Skip to main content
Top
Published in: BMC Cancer 1/2021

Open Access 01-12-2021 | Respiratory Microbiota | Research article

Conventional myelosuppressive chemotherapy for non-haematological malignancy disrupts the intestinal microbiome

Authors: Lito E. Papanicolas, Sarah K. Sims, Steven L. Taylor, Sophie J. Miller, Christos S. Karapetis, Steve L. Wesselingh, David L. Gordon, Geraint B. Rogers

Published in: BMC Cancer | Issue 1/2021

Login to get access

Abstract

Background

The gut microbiota influences many aspects of host physiology, including immune regulation, and is predictive of outcomes in cancer patients. However, whether conventional myelosuppressive chemotherapy affects the gut microbiota in humans with non-haematological malignancy, independent of antibiotic exposure, is unknown.

Methods

Faecal samples from 19 participants with non-haematological malignancy, who were receiving conventional chemotherapy regimens but not antibiotics, were examined prior to chemotherapy, 7–12 days after chemotherapy, and at the end of the first cycle of treatment. Gut microbiota diversity and composition was determined by 16S rRNA gene amplicon sequencing.

Results

Compared to pre-chemotherapy samples, samples collected 7–12 days following chemotherapy exhibited increased richness (mean 120 observed species ± SD 38 vs 134 ± 40; p = 0.007) and diversity (Shannon diversity: mean 6.4 ± 0.43 vs 6.6 ± 0.41; p = 0.02). Composition was significantly altered, with a significant decrease in the relative abundance of gram-positive bacteria in the phylum Firmicutes (pre-chemotherapy median relative abundance [IQR] 0.78 [0.11] vs 0.75 [0.11]; p = 0.003), and an increase in the relative abundance of gram-negative bacteria (Bacteroidetes: median [IQR] 0.16 [0.13] vs 0.21 [0.13]; p = 0.01 and Proteobacteria: 0.015 [0.018] vs 0.03 [0.03]; p = 0.02). Differences in microbiota characteristics from baseline were no longer significant at the end of the chemotherapy cycle.

Conclusions

Conventional chemotherapy results in significant changes in gut microbiota characteristics during the period of predicted myelosuppression post-chemotherapy. Further study is indicated to link microbiome changes during chemotherapy to clinical outcomes.
Appendix
Available only for authorised users
Literature
7.
go back to reference van Vliet MJ, Tissing WJE, Dun CAJ, Meessen NEL, Kamps WA, de Bont ESJM, et al. Chemotherapy treatment in pediatric patients with acute myeloid leukemia receiving antimicrobial prophylaxis leads to a relative increase of colonization with potentially pathogenic bacteria in the gut. Clin Infect Dis. 2009;49(2):262–70. https://doi.org/10.1086/599346.CrossRefPubMed van Vliet MJ, Tissing WJE, Dun CAJ, Meessen NEL, Kamps WA, de Bont ESJM, et al. Chemotherapy treatment in pediatric patients with acute myeloid leukemia receiving antimicrobial prophylaxis leads to a relative increase of colonization with potentially pathogenic bacteria in the gut. Clin Infect Dis. 2009;49(2):262–70. https://​doi.​org/​10.​1086/​599346.CrossRefPubMed
11.
go back to reference Nadkarni MA, Martin FE, Jacques NA, Hunter N. Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. Microbiology. 2002;148(Pt 1):257–66.CrossRef Nadkarni MA, Martin FE, Jacques NA, Hunter N. Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. Microbiology. 2002;148(Pt 1):257–66.CrossRef
18.
go back to reference Galloway-Peña JR, Shi Y, Peterson CB, Sahasrabhojane P, Gopalakrishnan V, Brumlow CE, et al. Gut microbiome signatures are predictive of infectious risk following induction therapy for acute myeloid leukemia. Clin Infect Dis. 2019;71(1):63–71.CrossRef Galloway-Peña JR, Shi Y, Peterson CB, Sahasrabhojane P, Gopalakrishnan V, Brumlow CE, et al. Gut microbiome signatures are predictive of infectious risk following induction therapy for acute myeloid leukemia. Clin Infect Dis. 2019;71(1):63–71.CrossRef
19.
go back to reference Shono Y, Docampo MD, Peled JU, Perobelli SM, Velardi E, Tsai JJ, et al. Increased GVHD-related mortality with broad-spectrum antibiotic use after allogeneic hematopoietic stem cell transplantation in human patients and mice. Sci Transl Med. 2016;8(339):339ra371.CrossRef Shono Y, Docampo MD, Peled JU, Perobelli SM, Velardi E, Tsai JJ, et al. Increased GVHD-related mortality with broad-spectrum antibiotic use after allogeneic hematopoietic stem cell transplantation in human patients and mice. Sci Transl Med. 2016;8(339):339ra371.CrossRef
21.
go back to reference Claesson MJ, Cusack S, O'Sullivan O, Greene-Diniz R, de Weerd H, Flannery E, et al. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci U S A. 2011;108(Suppl 1):4586–91.CrossRef Claesson MJ, Cusack S, O'Sullivan O, Greene-Diniz R, de Weerd H, Flannery E, et al. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci U S A. 2011;108(Suppl 1):4586–91.CrossRef
Metadata
Title
Conventional myelosuppressive chemotherapy for non-haematological malignancy disrupts the intestinal microbiome
Authors
Lito E. Papanicolas
Sarah K. Sims
Steven L. Taylor
Sophie J. Miller
Christos S. Karapetis
Steve L. Wesselingh
David L. Gordon
Geraint B. Rogers
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2021
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-021-08296-4

Other articles of this Issue 1/2021

BMC Cancer 1/2021 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine