Skip to main content
Top
Published in: BMC Cancer 1/2021

Open Access 01-12-2021 | Breast Cancer | Research article

Novel immune-related genes in the tumor microenvironment with prognostic value in breast cancer

Authors: Wen Tan, Maomao Liu, Liangshan Wang, Yang Guo, Changsheng Wei, Shuqi Zhang, Chengyu Luo, Nan Liu

Published in: BMC Cancer | Issue 1/2021

Login to get access

Abstract

Background

Breast cancer is one of the most frequently diagnosed cancers among women worldwide. Alterations in the tumor microenvironment (TME) have been increasingly recognized as key in the development and progression of breast cancer in recent years. To deeply comprehend the gene expression profiling of the TME and identify immunological targets, as well as determine the relationship between gene expression and different prognoses is highly critical.

Methods

The stromal/immune scores of breast cancer patients from The Cancer Genome Atlas (TCGA) were employed to comprehensively evaluate the TME. Then, TME characteristics were assessed, overlapping genes of the top 3 Gene Ontology (GO) terms and upregulated differentially expressed genes (DEGs) were analyzed. Finally, through combined analyses of overall survival, time-dependent receiver operating characteristic (ROC), and protein-protein interaction (PPI) network, novel immune related genes with good prognosis were screened and validated in both TCGA and GEO database.

Results

Although the TME did not correlate with the stages of breast cancer, it was closely associated with the subtypes of breast cancer and gene mutations (CDH1, TP53 and PTEN), and had immunological characteristics. Based on GO functional enrichment analysis, the upregulated genes from the high vs low immune score groups were mainly involved in T cell activation, the external side of the plasma membrane, and receptor ligand activity. The top GO terms of the upregulated DEGs from the high vs low immune score groups exhibited better prognosis in breast cancer; 15 of them were related to good prognosis in breast cancer, especially CD226 and KLRC4-KLRK1.

Conclusions

High CD226 and KLRC4-KLRK1 expression levels were identified and validated to correlate with better overall survival in specific stages or subtypes of breast cancer. CD226, KLRC4-KLRK1 and other new targets seem to be promising avenues for promoting antitumor targeted immunotherapy in breast cancer.
Appendix
Available only for authorised users
Literature
1.
go back to reference Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108.CrossRef Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108.CrossRef
2.
go back to reference Lu S-N, Burkhamer J, Kriebel D, Clapp R. The increasing toll of adolescent cancer incidence in the US. PLoS One. 2017:12(2). Lu S-N, Burkhamer J, Kriebel D, Clapp R. The increasing toll of adolescent cancer incidence in the US. PLoS One. 2017:12(2).
3.
go back to reference Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7–34.CrossRef Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7–34.CrossRef
4.
go back to reference Olver IN. New initiatives in the treatment of breast cancer. Med J Aust. 2016;205(10):449–50.CrossRef Olver IN. New initiatives in the treatment of breast cancer. Med J Aust. 2016;205(10):449–50.CrossRef
5.
go back to reference Bussard KM, Mutkus L, Stumpf K, Gomez-Manzano C, Marini FC. Tumor-associated stromal cells as key contributors to the tumor microenvironment. Breast Cancer Res. 2016:18(1). Bussard KM, Mutkus L, Stumpf K, Gomez-Manzano C, Marini FC. Tumor-associated stromal cells as key contributors to the tumor microenvironment. Breast Cancer Res. 2016:18(1).
6.
go back to reference Hui L, Chen Y. Tumor microenvironment: sanctuary of the devil. Cancer Lett. 2015;368(1):7–13.CrossRef Hui L, Chen Y. Tumor microenvironment: sanctuary of the devil. Cancer Lett. 2015;368(1):7–13.CrossRef
7.
go back to reference Soysal SD, Tzankov A, Muenst SE. Role of the tumor microenvironment in breast Cancer. Pathobiology. 2015;82(3–4):142–52.CrossRef Soysal SD, Tzankov A, Muenst SE. Role of the tumor microenvironment in breast Cancer. Pathobiology. 2015;82(3–4):142–52.CrossRef
8.
go back to reference Gibney GT, Weiner LM, Atkins MB. Predictive biomarkers for checkpoint inhibitor-based immunotherapy. The Lancet Oncology. 2016;17(12):e542–51.CrossRef Gibney GT, Weiner LM, Atkins MB. Predictive biomarkers for checkpoint inhibitor-based immunotherapy. The Lancet Oncology. 2016;17(12):e542–51.CrossRef
9.
go back to reference Yoshihara K, Shahmoradgoli M, Martinez E, Vegesna R, Kim H, Torres-Garcia W, Trevino V, Shen H, Laird PW, Levine DA, et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat Commun. 2013;4:2612.CrossRef Yoshihara K, Shahmoradgoli M, Martinez E, Vegesna R, Kim H, Torres-Garcia W, Trevino V, Shen H, Laird PW, Levine DA, et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat Commun. 2013;4:2612.CrossRef
10.
go back to reference Donovan MJ, Fernandez G, Scott R, Khan FM, Zeineh J, Koll G, Gladoun N, Charytonowicz E, Tewari A, Cordon-Cardo C. Development and validation of a novel automated Gleason grade and molecular profile that define a highly predictive prostate cancer progression algorithm-based test. Prostate Cancer Prostatic Dis. 2018;21(4):594–603.CrossRef Donovan MJ, Fernandez G, Scott R, Khan FM, Zeineh J, Koll G, Gladoun N, Charytonowicz E, Tewari A, Cordon-Cardo C. Development and validation of a novel automated Gleason grade and molecular profile that define a highly predictive prostate cancer progression algorithm-based test. Prostate Cancer Prostatic Dis. 2018;21(4):594–603.CrossRef
11.
go back to reference Xie P, Ma Y, Yu S, An R, He J, Zhang H. Development of an immune-related prognostic signature in breast Cancer. Front Genet. 2019;10:1390.CrossRef Xie P, Ma Y, Yu S, An R, He J, Zhang H. Development of an immune-related prognostic signature in breast Cancer. Front Genet. 2019;10:1390.CrossRef
12.
go back to reference Tejera Hernández AA, Vega Benítez VM, Rocca Cardenas JC, Gutiérrez Giner MI, Díaz Chico JC, Hernández Hernández JR. Factors predicting local relapse and survival in patients treated with surgery for breast cancer. Asian Journal of Surgery. 2019;42(7):755–60.CrossRef Tejera Hernández AA, Vega Benítez VM, Rocca Cardenas JC, Gutiérrez Giner MI, Díaz Chico JC, Hernández Hernández JR. Factors predicting local relapse and survival in patients treated with surgery for breast cancer. Asian Journal of Surgery. 2019;42(7):755–60.CrossRef
13.
go back to reference Campbell JB. Breast cancer-race, ethnicity, and survival: a literature review. Breast Cancer Res Treat. 2002;74(2):187–92.CrossRef Campbell JB. Breast cancer-race, ethnicity, and survival: a literature review. Breast Cancer Res Treat. 2002;74(2):187–92.CrossRef
14.
go back to reference Mao Y, Keller ET, Garfield DH, Shen K, Wang J. Stromal cells in tumor microenvironment and breast cancer. Cancer Metastasis Rev. 2013;32(1–2):303–15.CrossRef Mao Y, Keller ET, Garfield DH, Shen K, Wang J. Stromal cells in tumor microenvironment and breast cancer. Cancer Metastasis Rev. 2013;32(1–2):303–15.CrossRef
15.
go back to reference Finak G, Bertos N, Pepin F, Sadekova S, Souleimanova M, Zhao H, Chen H, Omeroglu G, Meterissian S, Omeroglu A, et al. Stromal gene expression predicts clinical outcome in breast cancer. Nat Med. 2008;14(5):518–27.CrossRef Finak G, Bertos N, Pepin F, Sadekova S, Souleimanova M, Zhao H, Chen H, Omeroglu G, Meterissian S, Omeroglu A, et al. Stromal gene expression predicts clinical outcome in breast cancer. Nat Med. 2008;14(5):518–27.CrossRef
16.
go back to reference Daly MB, Pilarski R, Berry M, Buys SS, Farmer M, Friedman S, Garber JE, Kauff ND, Khan S, Klein C, et al. NCCN guidelines insights: genetic/familial high-risk assessment: breast and ovarian, version 2.2017. J Natl Compr Cancer Netw. 2017;15(1):9–20.CrossRef Daly MB, Pilarski R, Berry M, Buys SS, Farmer M, Friedman S, Garber JE, Kauff ND, Khan S, Klein C, et al. NCCN guidelines insights: genetic/familial high-risk assessment: breast and ovarian, version 2.2017. J Natl Compr Cancer Netw. 2017;15(1):9–20.CrossRef
17.
go back to reference Corso G, Intra M, Trentin C, Veronesi P, Galimberti V. CDH1 germline mutations and hereditary lobular breast cancer. Familial Cancer. 2016;15(2):215–9.CrossRef Corso G, Intra M, Trentin C, Veronesi P, Galimberti V. CDH1 germline mutations and hereditary lobular breast cancer. Familial Cancer. 2016;15(2):215–9.CrossRef
18.
go back to reference Olivier M. The clinical value of somatic TP53 gene mutations in 1,794 patients with breast Cancer. Clin Cancer Res. 2006;12(4):1157–67.CrossRef Olivier M. The clinical value of somatic TP53 gene mutations in 1,794 patients with breast Cancer. Clin Cancer Res. 2006;12(4):1157–67.CrossRef
19.
go back to reference Ngeow J, Sesock K, Eng C. Breast cancer risk and clinical implications for germline PTEN mutation carriers. Breast Cancer Res Treat. 2015;165(1):1–8.CrossRef Ngeow J, Sesock K, Eng C. Breast cancer risk and clinical implications for germline PTEN mutation carriers. Breast Cancer Res Treat. 2015;165(1):1–8.CrossRef
20.
go back to reference Couch FJ, Shimelis H, Hu C, Hart SN, Polley EC, Na J, Hallberg E, Moore R, Thomas A, Lilyquist J, et al. Associations between Cancer predisposition testing panel genes and breast Cancer. JAMA Oncol. 2017;3(9):1190–6.CrossRef Couch FJ, Shimelis H, Hu C, Hart SN, Polley EC, Na J, Hallberg E, Moore R, Thomas A, Lilyquist J, et al. Associations between Cancer predisposition testing panel genes and breast Cancer. JAMA Oncol. 2017;3(9):1190–6.CrossRef
21.
go back to reference Gajewski TF, Corrales L, Williams J, Horton B, Sivan A, Spranger S: Cancer Immunotherapy Targets Based on Understanding the T Cell-Inflamed Versus Non-T Cell-Inflamed Tumor Microenvironment. In: Tumor Immune Microenvironment in Cancer Progression and Cancer Therapy. edn.; 2017: 19–31. Gajewski TF, Corrales L, Williams J, Horton B, Sivan A, Spranger S: Cancer Immunotherapy Targets Based on Understanding the T Cell-Inflamed Versus Non-T Cell-Inflamed Tumor Microenvironment. In: Tumor Immune Microenvironment in Cancer Progression and Cancer Therapy. edn.; 2017: 19–31.
22.
go back to reference Lenac Rovis T, Kucan Brlic P, Kaynan N, Juranic Lisnic V, Brizic I, Jordan S, Tomic A, Kvestak D, Babic M, Tsukerman P, et al. Inflammatory monocytes and NK cells play a crucial role in DNAM-1–dependent control of cytomegalovirus infection. J Exp Med. 2016;213(9):1835–50.CrossRef Lenac Rovis T, Kucan Brlic P, Kaynan N, Juranic Lisnic V, Brizic I, Jordan S, Tomic A, Kvestak D, Babic M, Tsukerman P, et al. Inflammatory monocytes and NK cells play a crucial role in DNAM-1–dependent control of cytomegalovirus infection. J Exp Med. 2016;213(9):1835–50.CrossRef
23.
go back to reference Gross CC. Meyer zu Hörste G, Schulte-Mecklenbeck a, Klotz L, Meuth SG, Wiendl H: reply to Liu et al.: haplotype matters: CD226 polymorphism as a potential trigger for impaired immune regulation in multiple sclerosis. Proc Natl Acad Sci. 2017;114(6):E908–9.CrossRef Gross CC. Meyer zu Hörste G, Schulte-Mecklenbeck a, Klotz L, Meuth SG, Wiendl H: reply to Liu et al.: haplotype matters: CD226 polymorphism as a potential trigger for impaired immune regulation in multiple sclerosis. Proc Natl Acad Sci. 2017;114(6):E908–9.CrossRef
24.
go back to reference Wang H, Qi J, Zhang S, Li Y, Tan S, Gao GF. Binding mode of the side-by-side two-IgV molecule CD226/DNAM-1 to its ligand CD155/Necl-5. Proc Natl Acad Sci. 2019;116(3):988–96.CrossRef Wang H, Qi J, Zhang S, Li Y, Tan S, Gao GF. Binding mode of the side-by-side two-IgV molecule CD226/DNAM-1 to its ligand CD155/Necl-5. Proc Natl Acad Sci. 2019;116(3):988–96.CrossRef
25.
go back to reference Li Y, Yang F, Zhu J, Sang L, Han X, Wang D, Shan F, Li S, Sun X, Lu C. CD226 as a genetic adjuvant to enhance immune efficacy induced by Ag85A DNA vaccination. Int Immunopharmacol. 2015;25(1):10–8.CrossRef Li Y, Yang F, Zhu J, Sang L, Han X, Wang D, Shan F, Li S, Sun X, Lu C. CD226 as a genetic adjuvant to enhance immune efficacy induced by Ag85A DNA vaccination. Int Immunopharmacol. 2015;25(1):10–8.CrossRef
26.
go back to reference Fourcade J, Sun Z, Chauvin J-M, Ka M, Davar D, Pagliano O, Wang H, Saada S, Menna C, Amin R, et al. CD226 opposes TIGIT to disrupt Tregs in melanoma. JCI Insight. 2018:3(14). Fourcade J, Sun Z, Chauvin J-M, Ka M, Davar D, Pagliano O, Wang H, Saada S, Menna C, Amin R, et al. CD226 opposes TIGIT to disrupt Tregs in melanoma. JCI Insight. 2018:3(14).
27.
go back to reference Shibuya A, Shibuya K, Kikutani H, Yasui T, Honda S-I, Tahara-Hanaoka S, Shibata K, Yamashita Y, Kai H. Iguchi-Manaka a: accelerated tumor growth in mice deficient in DNAM-1 receptor. J Exp Med. 2008;205(13):2959–64.CrossRef Shibuya A, Shibuya K, Kikutani H, Yasui T, Honda S-I, Tahara-Hanaoka S, Shibata K, Yamashita Y, Kai H. Iguchi-Manaka a: accelerated tumor growth in mice deficient in DNAM-1 receptor. J Exp Med. 2008;205(13):2959–64.CrossRef
28.
go back to reference Guillamón CF, Martínez-Sánchez MV, Gimeno L, Mrowiec A, Martínez-García J, Server-Pastor G, Martínez-Escribano J, Torroba A, Ferri B, Abellán D, et al. NK cell education in tumor immune surveillance: DNAM-1/KIR receptor ratios as predictive biomarkers for solid tumor outcome. Cancer Immunology Research. 2018;6(12):1537–47.CrossRef Guillamón CF, Martínez-Sánchez MV, Gimeno L, Mrowiec A, Martínez-García J, Server-Pastor G, Martínez-Escribano J, Torroba A, Ferri B, Abellán D, et al. NK cell education in tumor immune surveillance: DNAM-1/KIR receptor ratios as predictive biomarkers for solid tumor outcome. Cancer Immunology Research. 2018;6(12):1537–47.CrossRef
29.
go back to reference Salmaninejad A, Zamani MR, Shabgah AG, Hosseini S, Mollaei F, Hosseini N, Sahebkar A. Behçet’s disease: An immunogenetic perspective. J Cell Physiol. 2018;234(6):8055–74.CrossRef Salmaninejad A, Zamani MR, Shabgah AG, Hosseini S, Mollaei F, Hosseini N, Sahebkar A. Behçet’s disease: An immunogenetic perspective. J Cell Physiol. 2018;234(6):8055–74.CrossRef
30.
go back to reference von Linsingen R, Pinho de Franca P, de Carvalho NS, MDG B. MICA and KLRK1 genes and their impact in cervical intraepithelial neoplasia development in the southern Brazilian population. Hum Immunol. 2020. von Linsingen R, Pinho de Franca P, de Carvalho NS, MDG B. MICA and KLRK1 genes and their impact in cervical intraepithelial neoplasia development in the southern Brazilian population. Hum Immunol. 2020.
31.
go back to reference Zuo J, Willcox CR, Mohammed F, Davey M, Hunter S, Khan K, Antoun A, Katakia P, Croudace J, Inman C, et al. A disease-linked ULBP6 polymorphism inhibits NKG2D-mediated target cell killing by enhancing the stability of NKG2D ligand binding. Sci Signal. 2017:10(481). Zuo J, Willcox CR, Mohammed F, Davey M, Hunter S, Khan K, Antoun A, Katakia P, Croudace J, Inman C, et al. A disease-linked ULBP6 polymorphism inhibits NKG2D-mediated target cell killing by enhancing the stability of NKG2D ligand binding. Sci Signal. 2017:10(481).
32.
go back to reference López-Soto A, Huergo-Zapico L, Acebes-Huerta A, Villa-Alvarez M, Gonzalez S. NKG2D signaling in cancer immunosurveillance. Int J Cancer. 2015;136(8):1741–50.CrossRef López-Soto A, Huergo-Zapico L, Acebes-Huerta A, Villa-Alvarez M, Gonzalez S. NKG2D signaling in cancer immunosurveillance. Int J Cancer. 2015;136(8):1741–50.CrossRef
33.
go back to reference Ashiru O, Boutet P, Fernandez-Messina L, Aguera-Gonzalez S, Skepper JN, Vales-Gomez M, Reyburn HT. Natural killer cell cytotoxicity is suppressed by exposure to the human NKG2D ligand MICA*008 that is shed by tumor cells in exosomes. Cancer Res. 2010;70(2):481–9.CrossRef Ashiru O, Boutet P, Fernandez-Messina L, Aguera-Gonzalez S, Skepper JN, Vales-Gomez M, Reyburn HT. Natural killer cell cytotoxicity is suppressed by exposure to the human NKG2D ligand MICA*008 that is shed by tumor cells in exosomes. Cancer Res. 2010;70(2):481–9.CrossRef
34.
go back to reference Lanier LL. NKG2D receptor and its ligands in host defense. Cancer Immunol Res. 2015;3(6):575–82.CrossRef Lanier LL. NKG2D receptor and its ligands in host defense. Cancer Immunol Res. 2015;3(6):575–82.CrossRef
35.
go back to reference Hofer E, Sobanov Y, Brostjan C, Lehrach H, Duchler M. The centromeric part of the human natural killer (NK) receptor complex: lectin-like receptor genes expressed in NK, dendritic and endothelial cells. Immunol Rev. 2001;181:5–19.CrossRef Hofer E, Sobanov Y, Brostjan C, Lehrach H, Duchler M. The centromeric part of the human natural killer (NK) receptor complex: lectin-like receptor genes expressed in NK, dendritic and endothelial cells. Immunol Rev. 2001;181:5–19.CrossRef
36.
go back to reference Schmiedel D, Mandelboim O. NKG2D ligands–critical targets for Cancer immune escape and therapy. Front Immunol. 2018;9. Schmiedel D, Mandelboim O. NKG2D ligands–critical targets for Cancer immune escape and therapy. Front Immunol. 2018;9.
37.
go back to reference Sayitoglu EC, Georgoudaki A-M, Chrobok M, Ozkazanc D, Josey BJ, Arif M, Kusser K, Hartman M, Chinn TM, Potens R, et al. Boosting natural killer cell-mediated targeting of sarcoma through DNAM-1 and NKG2D. Front Immunol. 2020;11. Sayitoglu EC, Georgoudaki A-M, Chrobok M, Ozkazanc D, Josey BJ, Arif M, Kusser K, Hartman M, Chinn TM, Potens R, et al. Boosting natural killer cell-mediated targeting of sarcoma through DNAM-1 and NKG2D. Front Immunol. 2020;11.
38.
go back to reference Galon J, Bruni D. Tumor immunology and tumor evolution: intertwined histories. Immunity. 2020;52(1):55–81.CrossRef Galon J, Bruni D. Tumor immunology and tumor evolution: intertwined histories. Immunity. 2020;52(1):55–81.CrossRef
39.
go back to reference Tan S, Xia L, Yi P, Han Y, Tang L, Pan Q, Tian Y, Rao S, Oyang L, Liang J, et al. Exosomal miRNAs in tumor microenvironment. J Exp Clin Cancer Res. 2020;39(1):67.CrossRef Tan S, Xia L, Yi P, Han Y, Tang L, Pan Q, Tian Y, Rao S, Oyang L, Liang J, et al. Exosomal miRNAs in tumor microenvironment. J Exp Clin Cancer Res. 2020;39(1):67.CrossRef
40.
go back to reference Solinas C, Gombos A, Latifyan S, Piccart-Gebhart M, Kok M, Buisseret L. Targeting immune checkpoints in breast cancer: an update of early results. ESMO Open. 2017:2(5). Solinas C, Gombos A, Latifyan S, Piccart-Gebhart M, Kok M, Buisseret L. Targeting immune checkpoints in breast cancer: an update of early results. ESMO Open. 2017:2(5).
41.
go back to reference Shi T, Ma Y, Yu L, Jiang J, Shen S, Hou Y, Wang T. Cancer Immunotherapy: A Focus on the Regulation of Immune Checkpoints. Int J Mol Sci. 2018:19(5). Shi T, Ma Y, Yu L, Jiang J, Shen S, Hou Y, Wang T. Cancer Immunotherapy: A Focus on the Regulation of Immune Checkpoints. Int J Mol Sci. 2018:19(5).
Metadata
Title
Novel immune-related genes in the tumor microenvironment with prognostic value in breast cancer
Authors
Wen Tan
Maomao Liu
Liangshan Wang
Yang Guo
Changsheng Wei
Shuqi Zhang
Chengyu Luo
Nan Liu
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2021
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-021-07837-1

Other articles of this Issue 1/2021

BMC Cancer 1/2021 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine