Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2021

Open Access 01-12-2021 | Breast Cancer | Research

High activity and low toxicity of a novel CD71-targeting nanotherapeutic named The-0504 on preclinical models of several human aggressive tumors

Authors: Elisabetta Falvo, Verena Damiani, Giamaica Conti, Federico Boschi, Katia Messana, Patrizio Giacomini, Michele Milella, Vincenzo De Laurenzi, Veronica Morea, Gianluca Sala, Giulio Fracasso, Pierpaolo Ceci

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2021

Login to get access

Abstract

Background

Ferritin receptor (CD71) is an example of a very attractive cancer target, since it is highly expressed in virtually all tumor types, including metastatic loci. However, this target can be considered to be inaccessible to conventional target therapies, due to its presence in many healthy tissues. Here, we describe the preclinical evaluation of a tumor proteases-activatable human ferritin (HFt)-based drug carrier (The-0504) that is able to selectively deliver the wide-spectrum topoisomerase I inhibitor Genz-644282 to CD71-expressing tumors, preventing the limiting toxic effects associated with CD71-targeting therapies.

Methods

CD71 expression was evaluated using flow cytometry and immunohistochemistry techniques. The-0504 antiproliferative activity towards several cancer cell lines was assessed in vitro. The-0504 antitumor efficacy and survival benefit were evaluated in different human tumors, which had been grown either as xenografts or patient-derived xenografts in mice. The-0504 toxicology profile was investigated in multiple-cycle repeat-dose study in rodents.

Results

In vitro studies indicate that The-0504 is highly specific for CD71 expressing cells, and that there is a relationship between CD71 levels and The-0504 anticancer activity. In vivo treatments with The-0504 showed a remarkable efficacy, eradicating several human tumors of very diverse and aggressive histotypes, such as pancreas, liver and colorectal carcinomas, and triple-negative breast cancer.

Conclusions

Durable disease-free survival, persistent antitumor responses after discontinuation of treatment and favorable toxicology profile make The-0504 an ideal candidate for clinical development as a novel, CD71-targeted, low-toxicity alternative to chemotherapy.
Appendix
Available only for authorised users
Literature
2.
go back to reference Falvo E, Strigari L, Citro G, Giordano C, Boboc G, Fabretti F, et al. SNPs in DNA repair or oxidative stress genes and late subcutaneous fibrosis in patients following single shot partial breast irradiation. J Exp Clin Cancer Res. 2012;31(1):7.CrossRef Falvo E, Strigari L, Citro G, Giordano C, Boboc G, Fabretti F, et al. SNPs in DNA repair or oxidative stress genes and late subcutaneous fibrosis in patients following single shot partial breast irradiation. J Exp Clin Cancer Res. 2012;31(1):7.CrossRef
3.
go back to reference Novelli F, Milella M, Melucci E, Di Benedetto A, Sperduti I, Perrone-Donnorso R, et al. A divergent role for estrogen receptor-beta in node-positive and node-negative breast cancer classified according to molecular subtypes: an observational prospective study. Breast Cancer Res. 2008;10(5):R74.CrossRef Novelli F, Milella M, Melucci E, Di Benedetto A, Sperduti I, Perrone-Donnorso R, et al. A divergent role for estrogen receptor-beta in node-positive and node-negative breast cancer classified according to molecular subtypes: an observational prospective study. Breast Cancer Res. 2008;10(5):R74.CrossRef
4.
go back to reference Dinami R, Porru M, Amoreo CA, Sperduti I, Mottolese M, Buglioni S, et al. TRF2 and VEGF-A: an unknown relationship with prognostic impact on survival of colorectal cancer patients. J Exp Clin Cancer Res. 2020;39(1):111.CrossRef Dinami R, Porru M, Amoreo CA, Sperduti I, Mottolese M, Buglioni S, et al. TRF2 and VEGF-A: an unknown relationship with prognostic impact on survival of colorectal cancer patients. J Exp Clin Cancer Res. 2020;39(1):111.CrossRef
5.
go back to reference Bruno T, Valerio M, Casadei L, De Nicola F, Goeman F, Pallocca M, et al. Che-1 sustains hypoxic response of colorectal cancer cells by affecting Hif-1α stabilization. J Exp Clin Cancer Res. 2017;36(1):32.CrossRef Bruno T, Valerio M, Casadei L, De Nicola F, Goeman F, Pallocca M, et al. Che-1 sustains hypoxic response of colorectal cancer cells by affecting Hif-1α stabilization. J Exp Clin Cancer Res. 2017;36(1):32.CrossRef
6.
go back to reference Del Curatolo A, Conciatori F, Cesta Incani U, Bazzichetto C, Falcone I, Corbo V, et al. Therapeutic potential of combined BRAF/MEK blockade in BRAF-wild type preclinical tumor models. J Exp Clin Cancer Res [Internet]. 2018 ;37:140. BioMed Central Ltd. [cited 2020 Nov 9]. https://doi.org/10.1186/s13046-018-0820-5 Del Curatolo A, Conciatori F, Cesta Incani U, Bazzichetto C, Falcone I, Corbo V, et al. Therapeutic potential of combined BRAF/MEK blockade in BRAF-wild type preclinical tumor models. J Exp Clin Cancer Res [Internet]. 2018 ;37:140. BioMed Central Ltd. [cited 2020 Nov 9]. https://​doi.​org/​10.​1186/​s13046-018-0820-5
7.
go back to reference Huang C, Chu C, Wang X, Lin H, Wang J, Zeng Y, et al. Ultra-high loading of sinoporphyrin sodium in ferritin for single-wave motivated photothermal and photodynamic co-therapy. Biomater Sci. 2017;5:1512–6.CrossRef Huang C, Chu C, Wang X, Lin H, Wang J, Zeng Y, et al. Ultra-high loading of sinoporphyrin sodium in ferritin for single-wave motivated photothermal and photodynamic co-therapy. Biomater Sci. 2017;5:1512–6.CrossRef
9.
go back to reference Pandolfi L, Bellini M, Vanna R, Morasso C, Zago A, Carcano S, et al. H-Ferritin Enriches the Curcumin Uptake and Improves the Therapeutic Efficacy in Triple Negative Breast Cancer Cells. Biomacromolecules [Internet]. 2017;18:3318–30. American Chemical Society. [cited 2019 Sep 17]. https://doi.org/10.1021/acs.biomac.7b00974.CrossRef Pandolfi L, Bellini M, Vanna R, Morasso C, Zago A, Carcano S, et al. H-Ferritin Enriches the Curcumin Uptake and Improves the Therapeutic Efficacy in Triple Negative Breast Cancer Cells. Biomacromolecules [Internet]. 2017;18:3318–30. American Chemical Society. [cited 2019 Sep 17]. https://​doi.​org/​10.​1021/​acs.​biomac.​7b00974.CrossRef
10.
go back to reference Fan K, Jia X, Zhou M, Wang K, Conde J, He J, et al. Ferritin Nanocarrier traverses the blood brain barrier and kills Glioma. ACS Nano. 2018;12:4105–15.CrossRef Fan K, Jia X, Zhou M, Wang K, Conde J, He J, et al. Ferritin Nanocarrier traverses the blood brain barrier and kills Glioma. ACS Nano. 2018;12:4105–15.CrossRef
11.
go back to reference Vannucci L, Falvo E, Failla CM, Carbo M, Fornara M, Canese R, et al. In vivo targeting of cutaneous melanoma using an melanoma stimulating hormone-engineered human protein cage with fluorophore and magnetic resonance imaging tracers. J Biomed Nanotechnol. 2015;11(1):81.CrossRef Vannucci L, Falvo E, Failla CM, Carbo M, Fornara M, Canese R, et al. In vivo targeting of cutaneous melanoma using an melanoma stimulating hormone-engineered human protein cage with fluorophore and magnetic resonance imaging tracers. J Biomed Nanotechnol. 2015;11(1):81.CrossRef
13.
go back to reference Jiang B, Zhang R, Zhang J, Hou Y, Chen X, Zhou M, et al. GRP78-targeted ferritin nanocaged ultra-high dose of doxorubicin for hepatocellular carcinoma therapy. Theranostics. 2019;9:2167–82.CrossRef Jiang B, Zhang R, Zhang J, Hou Y, Chen X, Zhou M, et al. GRP78-targeted ferritin nanocaged ultra-high dose of doxorubicin for hepatocellular carcinoma therapy. Theranostics. 2019;9:2167–82.CrossRef
14.
go back to reference Jiang B, Fang L, Wu K, Yan X, Fan K. Ferritins as natural and artificial nanozymes for theranostics. Theranostics. 2020;10:687–706.CrossRef Jiang B, Fang L, Wu K, Yan X, Fan K. Ferritins as natural and artificial nanozymes for theranostics. Theranostics. 2020;10:687–706.CrossRef
18.
go back to reference Turino LN, Ruggiero MR, Stefanìa R, Cutrin JC, Aime S, Geninatti CS. Ferritin decorated PLGA/paclitaxel loaded nanoparticles endowed with an enhanced toxicity toward MCF-7 breast tumor cells. Bioconjug Chem. 2017;28:1283–90.CrossRef Turino LN, Ruggiero MR, Stefanìa R, Cutrin JC, Aime S, Geninatti CS. Ferritin decorated PLGA/paclitaxel loaded nanoparticles endowed with an enhanced toxicity toward MCF-7 breast tumor cells. Bioconjug Chem. 2017;28:1283–90.CrossRef
19.
go back to reference Zhen Z, Tang W, Guo C, Chen H, Lin X, Liu G. Ferritin Nanocages to encapsulate and deliver photosensitizers for E ffi cient photodynamic therapy against Cancer. ACS Nano. 2013;7:6988–96.CrossRef Zhen Z, Tang W, Guo C, Chen H, Lin X, Liu G. Ferritin Nanocages to encapsulate and deliver photosensitizers for E ffi cient photodynamic therapy against Cancer. ACS Nano. 2013;7:6988–96.CrossRef
21.
go back to reference Huang X, Chisholm J, Zhuang J, Xiao Y, Duncan G, Chen X, et al. Protein nanocages that penetrate airway mucus and tumor tissue. Proc Natl Acad Sci U S A. 2017;114:E6595–602.CrossRef Huang X, Chisholm J, Zhuang J, Xiao Y, Duncan G, Chen X, et al. Protein nanocages that penetrate airway mucus and tumor tissue. Proc Natl Acad Sci U S A. 2017;114:E6595–602.CrossRef
22.
go back to reference Du B, Jia S, Wang Q, Ding X, Liu Y, Yao H, et al. A self-targeting, dual ROS/pH-responsive Apoferritin Nanocage for spatiotemporally controlled drug delivery to breast Cancer. Biomacromolecules. 2018;19:1026–36.CrossRef Du B, Jia S, Wang Q, Ding X, Liu Y, Yao H, et al. A self-targeting, dual ROS/pH-responsive Apoferritin Nanocage for spatiotemporally controlled drug delivery to breast Cancer. Biomacromolecules. 2018;19:1026–36.CrossRef
28.
go back to reference Miller LD, Coffman LG, Chou JW, Black MA, Bergh J, D’Agostino R, et al. An iron regulatory gene signature predicts outcome in breast cancer. Cancer Res. 2011;71(21):6728.CrossRef Miller LD, Coffman LG, Chou JW, Black MA, Bergh J, D’Agostino R, et al. An iron regulatory gene signature predicts outcome in breast cancer. Cancer Res. 2011;71(21):6728.CrossRef
29.
go back to reference Fracasso G, Falvo E, Colotti G, Fazi F, Ingegnere T, Amalfitano A, et al. Selective delivery of doxorubicin by novel stimuli-sensitive nano-ferritins overcomes tumor refractivity. J Control Release. 2016;239:10.CrossRef Fracasso G, Falvo E, Colotti G, Fazi F, Ingegnere T, Amalfitano A, et al. Selective delivery of doxorubicin by novel stimuli-sensitive nano-ferritins overcomes tumor refractivity. J Control Release. 2016;239:10.CrossRef
31.
go back to reference Falvo E, Tremante E, Arcovito A, Papi M, Elad N, Boffi A, et al. Improved Doxorubicin Encapsulation and Pharmacokinetics of Ferritin-Fusion Protein Nanocarriers Bearing Proline, Serine, and Alanine Elements. Biomacromolecules. 2016;17(2):514.CrossRef Falvo E, Tremante E, Arcovito A, Papi M, Elad N, Boffi A, et al. Improved Doxorubicin Encapsulation and Pharmacokinetics of Ferritin-Fusion Protein Nanocarriers Bearing Proline, Serine, and Alanine Elements. Biomacromolecules. 2016;17(2):514.CrossRef
32.
go back to reference Damiani V, Falvo E, Fracasso G, Federici L, Pitea M, De Laurenzi V, et al. Therapeutic efficacy of the novel stimuli-sensitive nano-ferritins containing doxorubicin in a head and neck cancer model. Int J Mol Sci. 2017;18:1555.CrossRef Damiani V, Falvo E, Fracasso G, Federici L, Pitea M, De Laurenzi V, et al. Therapeutic efficacy of the novel stimuli-sensitive nano-ferritins containing doxorubicin in a head and neck cancer model. Int J Mol Sci. 2017;18:1555.CrossRef
34.
go back to reference Kurtzberg LS, Roth S, Krumbholz R, Crawford J, Bormann C, Dunham S, et al. Genz-644282, a novel non-camptothecin topoisomerase I inhibitor for cancer treatment. Clin Cancer Res. 2011;17:2777–87.CrossRef Kurtzberg LS, Roth S, Krumbholz R, Crawford J, Bormann C, Dunham S, et al. Genz-644282, a novel non-camptothecin topoisomerase I inhibitor for cancer treatment. Clin Cancer Res. 2011;17:2777–87.CrossRef
36.
go back to reference Rosati A, Basile A, DAuria R, DAvenia M, De Marco M, Falco A, et al. BAG3 promotes pancreatic ductal adenocarcinoma growth by activating stromal macrophages. Nat Commun. 2015;6:8695. Rosati A, Basile A, DAuria R, DAvenia M, De Marco M, Falco A, et al. BAG3 promotes pancreatic ductal adenocarcinoma growth by activating stromal macrophages. Nat Commun. 2015;6:8695.
37.
go back to reference Farace P, Conti G, Merigo F, Tambalo S, Marzola P, Sbarbati A, et al. Potential role of combined FDG PET/CT & contrast enhancement MRI in a rectal carcinoma model with nodal metastases characterized by a poor FDG-avidity. Eur J Radiol. 2012;81:658–62 Available from: https://pubmed.ncbi.nlm.nih.gov/21300505/. [cited 2021 Jan 7].CrossRef Farace P, Conti G, Merigo F, Tambalo S, Marzola P, Sbarbati A, et al. Potential role of combined FDG PET/CT & contrast enhancement MRI in a rectal carcinoma model with nodal metastases characterized by a poor FDG-avidity. Eur J Radiol. 2012;81:658–62 Available from: https://​pubmed.​ncbi.​nlm.​nih.​gov/​21300505/​. [cited 2021 Jan 7].CrossRef
38.
go back to reference Hite N, Klinger A, Hellmers L, Maresh GA, Miller PE, Zhang X, et al. An optimal orthotopic mouse model for human colorectal cancer primary tumor growth and spontaneous metastasis. Dis Colon Rectum. 2018;61:698–705. Available from: https://pubmed.ncbi.nlm.nih.gov/29722728/. Lippincott Williams and Wilkins; [cited 2021 Jan 7].CrossRef Hite N, Klinger A, Hellmers L, Maresh GA, Miller PE, Zhang X, et al. An optimal orthotopic mouse model for human colorectal cancer primary tumor growth and spontaneous metastasis. Dis Colon Rectum. 2018;61:698–705. Available from: https://​pubmed.​ncbi.​nlm.​nih.​gov/​29722728/​. Lippincott Williams and Wilkins; [cited 2021 Jan 7].CrossRef
39.
go back to reference Minicozzi AM, Conti G, Merigo G, Marzola P, Boschi F, Calderan L, et al. A new model of rectal cancer with regional lymph node metastasis allowing in vivo evaluation by imaging biomarkers. Biomed Pharmacother. 2011;65(6):401.CrossRef Minicozzi AM, Conti G, Merigo G, Marzola P, Boschi F, Calderan L, et al. A new model of rectal cancer with regional lymph node metastasis allowing in vivo evaluation by imaging biomarkers. Biomed Pharmacother. 2011;65(6):401.CrossRef
40.
go back to reference Conti G, Minicozzi A, Merigo F, Marzola P, Osculati F, Cordiano C, et al. Morphogenetic events in the perinodal connective tissue in a metastatic cancer model. Biomed Pharmacother. 2013;67(1):1.CrossRef Conti G, Minicozzi A, Merigo F, Marzola P, Osculati F, Cordiano C, et al. Morphogenetic events in the perinodal connective tissue in a metastatic cancer model. Biomed Pharmacother. 2013;67(1):1.CrossRef
41.
go back to reference Awasthi N, Zhang C, Schwarz AM, Hinz S, Wang C, Williams NS, et al. Comparative benefits of nab-paclitaxel over gemcitabine or polysorbate-based docetaxel in experimental pancreatic cancer. Carcinogenesis. 2013;34(10):2361.CrossRef Awasthi N, Zhang C, Schwarz AM, Hinz S, Wang C, Williams NS, et al. Comparative benefits of nab-paclitaxel over gemcitabine or polysorbate-based docetaxel in experimental pancreatic cancer. Carcinogenesis. 2013;34(10):2361.CrossRef
42.
go back to reference Freireich EJ, Gehan EA, Rall DP, Schmidt LH, Skipper HE. Quantitative comparison of toxicity of anticancer agents in mouse, rat, hamster, dog, monkey, and man. Cancer Chemother Rep. 1966;50(4):219.PubMed Freireich EJ, Gehan EA, Rall DP, Schmidt LH, Skipper HE. Quantitative comparison of toxicity of anticancer agents in mouse, rat, hamster, dog, monkey, and man. Cancer Chemother Rep. 1966;50(4):219.PubMed
43.
go back to reference Houghton PJ, Lock R, Carol H, Morton CL, Gorlick R, Anders Kolb E, et al. Testing of the topoisomerase 1 inhibitor Genz-644282 by the pediatric preclinical testing program. Pediatr Blood Cancer. 2012;58(2):200.CrossRef Houghton PJ, Lock R, Carol H, Morton CL, Gorlick R, Anders Kolb E, et al. Testing of the topoisomerase 1 inhibitor Genz-644282 by the pediatric preclinical testing program. Pediatr Blood Cancer. 2012;58(2):200.CrossRef
45.
go back to reference Daniels-Wells TR, Penichet ML. Transferrin receptor 1: a target for antibody-mediated cancer therapy. Immunotherapy. 2016;8(9):991.CrossRef Daniels-Wells TR, Penichet ML. Transferrin receptor 1: a target for antibody-mediated cancer therapy. Immunotherapy. 2016;8(9):991.CrossRef
Metadata
Title
High activity and low toxicity of a novel CD71-targeting nanotherapeutic named The-0504 on preclinical models of several human aggressive tumors
Authors
Elisabetta Falvo
Verena Damiani
Giamaica Conti
Federico Boschi
Katia Messana
Patrizio Giacomini
Michele Milella
Vincenzo De Laurenzi
Veronica Morea
Gianluca Sala
Giulio Fracasso
Pierpaolo Ceci
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2021
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/s13046-021-01851-8

Other articles of this Issue 1/2021

Journal of Experimental & Clinical Cancer Research 1/2021 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine