Cancers (Basel). 2022;14:5388.PubMedCrossRef
53.
go back to reference Cretella D, Fumarola C, Bonelli M, et al. Pre-treatment with the CDK4/6 inhibitor palbociclib improves the efficacy of paclitaxel in TNBC cells. Sci Rep. 2019;9:13014.PubMedPubMedCentralCrossRef Cretella D, Fumarola C, Bonelli M, et al. Pre-treatment with the CDK4/6 inhibitor palbociclib improves the efficacy of paclitaxel in TNBC cells. Sci Rep. 2019;9:13014.PubMedPubMedCentralCrossRef
54.
go back to reference Zhu X, Chen L, Huang B, et al. Efficacy and mechanism of the combination of PARP and CDK4/6 inhibitors in the treatment of triple-negative breast cancer. J Exp Clin Cancer Res. 2021;40:122.PubMedPubMedCentralCrossRef Zhu X, Chen L, Huang B, et al. Efficacy and mechanism of the combination of PARP and CDK4/6 inhibitors in the treatment of triple-negative breast cancer. J Exp Clin Cancer Res. 2021;40:122.PubMedPubMedCentralCrossRef
55.
56.
go back to reference Teo ZL, Versaci S, Dushyanthen S, et al. Combined CDK4/6 and PI3Kα inhibition is synergistic and immunogenic in triple-negative breast cancer. Cancer Res. 2017;77:6340–52.PubMedCrossRef Teo ZL, Versaci S, Dushyanthen S, et al. Combined CDK4/6 and PI3Kα inhibition is synergistic and immunogenic in triple-negative breast cancer. Cancer Res. 2017;77:6340–52.PubMedCrossRef
57.
go back to reference Cretella D, Ravelli A, Fumarola C, et al. The anti-tumor efficacy of CDK4/6 inhibition is enhanced by the combination with PI3K/AKT/mTOR inhibitors through impairment of glucose metabolism in TNBC cells. J Exp Clin Cancer Res. 2018;37:72.PubMedPubMedCentralCrossRef Cretella D, Ravelli A, Fumarola C, et al. The anti-tumor efficacy of CDK4/6 inhibition is enhanced by the combination with PI3K/AKT/mTOR inhibitors through impairment of glucose metabolism in TNBC cells. J Exp Clin Cancer Res. 2018;37:72.PubMedPubMedCentralCrossRef
58.
go back to reference Lyu L, Zhang S, Deng Y, et al. Regulatory mechanisms, functions, and clinical significance of CircRNAs in triple-negative breast cancer. J Hematol Oncol. 2021;14:41.PubMedPubMedCentralCrossRef Lyu L, Zhang S, Deng Y, et al. Regulatory mechanisms, functions, and clinical significance of CircRNAs in triple-negative breast cancer. J Hematol Oncol. 2021;14:41.PubMedPubMedCentralCrossRef
59.
go back to reference Im SA, Mukai H, Park IH, et al. Palbociclib plus letrozole as first-line therapy in postmenopausal Asian women with metastatic breast cancer: Results from the phase iii, randomized paloma-2 study. J Glob Oncol. 2019;5:1–19.PubMed Im SA, Mukai H, Park IH, et al. Palbociclib plus letrozole as first-line therapy in postmenopausal Asian women with metastatic breast cancer: Results from the phase iii, randomized paloma-2 study. J Glob Oncol. 2019;5:1–19.PubMed
60.
go back to reference Finn RS, Martin M, Rugo HS, et al. Palbociclib and letrozole in advanced breast cancer. N Engl J Med. 2016;375:1925–36.PubMedCrossRef Finn RS, Martin M, Rugo HS, et al. Palbociclib and letrozole in advanced breast cancer. N Engl J Med. 2016;375:1925–36.PubMedCrossRef
61.
go back to reference Turner NC, Slamon DJ, Ro J, et al. Overall survival with palbociclib and fulvestrant in advanced breast cancer. N Engl J Med. 2018;379:1926–36.PubMedCrossRef Turner NC, Slamon DJ, Ro J, et al. Overall survival with palbociclib and fulvestrant in advanced breast cancer. N Engl J Med. 2018;379:1926–36.PubMedCrossRef
62.
go back to reference Turner NC, Ro J, André F, et al. Palbociclib in hormone-receptor-positive advanced breast cancer. N Engl J Med. 2015;373:209–19.PubMedCrossRef Turner NC, Ro J, André F, et al. Palbociclib in hormone-receptor-positive advanced breast cancer. N Engl J Med. 2015;373:209–19.PubMedCrossRef
63.
go back to reference Mayer EL, Dueck AC, Martin M, et al. Palbociclib with adjuvant endocrine therapy in early breast cancer (PALLAS): interim analysis of a multicentre, open-label, randomised, phase 3 study. Lancet Oncol. 2021;22:212–22.PubMedCrossRef Mayer EL, Dueck AC, Martin M, et al. Palbociclib with adjuvant endocrine therapy in early breast cancer (PALLAS): interim analysis of a multicentre, open-label, randomised, phase 3 study. Lancet Oncol. 2021;22:212–22.PubMedCrossRef
64.
go back to reference Mayer EL, Fesl C, Hlauschek D, et al. Treatment exposure and discontinuation in the palbociclib collaborative adjuvant study of PALbociclib with adjuvant endocrine therapy for hormone receptor-positive/human epidermal growth factor receptor 2-negative early breast cancer (PALLAS/AFT-05/ABCSG-42/BIG-14-03). J Clin Oncol. 2022;40:449–58.PubMedPubMedCentralCrossRef Mayer EL, Fesl C, Hlauschek D, et al. Treatment exposure and discontinuation in the palbociclib collaborative adjuvant study of PALbociclib with adjuvant endocrine therapy for hormone receptor-positive/human epidermal growth factor receptor 2-negative early breast cancer (PALLAS/AFT-05/ABCSG-42/BIG-14-03). J Clin Oncol. 2022;40:449–58.PubMedPubMedCentralCrossRef
65.
go back to reference Gnant M, Dueck AC, Frantal S, et al. Adjuvant palbociclib for early breast cancer: the PALLAS trial results (ABCSG-42/AFT-05/BIG-14-03). J Clin Oncol. 2022;40:282–93.PubMedCrossRef Gnant M, Dueck AC, Frantal S, et al. Adjuvant palbociclib for early breast cancer: the PALLAS trial results (ABCSG-42/AFT-05/BIG-14-03). J Clin Oncol. 2022;40:282–93.PubMedCrossRef
66.
go back to reference Loibl S, Marmé F, Martin M, et al. Palbociclib for residual high-risk invasive HR-positive and HER2-negative early breast cancer-the Penelope-B trial. J Clin Oncol. 2021;39:1518–30.PubMedCrossRef Loibl S, Marmé F, Martin M, et al. Palbociclib for residual high-risk invasive HR-positive and HER2-negative early breast cancer-the Penelope-B trial. J Clin Oncol. 2021;39:1518–30.PubMedCrossRef
67.
go back to reference Slamon DJ, Neven P, Chia S, et al. Overall survival with ribociclib plus fulvestrant in advanced breast cancer. N Engl J Med. 2020;382:514–24.PubMedCrossRef Slamon DJ, Neven P, Chia S, et al. Overall survival with ribociclib plus fulvestrant in advanced breast cancer. N Engl J Med. 2020;382:514–24.PubMedCrossRef
68.
go back to reference Harbeck N, Rastogi P, Martin M, et al. Adjuvant abemaciclib combined with endocrine therapy for high-risk early breast cancer: Updated efficacy and Ki-67 analysis from the monarchE study. Ann Oncol. 2021;32:1571–81.PubMedCrossRef Harbeck N, Rastogi P, Martin M, et al. Adjuvant abemaciclib combined with endocrine therapy for high-risk early breast cancer: Updated efficacy and Ki-67 analysis from the monarchE study. Ann Oncol. 2021;32:1571–81.PubMedCrossRef
69.
go back to reference Sledge GW Jr, Toi M, Neven P, et al. Monarch 2: Abemaciclib in combination with fulvestrant in women with HR+/HER2- advanced breast cancer who had progressed while receiving endocrine therapy. J Clin Oncol. 2017;35:2875–84.PubMedCrossRef Sledge GW Jr, Toi M, Neven P, et al. Monarch 2: Abemaciclib in combination with fulvestrant in women with HR+/HER2- advanced breast cancer who had progressed while receiving endocrine therapy. J Clin Oncol. 2017;35:2875–84.PubMedCrossRef
70.
go back to reference Dey N, De P, Leyland-Jones B. PI3K-AKT-mTOR inhibitors in breast cancers: From tumor cell signaling to clinical trials. Pharmacol Ther. 2017;175:91–106.PubMedCrossRef Dey N, De P, Leyland-Jones B. PI3K-AKT-mTOR inhibitors in breast cancers: From tumor cell signaling to clinical trials. Pharmacol Ther. 2017;175:91–106.PubMedCrossRef
71.
go back to reference Pascual J, Turner NC. Targeting the PI3-kinase pathway in triple-negative breast cancer. Ann Oncol. 2019;30:1051–60.PubMedCrossRef Pascual J, Turner NC. Targeting the PI3-kinase pathway in triple-negative breast cancer. Ann Oncol. 2019;30:1051–60.PubMedCrossRef
72.
go back to reference Chan JJ, Tan TJY, Dent RA. Novel therapeutic avenues in triple-negative breast cancer: PI3K/AKT inhibition, androgen receptor blockade, and beyond. Ther Adv Med Oncol. 2019;11:1758835919880429.PubMedPubMedCentralCrossRef Chan JJ, Tan TJY, Dent RA. Novel therapeutic avenues in triple-negative breast cancer: PI3K/AKT inhibition, androgen receptor blockade, and beyond. Ther Adv Med Oncol. 2019;11:1758835919880429.PubMedPubMedCentralCrossRef
73.
go back to reference Tewari D, Patni P, Bishayee A, Sah AN, Bishayee A. Natural products targeting the PI3K-AKT-mTOR signaling pathway in cancer: A novel therapeutic strategy. Semin Cancer Biol. 2022;80:1–17.PubMedCrossRef Tewari D, Patni P, Bishayee A, Sah AN, Bishayee A. Natural products targeting the PI3K-AKT-mTOR signaling pathway in cancer: A novel therapeutic strategy. Semin Cancer Biol. 2022;80:1–17.PubMedCrossRef
74.
go back to reference Isakoff SJ, Engelman JA, Irie HY, et al. Breast cancer-associated PIK3CA mutations are oncogenic in mammary epithelial cells. Cancer Res. 2005;65:10992–1000.PubMedCrossRef Isakoff SJ, Engelman JA, Irie HY, et al. Breast cancer-associated PIK3CA mutations are oncogenic in mammary epithelial cells. Cancer Res. 2005;65:10992–1000.PubMedCrossRef
75.
go back to reference Li G, Robinson GW, Lesche R, et al. Conditional loss of PTEN leads to precocious development and neoplasia in the mammary gland. Development. 2002;129:4159–70.PubMedCrossRef Li G, Robinson GW, Lesche R, et al. Conditional loss of PTEN leads to precocious development and neoplasia in the mammary gland. Development. 2002;129:4159–70.PubMedCrossRef
76.
go back to reference Campbell IG, Russell SE, Choong DY, et al. Mutation of the PI3KCA gene in ovarian and breast cancer. Cancer Res. 2004;64:7678–81.PubMedCrossRef Campbell IG, Russell SE, Choong DY, et al. Mutation of the PI3KCA gene in ovarian and breast cancer. Cancer Res. 2004;64:7678–81.PubMedCrossRef
77.
go back to reference Guerrero-Zotano A, Mayer IA, Arteaga CL. PI3K/AKT/mTOR: Role in breast cancer progression, drug resistance, and treatment. Cancer Metastasis Rev. 2016;35:515–24.PubMedCrossRef Guerrero-Zotano A, Mayer IA, Arteaga CL. PI3K/AKT/mTOR: Role in breast cancer progression, drug resistance, and treatment. Cancer Metastasis Rev. 2016;35:515–24.PubMedCrossRef
79.
go back to reference Kalimutho M, Parsons K, Mittal D, et al. Targeted therapies for triple-negative breast cancer: Combating a stubborn disease. Trends Pharmacol Sci. 2015;36:822–46.PubMedCrossRef Kalimutho M, Parsons K, Mittal D, et al. Targeted therapies for triple-negative breast cancer: Combating a stubborn disease. Trends Pharmacol Sci. 2015;36:822–46.PubMedCrossRef
80.
go back to reference Khan MA, Jain VK, Rizwanullah M, Ahmad J, Jain K. PI3K/AKT/mTOR pathway inhibitors in triple-negative breast cancer: a review on drug discovery and future challenges. Drug Discov Today. 2019;24:2181–91.PubMedCrossRef Khan MA, Jain VK, Rizwanullah M, Ahmad J, Jain K. PI3K/AKT/mTOR pathway inhibitors in triple-negative breast cancer: a review on drug discovery and future challenges. Drug Discov Today. 2019;24:2181–91.PubMedCrossRef
81.
go back to reference Nicholson KM, Quinn DM, Kellett GL, Warr JR. LY294002, an inhibitor of phosphatidylinositol-3-kinase, causes preferential induction of apoptosis in human multidrug resistant cells. Cancer Lett. 2003;190:31–6.PubMedCrossRef Nicholson KM, Quinn DM, Kellett GL, Warr JR. LY294002, an inhibitor of phosphatidylinositol-3-kinase, causes preferential induction of apoptosis in human multidrug resistant cells. Cancer Lett. 2003;190:31–6.PubMedCrossRef
82.
go back to reference Singh AR, Joshi S, George E, Durden DL. Anti-tumor effect of a novel PI3-kinase inhibitor, SF1126, in (12) V-Ha-Ras transgenic mouse glioma model. Cancer Cell Int. 2014;14:105.PubMedPubMedCentralCrossRef Singh AR, Joshi S, George E, Durden DL. Anti-tumor effect of a novel PI3-kinase inhibitor, SF1126, in (12) V-Ha-Ras transgenic mouse glioma model. Cancer Cell Int. 2014;14:105.PubMedPubMedCentralCrossRef
83.
go back to reference Joshi S, Singh AR, Durden DL. Pan-PI-3 kinase inhibitor SF1126 shows antitumor and antiangiogenic activity in renal cell carcinoma. Cancer Chemother Pharmacol. 2015;75:595–608.PubMedCrossRef Joshi S, Singh AR, Durden DL. Pan-PI-3 kinase inhibitor SF1126 shows antitumor and antiangiogenic activity in renal cell carcinoma. Cancer Chemother Pharmacol. 2015;75:595–608.PubMedCrossRef
84.
go back to reference Mahadevan D, Chiorean EG, Harris WB, et al. Phase I pharmacokinetic and pharmacodynamic study of the pan-PI3K/mTORC vascular targeted pro-drug SF1126 in patients with advanced solid tumours and b-cell malignancies. Eur J Cancer. 2012;48:3319–27.PubMedCrossRef Mahadevan D, Chiorean EG, Harris WB, et al. Phase I pharmacokinetic and pharmacodynamic study of the pan-PI3K/mTORC vascular targeted pro-drug SF1126 in patients with advanced solid tumours and b-cell malignancies. Eur J Cancer. 2012;48:3319–27.PubMedCrossRef
85.
go back to reference Deng M, Wang J, Chen Y, Zhang L, Liu D. Combination of SF1126 and gefitinib induces apoptosis of triple-negative breast cancer cells through the PI3K/AKT/mTOR pathway. Anticancer Drugs. 2015;26:422–7.PubMedCrossRef Deng M, Wang J, Chen Y, Zhang L, Liu D. Combination of SF1126 and gefitinib induces apoptosis of triple-negative breast cancer cells through the PI3K/AKT/mTOR pathway. Anticancer Drugs. 2015;26:422–7.PubMedCrossRef
86.
go back to reference Singh AR, Joshi S, Burgoyne AM, et al. Single agent and synergistic activity of the “first-in-class” dual PI3K/BRD4 inhibitor SF1126 with sorafenib in hepatocellular carcinoma. Mol Cancer Ther. 2016;15:2553–62.PubMedPubMedCentralCrossRef Singh AR, Joshi S, Burgoyne AM, et al. Single agent and synergistic activity of the “first-in-class” dual PI3K/BRD4 inhibitor SF1126 with sorafenib in hepatocellular carcinoma. Mol Cancer Ther. 2016;15:2553–62.PubMedPubMedCentralCrossRef
87.
go back to reference Yuan Y, Long H, Zhou Z, Fu Y, Jiang B. PI3K-AKT-targeting breast cancer treatments: Natural products and synthetic compounds. Biomolecules. 2023;13:93.PubMedPubMedCentralCrossRef Yuan Y, Long H, Zhou Z, Fu Y, Jiang B. PI3K-AKT-targeting breast cancer treatments: Natural products and synthetic compounds. Biomolecules. 2023;13:93.PubMedPubMedCentralCrossRef
88.
go back to reference Banerji U, Dean EJ, Pérez-Fidalgo JA, et al. A phase I open-label study to identify a dosing regimen of the pan-AKT inhibitor AZD5363 for evaluation in solid tumors and in PIK3CA-mutated breast and gynecologic cancers. Clin Cancer Res. 2018;24:2050–9.PubMedCrossRef Banerji U, Dean EJ, Pérez-Fidalgo JA, et al. A phase I open-label study to identify a dosing regimen of the pan-AKT inhibitor AZD5363 for evaluation in solid tumors and in PIK3CA-mutated breast and gynecologic cancers. Clin Cancer Res. 2018;24:2050–9.PubMedCrossRef
89.
go back to reference de Bono JS, De Giorgi U, Rodrigues DN, et al. Randomized phase II study evaluating AKT blockade with Ipatasertib, in combination with Abiraterone, in patients with metastatic prostate cancer with and without PTEN loss. Clin Cancer Res. 2019;25:928–36.PubMedCrossRef de Bono JS, De Giorgi U, Rodrigues DN, et al. Randomized phase II study evaluating AKT blockade with Ipatasertib, in combination with Abiraterone, in patients with metastatic prostate cancer with and without PTEN loss. Clin Cancer Res. 2019;25:928–36.PubMedCrossRef
90.
go back to reference Kalinsky K, Hong F, McCourt CK, et al. Effect of Capivasertib in patients with an AKT1 E17k-mutated tumor: NCI-match subprotocol EAY131-Y nonrandomized trial. JAMA Oncol. 2021;7:271–8.PubMedCrossRef Kalinsky K, Hong F, McCourt CK, et al. Effect of Capivasertib in patients with an AKT1 E17k-mutated tumor: NCI-match subprotocol EAY131-Y nonrandomized trial. JAMA Oncol. 2021;7:271–8.PubMedCrossRef
91.
go back to reference Schmid P, Abraham J, Chan S, et al. Capivasertib plus paclitaxel versus placebo plus paclitaxel as first-line therapy for metastatic triple-negative breast cancer: The PAKT trial. J Clin Oncol. 2020;38:423–33.PubMedCrossRef Schmid P, Abraham J, Chan S, et al. Capivasertib plus paclitaxel versus placebo plus paclitaxel as first-line therapy for metastatic triple-negative breast cancer: The PAKT trial. J Clin Oncol. 2020;38:423–33.PubMedCrossRef
92.
go back to reference Kim SB, Dent R, Im SA, et al. Ipatasertib plus paclitaxel versus placebo plus paclitaxel as first-line therapy for metastatic triple-negative breast cancer (lotus): A multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Oncol. 2017;18:1360–72.PubMedPubMedCentralCrossRef Kim SB, Dent R, Im SA, et al. Ipatasertib plus paclitaxel versus placebo plus paclitaxel as first-line therapy for metastatic triple-negative breast cancer (lotus): A multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Oncol. 2017;18:1360–72.PubMedPubMedCentralCrossRef
93.
go back to reference Oliveira M, Saura C, Nuciforo P, et al. Fairlane, a double-blind placebo-controlled randomized phase II trial of neoadjuvant Ipatasertib plus paclitaxel for early triple-negative breast cancer. Ann Oncol. 2019;30:1289–97.PubMedCrossRef Oliveira M, Saura C, Nuciforo P, et al. Fairlane, a double-blind placebo-controlled randomized phase II trial of neoadjuvant Ipatasertib plus paclitaxel for early triple-negative breast cancer. Ann Oncol. 2019;30:1289–97.PubMedCrossRef
95.
go back to reference Omeljaniuk WJ, Krętowski R, Ratajczak-Wrona W, Jabłońska E, Cechowska-Pasko M. Novel dual PI3K/mTOR inhibitor, Apitolisib (GDC-0980), inhibits growth and induces apoptosis in human glioblastoma cells. Int J Mol Sci. 2021;22:11511.PubMedPubMedCentralCrossRef Omeljaniuk WJ, Krętowski R, Ratajczak-Wrona W, Jabłońska E, Cechowska-Pasko M. Novel dual PI3K/mTOR inhibitor, Apitolisib (GDC-0980), inhibits growth and induces apoptosis in human glioblastoma cells. Int J Mol Sci. 2021;22:11511.PubMedPubMedCentralCrossRef
96.
97.
98.
go back to reference Cerma K, Piacentini F, Moscetti L, et al. Targeting PI3K/AKT/mTOR pathway in breast cancer: From biology to clinical challenges. Biomedicines. 2023;11:109.PubMedPubMedCentralCrossRef Cerma K, Piacentini F, Moscetti L, et al. Targeting PI3K/AKT/mTOR pathway in breast cancer: From biology to clinical challenges. Biomedicines. 2023;11:109.PubMedPubMedCentralCrossRef
99.
go back to reference Sobande F, Dušek L, Matějková A, et al. EGFR in triple negative breast carcinoma: significance of protein expression and high gene copy number. Cesk Patol. 2015;51:80–6.PubMed Sobande F, Dušek L, Matějková A, et al. EGFR in triple negative breast carcinoma: significance of protein expression and high gene copy number. Cesk Patol. 2015;51:80–6.PubMed
100.
go back to reference Talukdar S, Emdad L, Das SK, Fisher PB. EGFR: an essential receptor tyrosine kinase-regulator of cancer stem cells. Adv Cancer Res. 2020;147:161–88.PubMedCrossRef Talukdar S, Emdad L, Das SK, Fisher PB. EGFR: an essential receptor tyrosine kinase-regulator of cancer stem cells. Adv Cancer Res. 2020;147:161–88.PubMedCrossRef
101.
go back to reference Sabbah DA, Hajjo R, Sweidan K. Review on epidermal growth factor receptor (EGFR) structure, signaling pathways, interactions, and recent updates of EGFR inhibitors. Curr Top Med Chem. 2020;20:815–34.PubMedCrossRef Sabbah DA, Hajjo R, Sweidan K. Review on epidermal growth factor receptor (EGFR) structure, signaling pathways, interactions, and recent updates of EGFR inhibitors. Curr Top Med Chem. 2020;20:815–34.PubMedCrossRef
102.
go back to reference Eccles SA. The epidermal growth factor receptor/Erb-B/HER family in normal and malignant breast biology. Int J Dev Biol. 2011;55:685–96.PubMedCrossRef Eccles SA. The epidermal growth factor receptor/Erb-B/HER family in normal and malignant breast biology. Int J Dev Biol. 2011;55:685–96.PubMedCrossRef
103.
go back to reference Corkery B, Crown J, Clynes M, O’Donovan N. Epidermal growth factor receptor as a potential therapeutic target in triple-negative breast cancer. Ann Oncol. 2009;20:862–7.PubMedCrossRef Corkery B, Crown J, Clynes M, O’Donovan N. Epidermal growth factor receptor as a potential therapeutic target in triple-negative breast cancer. Ann Oncol. 2009;20:862–7.PubMedCrossRef
104.
go back to reference Baselga J, Gómez P, Greil R, et al. Randomized phase II study of the anti-epidermal growth factor receptor monoclonal antibody cetuximab with cisplatin versus cisplatin alone in patients with metastatic triple-negative breast cancer. J Clin Oncol. 2013;31:2586–92.PubMedPubMedCentralCrossRef Baselga J, Gómez P, Greil R, et al. Randomized phase II study of the anti-epidermal growth factor receptor monoclonal antibody cetuximab with cisplatin versus cisplatin alone in patients with metastatic triple-negative breast cancer. J Clin Oncol. 2013;31:2586–92.PubMedPubMedCentralCrossRef
105.
go back to reference Carey LA, Rugo HS, Marcom PK, et al. TBCRC 001: Randomized phase II study of cetuximab in combination with carboplatin in stage IV triple-negative breast cancer. J Clin Oncol. 2012;30:2615–23.PubMedPubMedCentralCrossRef Carey LA, Rugo HS, Marcom PK, et al. TBCRC 001: Randomized phase II study of cetuximab in combination with carboplatin in stage IV triple-negative breast cancer. J Clin Oncol. 2012;30:2615–23.PubMedPubMedCentralCrossRef
106.
go back to reference Liu Q, He L, Li S, et al. Homer3 facilitates growth factor-mediated β-catenin tyrosine phosphorylation and activation to promote metastasis in triple negative breast cancer. J Hematol Oncol. 2021;14:6.PubMedPubMedCentralCrossRef Liu Q, He L, Li S, et al. Homer3 facilitates growth factor-mediated β-catenin tyrosine phosphorylation and activation to promote metastasis in triple negative breast cancer. J Hematol Oncol. 2021;14:6.PubMedPubMedCentralCrossRef
107.
go back to reference Tang AH, Hoefer RA, Guye ML, Bear HD. Persistent EGFR/K-RAS/SIAH pathway activation drives chemo-resistance and early tumor relapse in triple-negative breast cancer. Cancer Drug Resist. 2022;5:691–702.PubMedPubMedCentralCrossRef Tang AH, Hoefer RA, Guye ML, Bear HD. Persistent EGFR/K-RAS/SIAH pathway activation drives chemo-resistance and early tumor relapse in triple-negative breast cancer. Cancer Drug Resist. 2022;5:691–702.PubMedPubMedCentralCrossRef
108.
go back to reference El Guerrab A, Bamdad M, Bignon YJ, Penault-Llorca F, Aubel C. Co-targeting EGFR and mTOR with gefitinib and everolimus in triple-negative breast cancer cells. Sci Rep. 2020;10:6367.PubMedPubMedCentralCrossRef El Guerrab A, Bamdad M, Bignon YJ, Penault-Llorca F, Aubel C. Co-targeting EGFR and mTOR with gefitinib and everolimus in triple-negative breast cancer cells. Sci Rep. 2020;10:6367.PubMedPubMedCentralCrossRef
109.
go back to reference Babina IS, Turner NC. Advances and challenges in targeting FGFR signalling in cancer. Nat Rev Cancer. 2017;17:318–32.PubMedCrossRef Babina IS, Turner NC. Advances and challenges in targeting FGFR signalling in cancer. Nat Rev Cancer. 2017;17:318–32.PubMedCrossRef
110.
go back to reference Pérez Piñero C, Giulianelli S, Lamb CA, Lanari C. New insights in the interaction of FGF/FGFR and steroid receptor signaling in breast cancer. Endocrinology. 2022;163:bqab265.PubMedCrossRef Pérez Piñero C, Giulianelli S, Lamb CA, Lanari C. New insights in the interaction of FGF/FGFR and steroid receptor signaling in breast cancer. Endocrinology. 2022;163:bqab265.PubMedCrossRef
111.
go back to reference Cheng CL, Thike AA, Tan SY, et al. Expression of FGFR1 is an independent prognostic factor in triple-negative breast cancer. Breast Cancer Res Treat. 2015;151:99–111.PubMedCrossRef Cheng CL, Thike AA, Tan SY, et al. Expression of FGFR1 is an independent prognostic factor in triple-negative breast cancer. Breast Cancer Res Treat. 2015;151:99–111.PubMedCrossRef
112.
go back to reference Lee HJ, Seo AN, Park SY, et al. Low prognostic implication of fibroblast growth factor family activation in triple-negative breast cancer subsets. Ann Surg Oncol. 2014;21:1561–8.PubMedCrossRef Lee HJ, Seo AN, Park SY, et al. Low prognostic implication of fibroblast growth factor family activation in triple-negative breast cancer subsets. Ann Surg Oncol. 2014;21:1561–8.PubMedCrossRef
113.
114.
go back to reference Turner N, Lambros MB, Horlings HM, et al. Integrative molecular profiling of triple negative breast cancers identifies amplicon drivers and potential therapeutic targets. Oncogene. 2010;29:2013–23.PubMedPubMedCentralCrossRef Turner N, Lambros MB, Horlings HM, et al. Integrative molecular profiling of triple negative breast cancers identifies amplicon drivers and potential therapeutic targets. Oncogene. 2010;29:2013–23.PubMedPubMedCentralCrossRef
115.
go back to reference André F, Bachelot T, Campone M, et al. Targeting FGFR with dovitinib (TKI258): preclinical and clinical data in breast cancer. Clin Cancer Res. 2013;19:3693–702.PubMedCrossRef André F, Bachelot T, Campone M, et al. Targeting FGFR with dovitinib (TKI258): preclinical and clinical data in breast cancer. Clin Cancer Res. 2013;19:3693–702.PubMedCrossRef
116.
go back to reference Pearson A, Smyth E, Babina IS, et al. High-level clonal FGFR amplification and response to fgfr inhibition in a translational clinical trial. Cancer Discov. 2016;6:838–51.PubMedPubMedCentralCrossRef Pearson A, Smyth E, Babina IS, et al. High-level clonal FGFR amplification and response to fgfr inhibition in a translational clinical trial. Cancer Discov. 2016;6:838–51.PubMedPubMedCentralCrossRef
117.
118.
go back to reference Hegde PS, Wallin JJ, Mancao C. Predictive markers of anti-VEGF and emerging role of angiogenesis inhibitors as immunotherapeutics. Semin Cancer Biol. 2018;52:117–24.PubMedCrossRef Hegde PS, Wallin JJ, Mancao C. Predictive markers of anti-VEGF and emerging role of angiogenesis inhibitors as immunotherapeutics. Semin Cancer Biol. 2018;52:117–24.PubMedCrossRef
119.
go back to reference Shiau JP, Wu CC, Chang SJ, et al. Fak regulates VEGFR2 expression and promotes angiogenesis in triple-negative breast cancer. Biomedicines. 2021;9:1789.PubMedPubMedCentralCrossRef Shiau JP, Wu CC, Chang SJ, et al. Fak regulates VEGFR2 expression and promotes angiogenesis in triple-negative breast cancer. Biomedicines. 2021;9:1789.PubMedPubMedCentralCrossRef
120.
go back to reference Shashni B, Nishikawa Y, Nagasaki Y. Management of tumor growth and angiogenesis in triple-negative breast cancer by using redox nanoparticles. Biomaterials. 2021;269:120645.PubMedCrossRef Shashni B, Nishikawa Y, Nagasaki Y. Management of tumor growth and angiogenesis in triple-negative breast cancer by using redox nanoparticles. Biomaterials. 2021;269:120645.PubMedCrossRef
121.
go back to reference Robert NJ, Diéras V, Glaspy J, et al. Ribbon-1: Randomized, double-blind, placebo-controlled, phase III trial of chemotherapy with or without bevacizumab for first-line treatment of human epidermal growth factor receptor 2-negative, locally recurrent or metastatic breast cancer. J Clin Oncol. 2011;29:1252–60.PubMedCrossRef Robert NJ, Diéras V, Glaspy J, et al. Ribbon-1: Randomized, double-blind, placebo-controlled, phase III trial of chemotherapy with or without bevacizumab for first-line treatment of human epidermal growth factor receptor 2-negative, locally recurrent or metastatic breast cancer. J Clin Oncol. 2011;29:1252–60.PubMedCrossRef
122.
go back to reference Brufsky AM, Hurvitz S, Perez E, et al. Ribbon-2: A randomized, double-blind, placebo-controlled, phase III trial evaluating the efficacy and safety of bevacizumab in combination with chemotherapy for second-line treatment of human epidermal growth factor receptor 2-negative metastatic breast cancer. J Clin Oncol. 2011;29:4286–93.PubMedCrossRef Brufsky AM, Hurvitz S, Perez E, et al. Ribbon-2: A randomized, double-blind, placebo-controlled, phase III trial evaluating the efficacy and safety of bevacizumab in combination with chemotherapy for second-line treatment of human epidermal growth factor receptor 2-negative metastatic breast cancer. J Clin Oncol. 2011;29:4286–93.PubMedCrossRef
123.
go back to reference von Minckwitz G, Schneeweiss A, Loibl S, et al. Neoadjuvant carboplatin in patients with triple-negative and HER2-positive early breast cancer (Geparsixto; GBG 66): a randomised phase 2 trial. Lancet Oncol. 2014;15:747–56.CrossRef von Minckwitz G, Schneeweiss A, Loibl S, et al. Neoadjuvant carboplatin in patients with triple-negative and HER2-positive early breast cancer (Geparsixto; GBG 66): a randomised phase 2 trial. Lancet Oncol. 2014;15:747–56.CrossRef
124.
go back to reference Gerber B, von Minckwitz G, Eidtmann H, et al. Surgical outcome after neoadjuvant chemotherapy and bevacizumab: results from the Geparquinto study (GBG 44). Ann Surg Oncol. 2014;21:2517–24.PubMedCrossRef Gerber B, von Minckwitz G, Eidtmann H, et al. Surgical outcome after neoadjuvant chemotherapy and bevacizumab: results from the Geparquinto study (GBG 44). Ann Surg Oncol. 2014;21:2517–24.PubMedCrossRef
125.
go back to reference Loibl S, Weber KE, Timms KM, et al. Survival analysis of carboplatin added to an anthracycline/taxane-based neoadjuvant chemotherapy and HRD score as predictor of response-final results from Geparsixto. Ann Oncol. 2018;29:2341–7.PubMedCrossRef Loibl S, Weber KE, Timms KM, et al. Survival analysis of carboplatin added to an anthracycline/taxane-based neoadjuvant chemotherapy and HRD score as predictor of response-final results from Geparsixto. Ann Oncol. 2018;29:2341–7.PubMedCrossRef
126.
go back to reference Bell R, Brown J, Parmar M, et al. Final efficacy and updated safety results of the randomized phase III BEATRICE trial evaluating adjuvant bevacizumab-containing therapy in triple-negative early breast cancer. Ann Oncol. 2017;28:754–60.PubMedCrossRef Bell R, Brown J, Parmar M, et al. Final efficacy and updated safety results of the randomized phase III BEATRICE trial evaluating adjuvant bevacizumab-containing therapy in triple-negative early breast cancer. Ann Oncol. 2017;28:754–60.PubMedCrossRef
127.
go back to reference Gao Z, Shi M, Wang Y, Chen J, Ou Y. Apatinib enhanced anti-tumor activity of cisplatin on triple-negative breast cancer through inhibition of VEGFR-2. Pathol Res Pract. 2019;215:152422.PubMedCrossRef Gao Z, Shi M, Wang Y, Chen J, Ou Y. Apatinib enhanced anti-tumor activity of cisplatin on triple-negative breast cancer through inhibition of VEGFR-2. Pathol Res Pract. 2019;215:152422.PubMedCrossRef
128.
go back to reference Yang C, Zhang J, Zhang Y, et al. Low-dose Apatinib combined with neoadjuvant chemotherapy in the treatment of early-stage triple-negative breast cancer (lancet): a single-center, single-arm, phase trial. Ther Adv Med Oncol. 2022;14:17588359221118052.PubMedPubMedCentralCrossRef Yang C, Zhang J, Zhang Y, et al. Low-dose Apatinib combined with neoadjuvant chemotherapy in the treatment of early-stage triple-negative breast cancer (lancet): a single-center, single-arm, phase trial. Ther Adv Med Oncol. 2022;14:17588359221118052.PubMedPubMedCentralCrossRef
129.
go back to reference Li DD, Tao ZH, Wang BY, et al. Apatinib plus vinorelbine versus vinorelbine for metastatic triple-negative breast cancer who failed first/second-line treatment: the nan trial. NPJ Breast Cancer. 2022;8:110.PubMedPubMedCentralCrossRef Li DD, Tao ZH, Wang BY, et al. Apatinib plus vinorelbine versus vinorelbine for metastatic triple-negative breast cancer who failed first/second-line treatment: the nan trial. NPJ Breast Cancer. 2022;8:110.PubMedPubMedCentralCrossRef
130.
go back to reference Liu J, Liu Q, Li Y, et al. Efficacy and safety of camrelizumab combined with apatinib in advanced triple-negative breast cancer: an open-label phase II trial. J Immunother Cancer. 2020;8:e000696.PubMedPubMedCentralCrossRef Liu J, Liu Q, Li Y, et al. Efficacy and safety of camrelizumab combined with apatinib in advanced triple-negative breast cancer: an open-label phase II trial. J Immunother Cancer. 2020;8:e000696.PubMedPubMedCentralCrossRef
131.
132.
go back to reference Yuan X, Wu H, Xu H, et al. Notch signaling: an emerging therapeutic target for cancer treatment. Cancer Lett. 2015;369:20–7.PubMedCrossRef Yuan X, Wu H, Xu H, et al. Notch signaling: an emerging therapeutic target for cancer treatment. Cancer Lett. 2015;369:20–7.PubMedCrossRef
133.
go back to reference Weijzen S, Rizzo P, Braid M, et al. Activation of Notch-1 signaling maintains the neoplastic phenotype in human Ras-transformed cells. Nat Med. 2002;8:979–86.PubMedCrossRef Weijzen S, Rizzo P, Braid M, et al. Activation of Notch-1 signaling maintains the neoplastic phenotype in human Ras-transformed cells. Nat Med. 2002;8:979–86.PubMedCrossRef
135.
go back to reference Yuan X, Wu H, Xu H, et al. Meta-analysis reveals the correlation of notch signaling with non-small cell lung cancer progression and prognosis. Sci Rep. 2015;5:10338.PubMedPubMedCentralCrossRef Yuan X, Wu H, Xu H, et al. Meta-analysis reveals the correlation of notch signaling with non-small cell lung cancer progression and prognosis. Sci Rep. 2015;5:10338.PubMedPubMedCentralCrossRef
136.
go back to reference Zhang H, Yang Y, Li X, Yuan X, Chu Q. Targeting the notch signaling pathway and the notch ligand, dll3, in small cell lung cancer. Biomed Pharmacother. 2023;159:114248.PubMedCrossRef Zhang H, Yang Y, Li X, Yuan X, Chu Q. Targeting the notch signaling pathway and the notch ligand, dll3, in small cell lung cancer. Biomed Pharmacother. 2023;159:114248.PubMedCrossRef
137.
go back to reference O’Neill CF, Urs S, Cinelli C, et al. Notch2 signaling induces apoptosis and inhibits human mda-mb-231 xenograft growth. Am J Pathol. 2007;171:1023–36.PubMedPubMedCentralCrossRef O’Neill CF, Urs S, Cinelli C, et al. Notch2 signaling induces apoptosis and inhibits human mda-mb-231 xenograft growth. Am J Pathol. 2007;171:1023–36.PubMedPubMedCentralCrossRef
138.
go back to reference Giuli MV, Giuliani E, Screpanti I, Bellavia D, Checquolo S. Notch signaling activation as a hallmark for triple-negative breast cancer subtype. J Oncol. 2019;2019:8707053.PubMedPubMedCentralCrossRef Giuli MV, Giuliani E, Screpanti I, Bellavia D, Checquolo S. Notch signaling activation as a hallmark for triple-negative breast cancer subtype. J Oncol. 2019;2019:8707053.PubMedPubMedCentralCrossRef
140.
go back to reference Sharma A, Paranjape AN, Rangarajan A, Dighe RR. A monoclonal antibody against human notch1 ligand-binding domain depletes subpopulation of putative breast cancer stem-like cells. Mol Cancer Ther. 2012;11:77–86.PubMedCrossRef Sharma A, Paranjape AN, Rangarajan A, Dighe RR. A monoclonal antibody against human notch1 ligand-binding domain depletes subpopulation of putative breast cancer stem-like cells. Mol Cancer Ther. 2012;11:77–86.PubMedCrossRef
141.
go back to reference Kume T. Ligand-dependent notch signaling in vascular formation. Adv Exp Med Biol. 2012;727:210–22.PubMedCrossRef Kume T. Ligand-dependent notch signaling in vascular formation. Adv Exp Med Biol. 2012;727:210–22.PubMedCrossRef
142.
143.
go back to reference Qin JJ, Yan L, Zhang J, Zhang WD. STAT3 as a potential therapeutic target in triple negative breast cancer: a systematic review. J Exp Clin Cancer Res. 2019;38:195.PubMedPubMedCentralCrossRef Qin JJ, Yan L, Zhang J, Zhang WD. STAT3 as a potential therapeutic target in triple negative breast cancer: a systematic review. J Exp Clin Cancer Res. 2019;38:195.PubMedPubMedCentralCrossRef
146.
go back to reference Wei W, Tweardy DJ, Zhang M, et al. STAT3 signaling is activated preferentially in tumor-initiating cells in claudin-low models of human breast cancer. Stem Cells. 2014;32:2571–82.PubMedCrossRef Wei W, Tweardy DJ, Zhang M, et al. STAT3 signaling is activated preferentially in tumor-initiating cells in claudin-low models of human breast cancer. Stem Cells. 2014;32:2571–82.PubMedCrossRef
147.
go back to reference Lu L, Dong J, Wang L, et al. Activation of STAT3 and Bcl-2 and reduction of reactive oxygen species (ROS) promote radioresistance in breast cancer and overcome of radioresistance with niclosamide. Oncogene. 2018;37:5292–304.PubMedCrossRef Lu L, Dong J, Wang L, et al. Activation of STAT3 and Bcl-2 and reduction of reactive oxygen species (ROS) promote radioresistance in breast cancer and overcome of radioresistance with niclosamide. Oncogene. 2018;37:5292–304.PubMedCrossRef
148.
go back to reference Zhong Y, Deng L, Shi S, et al. The novel STAT3 inhibitor WZ-2-033 causes regression of human triple-negative breast cancer and gastric cancer xenografts. Acta Pharmacol Sin. 2022;43:1013–23.PubMedCrossRef Zhong Y, Deng L, Shi S, et al. The novel STAT3 inhibitor WZ-2-033 causes regression of human triple-negative breast cancer and gastric cancer xenografts. Acta Pharmacol Sin. 2022;43:1013–23.PubMedCrossRef
149.
go back to reference Xu X, Zhang L, He X, et al. TGF-β plays a vital role in triple-negative breast cancer (TNBC) drug-resistance through regulating stemness, emt and apoptosis. Biochem Biophys Res Commun. 2018;502:160–5.PubMedCrossRef Xu X, Zhang L, He X, et al. TGF-β plays a vital role in triple-negative breast cancer (TNBC) drug-resistance through regulating stemness, emt and apoptosis. Biochem Biophys Res Commun. 2018;502:160–5.PubMedCrossRef
150.
go back to reference Ding MJ, Su KE, Cui GZ, et al. Association between transforming growth factor-β1 expression and the clinical features of triple negative breast cancer. Oncol Lett. 2016;11:4040–4.PubMedPubMedCentralCrossRef Ding MJ, Su KE, Cui GZ, et al. Association between transforming growth factor-β1 expression and the clinical features of triple negative breast cancer. Oncol Lett. 2016;11:4040–4.PubMedPubMedCentralCrossRef
151.
go back to reference Pinilla K, Drewett LM, Lucey R, Abraham JE. Precision breast cancer medicine: Early stage triple negative breast cancer-a review of molecular characterisation, therapeutic targets and future trends. Front Oncol. 2022;12:866889.PubMedPubMedCentralCrossRef Pinilla K, Drewett LM, Lucey R, Abraham JE. Precision breast cancer medicine: Early stage triple negative breast cancer-a review of molecular characterisation, therapeutic targets and future trends. Front Oncol. 2022;12:866889.PubMedPubMedCentralCrossRef
152.
go back to reference Bhola NE, Balko JM, Dugger TC, et al. TGF-β inhibition enhances chemotherapy action against triple-negative breast cancer. J Clin Invest. 2013;123:1348–58.PubMedPubMedCentralCrossRef Bhola NE, Balko JM, Dugger TC, et al. TGF-β inhibition enhances chemotherapy action against triple-negative breast cancer. J Clin Invest. 2013;123:1348–58.PubMedPubMedCentralCrossRef
154.
go back to reference Bai X, Yi M, Jiao Y, Chu Q, Wu K. Blocking TGF-β signaling to enhance the efficacy of immune checkpoint inhibitor. Onco Targets Ther. 2019;12:9527–38.PubMedPubMedCentralCrossRef Bai X, Yi M, Jiao Y, Chu Q, Wu K. Blocking TGF-β signaling to enhance the efficacy of immune checkpoint inhibitor. Onco Targets Ther. 2019;12:9527–38.PubMedPubMedCentralCrossRef
155.
go back to reference Huang X, Zhang G, Liang T. Cancer environmental immunotherapy: Starving tumor cell to death by targeting TGFβ on immune cell. J Immunother Cancer. 2021;9:e002823.PubMedPubMedCentralCrossRef Huang X, Zhang G, Liang T. Cancer environmental immunotherapy: Starving tumor cell to death by targeting TGFβ on immune cell. J Immunother Cancer. 2021;9:e002823.PubMedPubMedCentralCrossRef
156.
go back to reference Lan Y, Yeung TL, Huang H, et al. Colocalized targeting of TGF-β and pd-l1 by bintrafusp alfa elicits distinct antitumor responses. J Immunother Cancer. 2022;10:e004122.PubMedPubMedCentralCrossRef Lan Y, Yeung TL, Huang H, et al. Colocalized targeting of TGF-β and pd-l1 by bintrafusp alfa elicits distinct antitumor responses. J Immunother Cancer. 2022;10:e004122.PubMedPubMedCentralCrossRef
157.
go back to reference Yi M, Wu Y, Niu M, et al. Anti-TGF-β/PD-L1 bispecific antibody promotes t cell infiltration and exhibits enhanced antitumor activity in triple-negative breast cancer. J Immunother Cancer. 2022;10:e005543.PubMedPubMedCentralCrossRef Yi M, Wu Y, Niu M, et al. Anti-TGF-β/PD-L1 bispecific antibody promotes t cell infiltration and exhibits enhanced antitumor activity in triple-negative breast cancer. J Immunother Cancer. 2022;10:e005543.PubMedPubMedCentralCrossRef
158.
go back to reference Yi M, Zhang J, Li A, et al. The construction, expression, and enhanced anti-tumor activity of YM101: a bispecific antibody simultaneously targeting TGF-β and PD-L1. J Hematol Oncol. 2021;14:27.PubMedPubMedCentralCrossRef Yi M, Zhang J, Li A, et al. The construction, expression, and enhanced anti-tumor activity of YM101: a bispecific antibody simultaneously targeting TGF-β and PD-L1. J Hematol Oncol. 2021;14:27.PubMedPubMedCentralCrossRef
159.
go back to reference Yi M, Niu M, Zhang J, et al. Combine and conquer: Manganese synergizing anti-TGF-β/PD-L1 bispecific antibody YM101 to overcome immunotherapy resistance in non-inflamed cancers. J Hematol Oncol. 2021;14:146.PubMedPubMedCentralCrossRef Yi M, Niu M, Zhang J, et al. Combine and conquer: Manganese synergizing anti-TGF-β/PD-L1 bispecific antibody YM101 to overcome immunotherapy resistance in non-inflamed cancers. J Hematol Oncol. 2021;14:146.PubMedPubMedCentralCrossRef
160.
go back to reference Yi M, Niu M, Wu Y, et al. Combination of oral sting agonist MSAA-2 and anti-TGF-β/PD-L1 bispecific antibody YM101: a novel immune cocktail therapy for non-inflamed tumors. J Hematol Oncol. 2022;15:142.PubMedPubMedCentralCrossRef Yi M, Niu M, Wu Y, et al. Combination of oral sting agonist MSAA-2 and anti-TGF-β/PD-L1 bispecific antibody YM101: a novel immune cocktail therapy for non-inflamed tumors. J Hematol Oncol. 2022;15:142.PubMedPubMedCentralCrossRef
161.
go back to reference Jones PA, Issa JP, Baylin S. Targeting the cancer epigenome for therapy. Nat Rev Genet. 2016;17:630–41.PubMedCrossRef Jones PA, Issa JP, Baylin S. Targeting the cancer epigenome for therapy. Nat Rev Genet. 2016;17:630–41.PubMedCrossRef
162.
go back to reference Muhammad A, Forcados GE, Katsayal BS, et al. Potential epigenetic modifications implicated in triple- to quadruple-negative breast cancer transition: a review. Epigenomics. 2022;14:711–26.PubMedCrossRef Muhammad A, Forcados GE, Katsayal BS, et al. Potential epigenetic modifications implicated in triple- to quadruple-negative breast cancer transition: a review. Epigenomics. 2022;14:711–26.PubMedCrossRef
163.
go back to reference Yang X, Phillips DL, Ferguson AT, et al. Synergistic activation of functional estrogen receptor (er)-alpha by DNA methyltransferase and histone deacetylase inhibition in human er-alpha-negative breast cancer cells. Cancer Res. 2001;61:7025–9.PubMed Yang X, Phillips DL, Ferguson AT, et al. Synergistic activation of functional estrogen receptor (er)-alpha by DNA methyltransferase and histone deacetylase inhibition in human er-alpha-negative breast cancer cells. Cancer Res. 2001;61:7025–9.PubMed
164.
go back to reference Tan B, Zhou K, Liu W, et al. RNA N(6) -methyladenosine reader YTHDC1 is essential for TGF-beta-mediated metastasis of triple negative breast cancer. Theranostics. 2022;12:5727–43.PubMedPubMedCentralCrossRef Tan B, Zhou K, Liu W, et al. RNA N(6) -methyladenosine reader YTHDC1 is essential for TGF-beta-mediated metastasis of triple negative breast cancer. Theranostics. 2022;12:5727–43.PubMedPubMedCentralCrossRef
165.
go back to reference Jiang XC, Tu FH, Wei LY, et al. Discovery of a novel g-quadruplex and histone deacetylase (HDAC) dual-targeting agent for the treatment of triple-negative breast cancer. J Med Chem. 2022;65:12346–66.PubMedCrossRef Jiang XC, Tu FH, Wei LY, et al. Discovery of a novel g-quadruplex and histone deacetylase (HDAC) dual-targeting agent for the treatment of triple-negative breast cancer. J Med Chem. 2022;65:12346–66.PubMedCrossRef
166.
go back to reference Chiu HW, Yeh YL, Wang YC, et al. Combination of the novel histone deacetylase inhibitor YCW1 and radiation induces autophagic cell death through the downregulation of BNIP3 in triple-negative breast cancer cells in vitro and in an orthotopic mouse model. Mol Cancer. 2016;15:46.PubMedPubMedCentralCrossRef Chiu HW, Yeh YL, Wang YC, et al. Combination of the novel histone deacetylase inhibitor YCW1 and radiation induces autophagic cell death through the downregulation of BNIP3 in triple-negative breast cancer cells in vitro and in an orthotopic mouse model. Mol Cancer. 2016;15:46.PubMedPubMedCentralCrossRef
167.
go back to reference Tan WW, Allred JB, Moreno-Aspitia A, et al. Phase I study of Panobinostat (IBH589) and letrozole in postmenopausal metastatic breast cancer patients. Clin Breast Cancer. 2016;16:82–6.PubMedCrossRef Tan WW, Allred JB, Moreno-Aspitia A, et al. Phase I study of Panobinostat (IBH589) and letrozole in postmenopausal metastatic breast cancer patients. Clin Breast Cancer. 2016;16:82–6.PubMedCrossRef
168.
go back to reference Ramaiah MJ, Tangutur AD, Manyam RR. Epigenetic modulation and understanding of HDAC inhibitors in cancer therapy. Life Sci. 2021;277:119504.PubMedCrossRef Ramaiah MJ, Tangutur AD, Manyam RR. Epigenetic modulation and understanding of HDAC inhibitors in cancer therapy. Life Sci. 2021;277:119504.PubMedCrossRef
169.
go back to reference Fedele P, Orlando L, Cinieri S. Targeting triple negative breast cancer with histone deacetylase inhibitors. Expert Opin Investig Drugs. 2017;26:1199–206.PubMedCrossRef Fedele P, Orlando L, Cinieri S. Targeting triple negative breast cancer with histone deacetylase inhibitors. Expert Opin Investig Drugs. 2017;26:1199–206.PubMedCrossRef
170.
go back to reference Tucker N. Junshi biosciences announces toripalimab in combination with chemotherapy for treatment of advanced triple-negative breast cancer met primary endpoint in phase 3 clinical study. https://bit.ly/3Stq86o. Accessed 22 Feb 2023. Tucker N. Junshi biosciences announces toripalimab in combination with chemotherapy for treatment of advanced triple-negative breast cancer met primary endpoint in phase 3 clinical study. https://​bit.​ly/​3Stq86o. Accessed 22 Feb 2023.
172.
go back to reference Fan L, Linxiaoxi M, Wu S, et al. Future-super: A randomized, subtyping-based umbrella phase ii trial for first-line treatment of metastatic triple-negative breast cancer. Cell Res. 2023;41:3011. Fan L, Linxiaoxi M, Wu S, et al. Future-super: A randomized, subtyping-based umbrella phase ii trial for first-line treatment of metastatic triple-negative breast cancer. Cell Res. 2023;41:3011.
173.
go back to reference Keenan TE, Tolaney SM. Role of immunotherapy in triple-negative breast cancer. J Natl Compr Canc Netw. 2020;18:479–89.PubMedCrossRef Keenan TE, Tolaney SM. Role of immunotherapy in triple-negative breast cancer. J Natl Compr Canc Netw. 2020;18:479–89.PubMedCrossRef
174.
go back to reference Zhu Y, Zhu X, Tang C, Guan X, Zhang W. Progress and challenges of immunotherapy in triple-negative breast cancer. Biochim Biophys Acta Rev Cancer. 2021;1876:188593.PubMedCrossRef Zhu Y, Zhu X, Tang C, Guan X, Zhang W. Progress and challenges of immunotherapy in triple-negative breast cancer. Biochim Biophys Acta Rev Cancer. 2021;1876:188593.PubMedCrossRef
175.
go back to reference Xu L, Zou C, Zhang S, et al. Reshaping the systemic tumor immune environment (STIE) and tumor immune microenvironment (TIME) to enhance immunotherapy efficacy in solid tumors. J Hematol Oncol. 2022;15:87.PubMedPubMedCentralCrossRef Xu L, Zou C, Zhang S, et al. Reshaping the systemic tumor immune environment (STIE) and tumor immune microenvironment (TIME) to enhance immunotherapy efficacy in solid tumors. J Hematol Oncol. 2022;15:87.PubMedPubMedCentralCrossRef
176.
go back to reference Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373:23–34.PubMedPubMedCentralCrossRef Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373:23–34.PubMedPubMedCentralCrossRef
177.
go back to reference Ribas A, Puzanov I, Dummer R, et al. Pembrolizumab versus investigator-choice chemotherapy for ipilimumab-refractory melanoma (KEYNOTE-002): A randomised, controlled, phase 2 trial. Lancet Oncol. 2015;16:908–18.PubMedPubMedCentralCrossRef Ribas A, Puzanov I, Dummer R, et al. Pembrolizumab versus investigator-choice chemotherapy for ipilimumab-refractory melanoma (KEYNOTE-002): A randomised, controlled, phase 2 trial. Lancet Oncol. 2015;16:908–18.PubMedPubMedCentralCrossRef
178.
go back to reference Antonia SJ, Villegas A, Daniel D, et al. Durvalumab after chemoradiotherapy in stage III non-small-cell lung cancer. N Engl J Med. 2017;377:1919–29.PubMedCrossRef Antonia SJ, Villegas A, Daniel D, et al. Durvalumab after chemoradiotherapy in stage III non-small-cell lung cancer. N Engl J Med. 2017;377:1919–29.PubMedCrossRef
179.
go back to reference Girard N, Bar J, Garrido P, et al. Treatment characteristics and real-world progression-free survival in patients with unresectable stage III NSCLC who received durvalumab after chemoradiotherapy: Findings from the pacific-r study. J Thorac Oncol. 2023;18:181–93.PubMedCrossRef Girard N, Bar J, Garrido P, et al. Treatment characteristics and real-world progression-free survival in patients with unresectable stage III NSCLC who received durvalumab after chemoradiotherapy: Findings from the pacific-r study. J Thorac Oncol. 2023;18:181–93.PubMedCrossRef
180.
181.
go back to reference Escudier B, Motzer RJ, Sharma P, et al. Treatment beyond progression in patients with advanced renal cell carcinoma treated with nivolumab in CheckMate 025. Eur Urol. 2017;72:368–76.PubMedCrossRef Escudier B, Motzer RJ, Sharma P, et al. Treatment beyond progression in patients with advanced renal cell carcinoma treated with nivolumab in CheckMate 025. Eur Urol. 2017;72:368–76.PubMedCrossRef
182.
go back to reference El-Khoueiry AB, Sangro B, Yau T, et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet. 2017;389:2492–502.PubMedPubMedCentralCrossRef El-Khoueiry AB, Sangro B, Yau T, et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet. 2017;389:2492–502.PubMedPubMedCentralCrossRef
183.
go back to reference Agostinetto E, Losurdo A, Nader-Marta G, et al. Progress and pitfalls in the use of immunotherapy for patients with triple negative breast cancer. Expert Opin Investig Drugs. 2022;31:567–91.PubMedCrossRef Agostinetto E, Losurdo A, Nader-Marta G, et al. Progress and pitfalls in the use of immunotherapy for patients with triple negative breast cancer. Expert Opin Investig Drugs. 2022;31:567–91.PubMedCrossRef
185.
go back to reference Dai M, Liu M, Yang H, Küçük C, You H. New insights into epigenetic regulation of resistance to PD-1/PD-L1 blockade cancer immunotherapy: Mechanisms and therapeutic opportunities. Exp Hematol Oncol. 2022;11:101.PubMedPubMedCentralCrossRef Dai M, Liu M, Yang H, Küçük C, You H. New insights into epigenetic regulation of resistance to PD-1/PD-L1 blockade cancer immunotherapy: Mechanisms and therapeutic opportunities. Exp Hematol Oncol. 2022;11:101.PubMedPubMedCentralCrossRef
187.
go back to reference Ali HR, Glont SE, Blows FM, et al. PD-L1 protein expression in breast cancer is rare, enriched in basal-like tumours and associated with infiltrating lymphocytes. Ann Oncol. 2015;26:1488–93.PubMedCrossRef Ali HR, Glont SE, Blows FM, et al. PD-L1 protein expression in breast cancer is rare, enriched in basal-like tumours and associated with infiltrating lymphocytes. Ann Oncol. 2015;26:1488–93.PubMedCrossRef
188.
189.
go back to reference Darvin P, Toor SM, Sasidharan NV, Elkord E. Immune checkpoint inhibitors: Recent progress and potential biomarkers. Exp Mol Med. 2018;50:1–11.PubMedCrossRef Darvin P, Toor SM, Sasidharan NV, Elkord E. Immune checkpoint inhibitors: Recent progress and potential biomarkers. Exp Mol Med. 2018;50:1–11.PubMedCrossRef
190.
go back to reference Tarantino P, Antonarelli G, Ascione L, Curigliano G. Investigational immunomodulatory drugs for enhancement of triple negative breast cancer (TNBC) immunotherapy: early phase development. Expert Opin Investig Drugs. 2022;31:499–513.PubMedCrossRef Tarantino P, Antonarelli G, Ascione L, Curigliano G. Investigational immunomodulatory drugs for enhancement of triple negative breast cancer (TNBC) immunotherapy: early phase development. Expert Opin Investig Drugs. 2022;31:499–513.PubMedCrossRef
191.
go back to reference Wang Y, Zhang H, Liu C, et al. Immune checkpoint modulators in cancer immunotherapy: Recent advances and emerging concepts. J Hematol Oncol. 2022;15:111.PubMedPubMedCentralCrossRef Wang Y, Zhang H, Liu C, et al. Immune checkpoint modulators in cancer immunotherapy: Recent advances and emerging concepts. J Hematol Oncol. 2022;15:111.PubMedPubMedCentralCrossRef
192.
go back to reference Nanda R, Chow LQ, Dees EC, et al. Pembrolizumab in patients with advanced triple-negative breast cancer: Phase Ib KEYNOTE-012 study. J Clin Oncol. 2016;34:2460–7.PubMedPubMedCentralCrossRef Nanda R, Chow LQ, Dees EC, et al. Pembrolizumab in patients with advanced triple-negative breast cancer: Phase Ib KEYNOTE-012 study. J Clin Oncol. 2016;34:2460–7.PubMedPubMedCentralCrossRef
193.
go back to reference Adams S, Schmid P, Rugo HS, et al. Pembrolizumab monotherapy for previously treated metastatic triple-negative breast cancer: Cohort A of the phase II KEYNOTE-086 study. Ann Oncol. 2019;30:397–404.PubMedCrossRef Adams S, Schmid P, Rugo HS, et al. Pembrolizumab monotherapy for previously treated metastatic triple-negative breast cancer: Cohort A of the phase II KEYNOTE-086 study. Ann Oncol. 2019;30:397–404.PubMedCrossRef
194.
go back to reference Adams S, Loi S, Toppmeyer D, et al. Pembrolizumab monotherapy for previously untreated, PD-L1-positive, metastatic triple-negative breast cancer: cohort B of the phase II KEYNOTE-086 study. Ann Oncol. 2019;30:405–11.PubMedCrossRef Adams S, Loi S, Toppmeyer D, et al. Pembrolizumab monotherapy for previously untreated, PD-L1-positive, metastatic triple-negative breast cancer: cohort B of the phase II KEYNOTE-086 study. Ann Oncol. 2019;30:405–11.PubMedCrossRef
195.
go back to reference Winer EP, Lipatov O, Im SA, et al. Pembrolizumab versus investigator-choice chemotherapy for metastatic triple-negative breast cancer (Keynote-119): a randomised, open-label, phase 3 trial. Lancet Oncol. 2021;22:499–511.PubMedCrossRef Winer EP, Lipatov O, Im SA, et al. Pembrolizumab versus investigator-choice chemotherapy for metastatic triple-negative breast cancer (Keynote-119): a randomised, open-label, phase 3 trial. Lancet Oncol. 2021;22:499–511.PubMedCrossRef
196.
go back to reference Schmid P, Cortes J, Pusztai L, et al. Pembrolizumab for early triple-negative breast cancer. N Engl J Med. 2020;382:810–21.PubMedCrossRef Schmid P, Cortes J, Pusztai L, et al. Pembrolizumab for early triple-negative breast cancer. N Engl J Med. 2020;382:810–21.PubMedCrossRef
197.
go back to reference Huang M, O’Shaughnessy J, Haiderali A, et al. Q-twist analysis of pembrolizumab combined with chemotherapy as first-line treatment of metastatic triple-negative breast cancer that expresses PD-L1. Eur J Cancer. 2022;177:45–52.PubMedCrossRef Huang M, O’Shaughnessy J, Haiderali A, et al. Q-twist analysis of pembrolizumab combined with chemotherapy as first-line treatment of metastatic triple-negative breast cancer that expresses PD-L1. Eur J Cancer. 2022;177:45–52.PubMedCrossRef
198.
go back to reference Schmid P, Salgado R, Park YH, et al. Pembrolizumab plus chemotherapy as neoadjuvant treatment of high-risk, early-stage triple-negative breast cancer: results from the phase Ib open-label, multicohort KEYNOTE-173 study. Ann Oncol. 2020;31:569–81.PubMedCrossRef Schmid P, Salgado R, Park YH, et al. Pembrolizumab plus chemotherapy as neoadjuvant treatment of high-risk, early-stage triple-negative breast cancer: results from the phase Ib open-label, multicohort KEYNOTE-173 study. Ann Oncol. 2020;31:569–81.PubMedCrossRef
199.
go back to reference Nanda R, Liu MC, Yau C, et al. Effect of pembrolizumab plus neoadjuvant chemotherapy on pathologic complete response in women with early-stage breast cancer: an analysis of the ongoing phase 2 adaptively randomized I-SPY2 trial. JAMA Oncol. 2020;6:676–84.PubMedCrossRef Nanda R, Liu MC, Yau C, et al. Effect of pembrolizumab plus neoadjuvant chemotherapy on pathologic complete response in women with early-stage breast cancer: an analysis of the ongoing phase 2 adaptively randomized I-SPY2 trial. JAMA Oncol. 2020;6:676–84.PubMedCrossRef
200.
go back to reference Schmid P, Cortes J, Dent R, et al. Event-free survival with pembrolizumab in early triple-negative breast cancer. N Engl J Med. 2022;386:556–67.PubMedCrossRef Schmid P, Cortes J, Dent R, et al. Event-free survival with pembrolizumab in early triple-negative breast cancer. N Engl J Med. 2022;386:556–67.PubMedCrossRef
201.
go back to reference Santa-Maria CA, O’Donnell M, Nunes R, Wright JL, Stearns V. Integrating immunotherapy in early-stage triple-negative breast cancer: Practical evidence-based considerations. J Natl Compr Canc Netw. 2022;20:738–44.PubMedPubMedCentralCrossRef Santa-Maria CA, O’Donnell M, Nunes R, Wright JL, Stearns V. Integrating immunotherapy in early-stage triple-negative breast cancer: Practical evidence-based considerations. J Natl Compr Canc Netw. 2022;20:738–44.PubMedPubMedCentralCrossRef
202.
go back to reference Fasching PA, Hein A, Kolberg HC, et al. Pembrolizumab in combination with nab-paclitaxel for the treatment of patients with early-stage triple-negative breast cancer—a single-arm phase II trial (Neoimmunoboost, AGO-B-041). Eur J Cancer. 2023;184:1–9.PubMedCrossRef Fasching PA, Hein A, Kolberg HC, et al. Pembrolizumab in combination with nab-paclitaxel for the treatment of patients with early-stage triple-negative breast cancer—a single-arm phase II trial (Neoimmunoboost, AGO-B-041). Eur J Cancer. 2023;184:1–9.PubMedCrossRef
203.
go back to reference Shah M, Osgood CL, Amatya AK, et al. FDA approval summary: Pembrolizumab for neoadjuvant and adjuvant treatment of patients with high-risk early-stage triple-negative breast cancer. Clin Cancer Res. 2022;28:5249–53.PubMedCrossRef Shah M, Osgood CL, Amatya AK, et al. FDA approval summary: Pembrolizumab for neoadjuvant and adjuvant treatment of patients with high-risk early-stage triple-negative breast cancer. Clin Cancer Res. 2022;28:5249–53.PubMedCrossRef
204.
go back to reference Mittendorf EA, Zhang H, Barrios CH, et al. Neoadjuvant atezolizumab in combination with sequential nab-paclitaxel and anthracycline-based chemotherapy versus placebo and chemotherapy in patients with early-stage triple-negative breast cancer (Impassion031): A randomised, double-blind, phase 3 trial. Lancet. 2020;396:1090–100.PubMedCrossRef Mittendorf EA, Zhang H, Barrios CH, et al. Neoadjuvant atezolizumab in combination with sequential nab-paclitaxel and anthracycline-based chemotherapy versus placebo and chemotherapy in patients with early-stage triple-negative breast cancer (Impassion031): A randomised, double-blind, phase 3 trial. Lancet. 2020;396:1090–100.PubMedCrossRef
205.
go back to reference Narayan P, Wahby S, Gao JJ, et al. FDA approval summary: Atezolizumab plus paclitaxel protein-bound for the treatment of patients with advanced or metastatic TNBC whose tumors express PD-L1. Clin Cancer Res. 2020;26:2284–9.PubMedCrossRef Narayan P, Wahby S, Gao JJ, et al. FDA approval summary: Atezolizumab plus paclitaxel protein-bound for the treatment of patients with advanced or metastatic TNBC whose tumors express PD-L1. Clin Cancer Res. 2020;26:2284–9.PubMedCrossRef
206.
go back to reference Schmid P, Rugo HS, Adams S, et al. Atezolizumab plus nab-paclitaxel as first-line treatment for unresectable, locally advanced or metastatic triple-negative breast cancer (Impassion130): Updated efficacy results from a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2020;21:44–59.PubMedCrossRef Schmid P, Rugo HS, Adams S, et al. Atezolizumab plus nab-paclitaxel as first-line treatment for unresectable, locally advanced or metastatic triple-negative breast cancer (Impassion130): Updated efficacy results from a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2020;21:44–59.PubMedCrossRef
207.
go back to reference Emens LA, Molinero L, Loi S, et al. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer: biomarker evaluation of the Impassion130 study. J Natl Cancer Inst. 2021;113:1005–16.PubMedPubMedCentralCrossRef Emens LA, Molinero L, Loi S, et al. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer: biomarker evaluation of the Impassion130 study. J Natl Cancer Inst. 2021;113:1005–16.PubMedPubMedCentralCrossRef
208.
go back to reference Emens LA, Adams S, Barrios CH, et al. First-line atezolizumab plus nab-paclitaxel for unresectable, locally advanced, or metastatic triple-negative breast cancer: impassion 130 final overall survival analysis. Ann Oncol. 2021;32:983–93.PubMedCrossRef Emens LA, Adams S, Barrios CH, et al. First-line atezolizumab plus nab-paclitaxel for unresectable, locally advanced, or metastatic triple-negative breast cancer: impassion 130 final overall survival analysis. Ann Oncol. 2021;32:983–93.PubMedCrossRef
209.
go back to reference Miles D, Gligorov J, André F, et al. Primary results from Impassion131, a double-blind, placebo-controlled, randomised phase III trial of first-line paclitaxel with or without atezolizumab for unresectable locally advanced/metastatic triple-negative breast cancer. Ann Oncol. 2021;32:994–1004.PubMedCrossRef Miles D, Gligorov J, André F, et al. Primary results from Impassion131, a double-blind, placebo-controlled, randomised phase III trial of first-line paclitaxel with or without atezolizumab for unresectable locally advanced/metastatic triple-negative breast cancer. Ann Oncol. 2021;32:994–1004.PubMedCrossRef
210.
go back to reference Loibl S, Untch M, Burchardi N, et al. A randomised phase ii study investigating durvalumab in addition to an anthracycline taxane-based neoadjuvant therapy in early triple-negative breast cancer: clinical results and biomarker analysis of GeparNuevo study. Ann Oncol. 2019;30:1279–88.PubMedCrossRef Loibl S, Untch M, Burchardi N, et al. A randomised phase ii study investigating durvalumab in addition to an anthracycline taxane-based neoadjuvant therapy in early triple-negative breast cancer: clinical results and biomarker analysis of GeparNuevo study. Ann Oncol. 2019;30:1279–88.PubMedCrossRef
211.
go back to reference Loibl S, Schneeweiss A, Huober J, et al. Neoadjuvant durvalumab improves survival in early triple-negative breast cancer independent of pathological complete response. Ann Oncol. 2022;33:1149–58.PubMedCrossRef Loibl S, Schneeweiss A, Huober J, et al. Neoadjuvant durvalumab improves survival in early triple-negative breast cancer independent of pathological complete response. Ann Oncol. 2022;33:1149–58.PubMedCrossRef
212.
go back to reference Depil S, Duchateau P, Grupp SA, Mufti G, Poirot L. “Off-the-shelf” allogeneic CAR T cells: Development and challenges. Nat Rev Drug Discov. 2020;19:185–99.PubMedCrossRef Depil S, Duchateau P, Grupp SA, Mufti G, Poirot L. “Off-the-shelf” allogeneic CAR T cells: Development and challenges. Nat Rev Drug Discov. 2020;19:185–99.PubMedCrossRef
213.
go back to reference Labanieh L, Majzner RG, Klysz D, et al. Enhanced safety and efficacy of protease-regulated CAR-T cell receptors. Cell. 2022;185:1745-63. e22.CrossRef Labanieh L, Majzner RG, Klysz D, et al. Enhanced safety and efficacy of protease-regulated CAR-T cell receptors. Cell. 2022;185:1745-63. e22.CrossRef
215.
go back to reference Xie Y, Hu Y, Zhou N, et al. CAR T-cell therapy for triple-negative breast cancer: Where we are. Cancer Lett. 2020;491:121–31.PubMedCrossRef Xie Y, Hu Y, Zhou N, et al. CAR T-cell therapy for triple-negative breast cancer: Where we are. Cancer Lett. 2020;491:121–31.PubMedCrossRef
216.
go back to reference Porter DL, Hwang WT, Frey NV, et al. Chimeric antigen receptor t cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci Transl Med. 2015;7:303ra139.PubMedPubMedCentralCrossRef Porter DL, Hwang WT, Frey NV, et al. Chimeric antigen receptor t cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci Transl Med. 2015;7:303ra139.PubMedPubMedCentralCrossRef
217.
go back to reference Yan T, Zhu L, Chen J. Current advances and challenges in CAR T-cell therapy for solid tumors: tumor-associated antigens and the tumor microenvironment. Exp Hematol Oncol. 2023;12:14.PubMedPubMedCentralCrossRef Yan T, Zhu L, Chen J. Current advances and challenges in CAR T-cell therapy for solid tumors: tumor-associated antigens and the tumor microenvironment. Exp Hematol Oncol. 2023;12:14.PubMedPubMedCentralCrossRef
218.
go back to reference Yin L, Chen GL, Xiang Z, et al. Current progress in chimeric antigen receptor-modified T cells for the treatment of metastatic breast cancer. Biomed Pharmacother. 2023;162:114648.PubMedCrossRef Yin L, Chen GL, Xiang Z, et al. Current progress in chimeric antigen receptor-modified T cells for the treatment of metastatic breast cancer. Biomed Pharmacother. 2023;162:114648.PubMedCrossRef
219.
go back to reference Harrasser M, Gohil SH, Lau H, et al. Inducible localized delivery of an anti-PD-1 SCFV enhances anti-tumor activity of ror1 car-t cells in TNBC. Breast Cancer Res. 2022;24:39.PubMedPubMedCentralCrossRef Harrasser M, Gohil SH, Lau H, et al. Inducible localized delivery of an anti-PD-1 SCFV enhances anti-tumor activity of ror1 car-t cells in TNBC. Breast Cancer Res. 2022;24:39.PubMedPubMedCentralCrossRef
222.
go back to reference Xia L, Zheng ZZ, Liu JY, et al. EGFR-targeted car-t cells are potent and specific in suppressing triple-negative breast cancer both in vitro and in vivo. Clin Transl Immunology. 2020;9:e01135.PubMedCrossRef Xia L, Zheng ZZ, Liu JY, et al. EGFR-targeted car-t cells are potent and specific in suppressing triple-negative breast cancer both in vitro and in vivo. Clin Transl Immunology. 2020;9:e01135.PubMedCrossRef
224.
go back to reference Huo W, Yang X, Wang B, et al. Biomineralized hydrogel dc vaccine for cancer immunotherapy: a boosting strategy via improving immunogenicity and reversing immune-inhibitory microenvironment. Biomaterials. 2022;288:121722.PubMedCrossRef Huo W, Yang X, Wang B, et al. Biomineralized hydrogel dc vaccine for cancer immunotherapy: a boosting strategy via improving immunogenicity and reversing immune-inhibitory microenvironment. Biomaterials. 2022;288:121722.PubMedCrossRef
225.
go back to reference Huang L, Rong Y, Tang X, et al. Engineered exosomes as an in situ DC-primed vaccine to boost antitumor immunity in breast cancer. Mol Cancer. 2022;21:45.PubMedPubMedCentralCrossRef Huang L, Rong Y, Tang X, et al. Engineered exosomes as an in situ DC-primed vaccine to boost antitumor immunity in breast cancer. Mol Cancer. 2022;21:45.PubMedPubMedCentralCrossRef
226.
go back to reference Bai X, Zhou Y, Yokota Y, et al. Adaptive antitumor immune response stimulated by bio-nanoparticle based vaccine and checkpoint blockade. J Exp Clin Cancer Res. 2022;41:132.PubMedPubMedCentralCrossRef Bai X, Zhou Y, Yokota Y, et al. Adaptive antitumor immune response stimulated by bio-nanoparticle based vaccine and checkpoint blockade. J Exp Clin Cancer Res. 2022;41:132.PubMedPubMedCentralCrossRef
227.
go back to reference Razazan A, Behravan J. Single peptides and combination modalities for triple negative breast cancer. J Cell Physiol. 2020;235:4089–108.PubMedCrossRef Razazan A, Behravan J. Single peptides and combination modalities for triple negative breast cancer. J Cell Physiol. 2020;235:4089–108.PubMedCrossRef
228.
go back to reference Overholser J, Ambegaokar KH, Eze SM, et al. Anti-tumor effects of peptide therapeutic and peptide vaccine antibody co-targeting HER-1 and HER-2 in esophageal cancer (EC) and her-1 and igf-1r in triple-negative breast cancer (TNBC). Vaccines (Basel). 2015;3:519–43.PubMedCrossRef Overholser J, Ambegaokar KH, Eze SM, et al. Anti-tumor effects of peptide therapeutic and peptide vaccine antibody co-targeting HER-1 and HER-2 in esophageal cancer (EC) and her-1 and igf-1r in triple-negative breast cancer (TNBC). Vaccines (Basel). 2015;3:519–43.PubMedCrossRef
229.
go back to reference Petrina M, Martin J, Basta S. Granulocyte macrophage colony-stimulating factor has come of age: from a vaccine adjuvant to antiviral immunotherapy. Cytokine Growth Factor Rev. 2021;59:101–10.PubMedPubMedCentralCrossRef Petrina M, Martin J, Basta S. Granulocyte macrophage colony-stimulating factor has come of age: from a vaccine adjuvant to antiviral immunotherapy. Cytokine Growth Factor Rev. 2021;59:101–10.PubMedPubMedCentralCrossRef
230.
232.
go back to reference Stine ZE, Schug ZT, Salvino JM, Dang CV. Targeting cancer metabolism in the era of precision oncology. Nat Rev Drug Discov. 2022;21:141–62.PubMedCrossRef Stine ZE, Schug ZT, Salvino JM, Dang CV. Targeting cancer metabolism in the era of precision oncology. Nat Rev Drug Discov. 2022;21:141–62.PubMedCrossRef
234.
go back to reference Li S, Zeng H, Fan J, et al. Glutamine metabolism in breast cancer and possible therapeutic targets. Biochem Pharmacol. 2023;210:115464.PubMedCrossRef Li S, Zeng H, Fan J, et al. Glutamine metabolism in breast cancer and possible therapeutic targets. Biochem Pharmacol. 2023;210:115464.PubMedCrossRef
235.
236.
238.
go back to reference Wu SY, Xu Y, Chen L, et al. Combined angiogenesis and PD-1 inhibition for immunomodulatory TNBC: concept exploration and biomarker analysis in the future-c-plus trial. Mol Cancer. 2022;21:84.PubMedPubMedCentralCrossRef Wu SY, Xu Y, Chen L, et al. Combined angiogenesis and PD-1 inhibition for immunomodulatory TNBC: concept exploration and biomarker analysis in the future-c-plus trial. Mol Cancer. 2022;21:84.PubMedPubMedCentralCrossRef
239.
go back to reference Zhu L, Liu J, Chen J, Zhou Q. The developing landscape of combinatorial therapies of immune checkpoint blockade with DNA damage repair inhibitors for the treatment of breast and ovarian cancers. J Hematol Oncol. 2021;14:206.PubMedPubMedCentralCrossRef Zhu L, Liu J, Chen J, Zhou Q. The developing landscape of combinatorial therapies of immune checkpoint blockade with DNA damage repair inhibitors for the treatment of breast and ovarian cancers. J Hematol Oncol. 2021;14:206.PubMedPubMedCentralCrossRef
240.
go back to reference Wang Z, Sun K, Xiao Y, et al. Niraparib activates interferon signaling and potentiates anti-pd-1 antibody efficacy in tumor models. Sci Rep. 2019;9:1853.PubMedPubMedCentralCrossRef Wang Z, Sun K, Xiao Y, et al. Niraparib activates interferon signaling and potentiates anti-pd-1 antibody efficacy in tumor models. Sci Rep. 2019;9:1853.PubMedPubMedCentralCrossRef
241.
go back to reference Vinayak S, Tolaney SM, Schwartzberg L, et al. Open-label clinical trial of niraparib combined with pembrolizumab for treatment of advanced or metastatic triple-negative breast cancer. JAMA Oncol. 2019;5:1132–40.PubMedPubMedCentralCrossRef Vinayak S, Tolaney SM, Schwartzberg L, et al. Open-label clinical trial of niraparib combined with pembrolizumab for treatment of advanced or metastatic triple-negative breast cancer. JAMA Oncol. 2019;5:1132–40.PubMedPubMedCentralCrossRef
242.
go back to reference Pusztai L, Yau C, Wolf DM, et al. Durvalumab with olaparib and paclitaxel for high-risk her2-negative stage ii/iii breast cancer: Results from the adaptively randomized i-spy2 trial. Cancer Cell. 2021;39:989-98. e5.CrossRef Pusztai L, Yau C, Wolf DM, et al. Durvalumab with olaparib and paclitaxel for high-risk her2-negative stage ii/iii breast cancer: Results from the adaptively randomized i-spy2 trial. Cancer Cell. 2021;39:989-98. e5.CrossRef
243.
244.
go back to reference Rose S. “Very compelling” results for ADC in TNBC trial. Cancer Discov. 2022;12:280–1.CrossRef Rose S. “Very compelling” results for ADC in TNBC trial. Cancer Discov. 2022;12:280–1.CrossRef
245.
go back to reference Wu M, Huang W, Yang N, Liu Y. Learn from antibody-drug conjugates: consideration in the future construction of peptide-drug conjugates for cancer therapy. Exp Hematol Oncol. 2022;11:93.PubMedPubMedCentralCrossRef Wu M, Huang W, Yang N, Liu Y. Learn from antibody-drug conjugates: consideration in the future construction of peptide-drug conjugates for cancer therapy. Exp Hematol Oncol. 2022;11:93.PubMedPubMedCentralCrossRef
246.
go back to reference Jeon Y, Jo U, Hong J, Gong G, Lee HJ. Trophoblast cell-surface antigen 2 (Trop2) expression in triple-negative breast cancer. BMC Cancer. 2022;22:1014.PubMedPubMedCentralCrossRef Jeon Y, Jo U, Hong J, Gong G, Lee HJ. Trophoblast cell-surface antigen 2 (Trop2) expression in triple-negative breast cancer. BMC Cancer. 2022;22:1014.PubMedPubMedCentralCrossRef
247.
go back to reference Cortesi M, Zanoni M, Maltoni R, et al. Trop2 (trophoblast cell-surface antigen 2): a drug target for breast cancer. Expert Opin Ther Targets. 2022;26:593–602.PubMedCrossRef Cortesi M, Zanoni M, Maltoni R, et al. Trop2 (trophoblast cell-surface antigen 2): a drug target for breast cancer. Expert Opin Ther Targets. 2022;26:593–602.PubMedCrossRef
249.
go back to reference Bardia A, Messersmith WA, Kio EA, et al. Sacituzumab govitecan, a Trop-2-directed antibody-drug conjugate, for patients with epithelial cancer: Final safety and efficacy results from the phase I/II immu-132-01 basket trial. Ann Oncol. 2021;32:746–56.PubMedCrossRef Bardia A, Messersmith WA, Kio EA, et al. Sacituzumab govitecan, a Trop-2-directed antibody-drug conjugate, for patients with epithelial cancer: Final safety and efficacy results from the phase I/II immu-132-01 basket trial. Ann Oncol. 2021;32:746–56.PubMedCrossRef
250.
go back to reference Bardia A, Tolaney SM, Punie K, et al. Biomarker analyses in the phase III ascent study of sacituzumab govitecan versus chemotherapy in patients with metastatic triple-negative breast cancer. Ann Oncol. 2021;32:1148–56.PubMedCrossRef Bardia A, Tolaney SM, Punie K, et al. Biomarker analyses in the phase III ascent study of sacituzumab govitecan versus chemotherapy in patients with metastatic triple-negative breast cancer. Ann Oncol. 2021;32:1148–56.PubMedCrossRef
251.
go back to reference Bardia A, Hurvitz SA, Tolaney SM, et al. Sacituzumab govitecan in metastatic triple-negative breast cancer. N Engl J Med. 2021;384:1529–41.PubMedCrossRef Bardia A, Hurvitz SA, Tolaney SM, et al. Sacituzumab govitecan in metastatic triple-negative breast cancer. N Engl J Med. 2021;384:1529–41.PubMedCrossRef
252.
go back to reference Qiu S, Zhang J, Wang Z, et al. Targeting Trop-2 in cancer: Recent research progress and clinical application. Biochim Biophys Acta Rev Cancer. 2023;1878:188902.PubMedCrossRef Qiu S, Zhang J, Wang Z, et al. Targeting Trop-2 in cancer: Recent research progress and clinical application. Biochim Biophys Acta Rev Cancer. 2023;1878:188902.PubMedCrossRef
253.
go back to reference Adams E, Wildiers H, Neven P, Punie K. Sacituzumab govitecan and trastuzumab deruxtecan: Two new antibody-drug conjugates in the breast cancer treatment landscape. ESMO Open. 2021;6:100204.PubMedPubMedCentralCrossRef Adams E, Wildiers H, Neven P, Punie K. Sacituzumab govitecan and trastuzumab deruxtecan: Two new antibody-drug conjugates in the breast cancer treatment landscape. ESMO Open. 2021;6:100204.PubMedPubMedCentralCrossRef
254.
go back to reference Rugo HS, Bardia A, Tolaney SM, et al. Tropics-02: A phase III study investigating sacituzumab govitecan in the treatment of HR+/HER2- metastatic breast cancer. Future Oncol. 2020;16:705–15.PubMedCrossRef Rugo HS, Bardia A, Tolaney SM, et al. Tropics-02: A phase III study investigating sacituzumab govitecan in the treatment of HR+/HER2- metastatic breast cancer. Future Oncol. 2020;16:705–15.PubMedCrossRef
255.
go back to reference Rugo HS, Bardia A, Marmé F, et al. Sacituzumab govitecan in hormone receptor-positive/human epidermal growth factor receptor 2-negative metastatic breast cancer. J Clin Oncol. 2022;40:3365–76.PubMedCrossRef Rugo HS, Bardia A, Marmé F, et al. Sacituzumab govitecan in hormone receptor-positive/human epidermal growth factor receptor 2-negative metastatic breast cancer. J Clin Oncol. 2022;40:3365–76.PubMedCrossRef
256.
go back to reference Furlanetto J, Marmé F, Loibl S. Sacituzumab govitecan: Past, present and future of a new antibody-drug conjugate and future horizon. Future Oncol. 2022;18:3199–215.PubMedCrossRef Furlanetto J, Marmé F, Loibl S. Sacituzumab govitecan: Past, present and future of a new antibody-drug conjugate and future horizon. Future Oncol. 2022;18:3199–215.PubMedCrossRef
257.
go back to reference Demeule M, Charfi C, Currie JC, et al. The TH1902 docetaxel peptide-drug conjugate inhibits xenografts growth of human SORT1-positive ovarian and triple-negative breast cancer stem-like cells. Pharmaceutics. 2022;14:1910.PubMedPubMedCentralCrossRef Demeule M, Charfi C, Currie JC, et al. The TH1902 docetaxel peptide-drug conjugate inhibits xenografts growth of human SORT1-positive ovarian and triple-negative breast cancer stem-like cells. Pharmaceutics. 2022;14:1910.PubMedPubMedCentralCrossRef
258.
go back to reference Demeule M, Charfi C, Currie JC, et al. TH1902, a new docetaxel-peptide conjugate for the treatment of sortilin-positive triple-negative breast cancer. Cancer Sci. 2021;112:4317–34.PubMedPubMedCentralCrossRef Demeule M, Charfi C, Currie JC, et al. TH1902, a new docetaxel-peptide conjugate for the treatment of sortilin-positive triple-negative breast cancer. Cancer Sci. 2021;112:4317–34.PubMedPubMedCentralCrossRef
259.
go back to reference Charfi C, Demeule M, Currie JC, et al. New peptide-drug conjugates for precise targeting of sort1-mediated vasculogenic mimicry in the tumor microenvironment of TNBC-derived mda-mb-231 breast and ovarian es-2 clear cell carcinoma cells. Front Oncol. 2021;11:760787.PubMedPubMedCentralCrossRef Charfi C, Demeule M, Currie JC, et al. New peptide-drug conjugates for precise targeting of sort1-mediated vasculogenic mimicry in the tumor microenvironment of TNBC-derived mda-mb-231 breast and ovarian es-2 clear cell carcinoma cells. Front Oncol. 2021;11:760787.PubMedPubMedCentralCrossRef
260.
go back to reference Okajima D, Yasuda S, Maejima T, et al. Datopotamab deruxtecan, a novel Trop2-directed antibody-drug conjugate, demonstrates potent antitumor activity by efficient drug delivery to tumor cells. Mol Cancer Ther. 2021;20:2329–40.PubMedPubMedCentralCrossRef Okajima D, Yasuda S, Maejima T, et al. Datopotamab deruxtecan, a novel Trop2-directed antibody-drug conjugate, demonstrates potent antitumor activity by efficient drug delivery to tumor cells. Mol Cancer Ther. 2021;20:2329–40.PubMedPubMedCentralCrossRef
261.
go back to reference Shastry M, Jacob S, Rugo HS, Hamilton E. Antibody-drug conjugates targeting Trop-2: clinical development in metastatic breast cancer. Breast. 2022;66:169–77.PubMedPubMedCentralCrossRef Shastry M, Jacob S, Rugo HS, Hamilton E. Antibody-drug conjugates targeting Trop-2: clinical development in metastatic breast cancer. Breast. 2022;66:169–77.PubMedPubMedCentralCrossRef
262.
go back to reference Ogitani Y, Aida T, Hagihara K, et al. DS-8201a, a novel HER2-targeting ADC with a novel DNA topoisomerase I inhibitor, demonstrates a promising antitumor efficacy with differentiation from T-DM1. Clin Cancer Res. 2016;22:5097–108.PubMedCrossRef Ogitani Y, Aida T, Hagihara K, et al. DS-8201a, a novel HER2-targeting ADC with a novel DNA topoisomerase I inhibitor, demonstrates a promising antitumor efficacy with differentiation from T-DM1. Clin Cancer Res. 2016;22:5097–108.PubMedCrossRef
263.
go back to reference Cortés J, Kim SB, Chung WP, et al. Trastuzumab deruxtecan versus trastuzumab emtansine for breast cancer. N Engl J Med. 2022;386:1143–54.PubMedCrossRef Cortés J, Kim SB, Chung WP, et al. Trastuzumab deruxtecan versus trastuzumab emtansine for breast cancer. N Engl J Med. 2022;386:1143–54.PubMedCrossRef
264.
go back to reference Hurvitz SA, Hegg R, Chung WP, et al. Trastuzumab deruxtecan versus trastuzumab emtansine in patients with HER2-positive metastatic breast cancer: Updated results from DESTINY-Breast03, a randomised, open-label, phase 3 trial. Lancet. 2023;401:105–17.PubMedCrossRef Hurvitz SA, Hegg R, Chung WP, et al. Trastuzumab deruxtecan versus trastuzumab emtansine in patients with HER2-positive metastatic breast cancer: Updated results from DESTINY-Breast03, a randomised, open-label, phase 3 trial. Lancet. 2023;401:105–17.PubMedCrossRef
265.
go back to reference Poh A. T-dxd: New standard for HER2-low breast cancer. Cancer Discov. 2022;12:1828.CrossRef Poh A. T-dxd: New standard for HER2-low breast cancer. Cancer Discov. 2022;12:1828.CrossRef
267.
go back to reference Modi S, Park H, Murthy RK, et al. Antitumor activity and safety of trastuzumab deruxtecan in patients with HER2-low-expressing advanced breast cancer: Results from a phase Ib study. J Clin Oncol. 2020;38:1887–96.PubMedPubMedCentralCrossRef Modi S, Park H, Murthy RK, et al. Antitumor activity and safety of trastuzumab deruxtecan in patients with HER2-low-expressing advanced breast cancer: Results from a phase Ib study. J Clin Oncol. 2020;38:1887–96.PubMedPubMedCentralCrossRef
268.
269.
go back to reference M-Rabet M, Cabaud O, Josselin E, et al. Nectin-4: a new prognostic biomarker for efficient therapeutic targeting of primary and metastatic triple-negative breast cancer. Ann Oncol. 2017;28:769–76.PubMedCrossRef M-Rabet M, Cabaud O, Josselin E, et al. Nectin-4: a new prognostic biomarker for efficient therapeutic targeting of primary and metastatic triple-negative breast cancer. Ann Oncol. 2017;28:769–76.PubMedCrossRef
270.
go back to reference Guo P, Huang J, Zhu B, et al. A rationally designed ICAM1 antibody drug conjugate eradicates late-stage and refractory triple-negative breast tumors in vivo. Sci Adv. 2023;9:eabq7866.PubMedPubMedCentralCrossRef Guo P, Huang J, Zhu B, et al. A rationally designed ICAM1 antibody drug conjugate eradicates late-stage and refractory triple-negative breast tumors in vivo. Sci Adv. 2023;9:eabq7866.PubMedPubMedCentralCrossRef
271.
go back to reference Chen X, Kang R, Kroemer G, Tang D. Broadening horizons: the role of ferroptosis in cancer. Nat Rev Clin Oncol. 2021;18:280–96.PubMedCrossRef Chen X, Kang R, Kroemer G, Tang D. Broadening horizons: the role of ferroptosis in cancer. Nat Rev Clin Oncol. 2021;18:280–96.PubMedCrossRef
272.
go back to reference Liao M, Qin R, Huang W, et al. Targeting regulated cell death (RCD) with small-molecule compounds in triple-negative breast cancer: a revisited perspective from molecular mechanisms to targeted therapies. J Hematol Oncol. 2022;15:44.PubMedPubMedCentralCrossRef Liao M, Qin R, Huang W, et al. Targeting regulated cell death (RCD) with small-molecule compounds in triple-negative breast cancer: a revisited perspective from molecular mechanisms to targeted therapies. J Hematol Oncol. 2022;15:44.PubMedPubMedCentralCrossRef
273.
go back to reference Qin R, You FM, Zhao Q, et al. Naturally derived indole alkaloids targeting regulated cell death (RCD) for cancer therapy: from molecular mechanisms to potential therapeutic targets. J Hematol Oncol. 2022;15:133.PubMedPubMedCentralCrossRef Qin R, You FM, Zhao Q, et al. Naturally derived indole alkaloids targeting regulated cell death (RCD) for cancer therapy: from molecular mechanisms to potential therapeutic targets. J Hematol Oncol. 2022;15:133.PubMedPubMedCentralCrossRef
274.
go back to reference Jiang L, Gao XM, Cao J. The achilles heel of TNBCs: ferroptosis heterogeneity. Cell Metab. 2023;35:1–2.PubMedCrossRef Jiang L, Gao XM, Cao J. The achilles heel of TNBCs: ferroptosis heterogeneity. Cell Metab. 2023;35:1–2.PubMedCrossRef
275.
go back to reference Gan H., Huang X., Luo X., et al. A mitochondria-targeted ferroptosis inducer activated by glutathione-responsive imaging and depletion for triple negative breast cancer theranostics. Adv Healthc Mater. 2023: e2300220. Gan H., Huang X., Luo X., et al. A mitochondria-targeted ferroptosis inducer activated by glutathione-responsive imaging and depletion for triple negative breast cancer theranostics. Adv Healthc Mater. 2023: e2300220.
276.
go back to reference Song X, Wang X, Liu Z, Yu Z. Role of GPX4-mediated ferroptosis in the sensitivity of triple negative breast cancer cells to Gefitinib. Front Oncol. 2020;10:597434.PubMedPubMedCentralCrossRef Song X, Wang X, Liu Z, Yu Z. Role of GPX4-mediated ferroptosis in the sensitivity of triple negative breast cancer cells to Gefitinib. Front Oncol. 2020;10:597434.PubMedPubMedCentralCrossRef
278.
go back to reference Yang C, Zhang J, Liao M, et al. Folate-mediated one-carbon metabolism: a targeting strategy in cancer therapy. Drug Discov Today. 2021;26:817–25.PubMedCrossRef Yang C, Zhang J, Liao M, et al. Folate-mediated one-carbon metabolism: a targeting strategy in cancer therapy. Drug Discov Today. 2021;26:817–25.PubMedCrossRef
279.
go back to reference Zhu S, Yi M, Wu Y, Dong B, Wu K. Roles of tumor-associated macrophages in tumor progression: implications on therapeutic strategies. Exp Hematol Oncol. 2021;10:60.PubMedPubMedCentralCrossRef Zhu S, Yi M, Wu Y, Dong B, Wu K. Roles of tumor-associated macrophages in tumor progression: implications on therapeutic strategies. Exp Hematol Oncol. 2021;10:60.PubMedPubMedCentralCrossRef
280.
go back to reference Chen X, Yang M, Yin J, et al. Tumor-associated macrophages promote epithelial-mesenchymal transition and the cancer stem cell properties in triple-negative breast cancer through CCL2/AKT/β-catenin signaling. Cell Commun Signal. 2022;20:92.PubMedPubMedCentralCrossRef Chen X, Yang M, Yin J, et al. Tumor-associated macrophages promote epithelial-mesenchymal transition and the cancer stem cell properties in triple-negative breast cancer through CCL2/AKT/β-catenin signaling. Cell Commun Signal. 2022;20:92.PubMedPubMedCentralCrossRef
281.
go back to reference Li H, Yang P, Wang J, et al. HLF regulates ferroptosis, development and chemoresistance of triple-negative breast cancer by activating tumor cell-macrophage crosstalk. J Hematol Oncol. 2022;15:2.PubMedPubMedCentralCrossRef Li H, Yang P, Wang J, et al. HLF regulates ferroptosis, development and chemoresistance of triple-negative breast cancer by activating tumor cell-macrophage crosstalk. J Hematol Oncol. 2022;15:2.PubMedPubMedCentralCrossRef
282.
go back to reference Zhang Z, Lu M, Chen C, et al. Holo-lactoferrin: the link between ferroptosis and radiotherapy in triple-negative breast cancer. Theranostics. 2021;11:3167–82.PubMedPubMedCentralCrossRef Zhang Z, Lu M, Chen C, et al. Holo-lactoferrin: the link between ferroptosis and radiotherapy in triple-negative breast cancer. Theranostics. 2021;11:3167–82.PubMedPubMedCentralCrossRef
283.
go back to reference Zhang H, Zhu S, Zhou H, et al. Identification of MTHFD2 as a prognostic biomarker and ferroptosis regulator in triple-negative breast cancer. Front Oncol. 2023;13:1098357.PubMedPubMedCentralCrossRef Zhang H, Zhu S, Zhou H, et al. Identification of MTHFD2 as a prognostic biomarker and ferroptosis regulator in triple-negative breast cancer. Front Oncol. 2023;13:1098357.PubMedPubMedCentralCrossRef
284.
285.
go back to reference Yang F, Xiao Y, Ding JH, et al. Ferroptosis heterogeneity in triple-negative breast cancer reveals an innovative immunotherapy combination strategy. Cell Metab. 2023;35:84-100.e8.PubMedCrossRef Yang F, Xiao Y, Ding JH, et al. Ferroptosis heterogeneity in triple-negative breast cancer reveals an innovative immunotherapy combination strategy. Cell Metab. 2023;35:84-100.e8.PubMedCrossRef
286.
288.
go back to reference Xu H, Jiao Y, Qin S, et al. Organoid technology in disease modelling, drug development, personalized treatment and regeneration medicine. Exp Hematol Oncol. 2018;7:30.PubMedPubMedCentralCrossRef Xu H, Jiao Y, Qin S, et al. Organoid technology in disease modelling, drug development, personalized treatment and regeneration medicine. Exp Hematol Oncol. 2018;7:30.PubMedPubMedCentralCrossRef
289.
go back to reference Guillen KP, Fujita M, Butterfield AJ, et al. A human breast cancer-derived xenograft and organoid platform for drug discovery and precision oncology. Nat Cancer. 2022;3:232–50.PubMedPubMedCentralCrossRef Guillen KP, Fujita M, Butterfield AJ, et al. A human breast cancer-derived xenograft and organoid platform for drug discovery and precision oncology. Nat Cancer. 2022;3:232–50.PubMedPubMedCentralCrossRef
290.
291.
go back to reference Saatci O, Kaymak A, Raza U, et al. Targeting lysyl oxidase (LOX) overcomes chemotherapy resistance in triple negative breast cancer. Nat Commun. 2020;11:2416.PubMedPubMedCentralCrossRef Saatci O, Kaymak A, Raza U, et al. Targeting lysyl oxidase (LOX) overcomes chemotherapy resistance in triple negative breast cancer. Nat Commun. 2020;11:2416.PubMedPubMedCentralCrossRef
292.
go back to reference Freitas AJA, Causin RL, Varuzza MB, et al. Liquid biopsy as a tool for the diagnosis, treatment, and monitoring of breast cancer. Int J Mol Sci. 2022;23:9952.PubMedPubMedCentralCrossRef Freitas AJA, Causin RL, Varuzza MB, et al. Liquid biopsy as a tool for the diagnosis, treatment, and monitoring of breast cancer. Int J Mol Sci. 2022;23:9952.PubMedPubMedCentralCrossRef
293.
go back to reference Manoochehri M, Borhani N, Gerhäuser C, et al. DNA methylation biomarkers for noninvasive detection of triple-negative breast cancer using liquid biopsy. Int J Cancer. 2023;152:1025–35.PubMedCrossRef Manoochehri M, Borhani N, Gerhäuser C, et al. DNA methylation biomarkers for noninvasive detection of triple-negative breast cancer using liquid biopsy. Int J Cancer. 2023;152:1025–35.PubMedCrossRef
294.
go back to reference Salvador-Coloma C, Santaballa A, Sanmartín E, et al. Immunosuppressive profiles in liquid biopsy at diagnosis predict response to neoadjuvant chemotherapy in triple-negative breast cancer. Eur J Cancer. 2020;139:119–34.PubMedCrossRef Salvador-Coloma C, Santaballa A, Sanmartín E, et al. Immunosuppressive profiles in liquid biopsy at diagnosis predict response to neoadjuvant chemotherapy in triple-negative breast cancer. Eur J Cancer. 2020;139:119–34.PubMedCrossRef
295.
go back to reference Swaminathan H, Saravanamurali K, Yadav SA. Extensive review on breast cancer its etiology, progression, prognostic markers, and treatment. Med Oncol. 2023;40:238.PubMedCrossRef Swaminathan H, Saravanamurali K, Yadav SA. Extensive review on breast cancer its etiology, progression, prognostic markers, and treatment. Med Oncol. 2023;40:238.PubMedCrossRef
Metadata
Title
Recent advances in targeted strategies for triple-negative breast cancer
Authors
Shuangli Zhu
Yuze Wu
Bin Song
Ming Yi
Yuheng Yan
Qi Mei
Kongming Wu
Publication date
01-12-2023
Publisher
BioMed Central
Published in
Journal of Hematology & Oncology / Issue 1/2023
Electronic ISSN: 1756-8722
DOI
https://doi.org/10.1186/s13045-023-01497-3

Other articles of this Issue 1/2023

Journal of Hematology & Oncology 1/2023 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine