Skip to main content
Top
Published in: Breast Cancer 2/2020

01-03-2020 | Breast Cancer | Original Article

Comparative anti-proliferative effects of potential HER2 inhibitors on a panel of breast cancer cell lines

Authors: Hiba Zalloum, Tuka AbuThiab, Tareq Hameduh, Sara AlBayyari, Waleed Zalloum, Basha’er Abu-Irmaileh, Mohammad S. Mubarak, Malek Zihlif

Published in: Breast Cancer | Issue 2/2020

Login to get access

Abstract

Background

Breast cancer is one of the most lethal types of cancer in women worldwide. The human epidermal growth factor receptor 2 (HER2) is considered as a validated target in breast cancer therapy. Previously, we have used quantitative structure activity relationship QSAR equations and their associated pharmacophore models to screen for new promising HER2 structurally diverse inhibitory leads which were tested against HER2-overexpressing SKOV3 ovarian cancer cell line.

Objective

In this study, we sought to explore the effect of most active ligands against different normal and breast cancer cell lines that represent different breast cancer subtypes with distinguished expression levels in HER2 and HER1.

Methods

We have tested the promising compounds against SKBR3, MDA-MB-231, MCF7, human fibroblast, and MCF10 cell lines. To understand the inhibitory effects of the active ligands against HER2 over expressed breast cancer cell lines, all inhibitors and the control compound, lapatinib, were docked into the active site of HER2 enzyme performed using Ligand Fit docking engine and PMF scoring function.

Results

Five ligands exhibited promising results with relatively low IC50 values on cells that amplify HER2 and high IC50 on those that do not express such a receptor. The most potent compound (compound 13) showed an IC50 of 0.046 µM. To test their toxicity against normal cells, the active compounds were tested against both normal fibroblast and normal breast cancer cell MCF-10 and relatively high IC50 values were scored. The IC50 values on HER2 over-expressed breast cancer and normal fibroblast cells provided a promising safety index. Docking results showed the highest similarity in the binding site between the most active ligand and the lapatinib.

Conclusion

Our pharmacophore model resulted in a high potent ligand that shows high potency against HER2 positive breast cancer and relatively low toxicity towards the normal human cells.

Graphic abstract

Literature
1.
go back to reference Tsang RY, Sadeghi S, Finn RS. Lapatinib, a dual-targeted small molecule inhibitor of EGFR and HER2, in HER2-amplified breast cancer: from bench to bedside. Clin Med Insights Ther. 2011;2011(3):1–13. Tsang RY, Sadeghi S, Finn RS. Lapatinib, a dual-targeted small molecule inhibitor of EGFR and HER2, in HER2-amplified breast cancer: from bench to bedside. Clin Med Insights Ther. 2011;2011(3):1–13.
2.
go back to reference Arteaga CL, Engelman JA. ERBB receptors: from oncogene discovery to basic science to mechanism-based cancer therapeutics. Cancer Cell. 2014;25:282–303.CrossRefPubMedPubMedCentral Arteaga CL, Engelman JA. ERBB receptors: from oncogene discovery to basic science to mechanism-based cancer therapeutics. Cancer Cell. 2014;25:282–303.CrossRefPubMedPubMedCentral
3.
go back to reference Delord JP, Allal C, Canal M, Mery E, Rochaix P, Hennebelle I, et al. Selective inhibition of HER2 inhibits AKT signal transduction and prolongs disease-free survival in a micrometastasis model of ovarian carcinoma. Ann Oncol. 2005;16:1889–977.CrossRefPubMed Delord JP, Allal C, Canal M, Mery E, Rochaix P, Hennebelle I, et al. Selective inhibition of HER2 inhibits AKT signal transduction and prolongs disease-free survival in a micrometastasis model of ovarian carcinoma. Ann Oncol. 2005;16:1889–977.CrossRefPubMed
4.
go back to reference Kunz C, Borghouts C, Buerger C, Groner B. Peptide aptamers with binding specificity for the intracellular domain of the ErbB2 receptor interfere with AKT signaling and sensitize breast cancer cells to Taxol. Mol Cancer Res. 2006;4:983–98.CrossRefPubMed Kunz C, Borghouts C, Buerger C, Groner B. Peptide aptamers with binding specificity for the intracellular domain of the ErbB2 receptor interfere with AKT signaling and sensitize breast cancer cells to Taxol. Mol Cancer Res. 2006;4:983–98.CrossRefPubMed
5.
go back to reference Menard S, Casalini P, Campiglio M, Pupa SM, Tagliabue E. Role of HER2/neu in tumor progression and therapy. Cell Mol Life Sci. 2004;61:2965–78.CrossRefPubMed Menard S, Casalini P, Campiglio M, Pupa SM, Tagliabue E. Role of HER2/neu in tumor progression and therapy. Cell Mol Life Sci. 2004;61:2965–78.CrossRefPubMed
7.
go back to reference Scholl S, Beuzeboc P, Pouillart P. Targeting HER2 in other tumor types. Ann Oncol. 2001;12(Suppl 1):S81–7.CrossRefPubMed Scholl S, Beuzeboc P, Pouillart P. Targeting HER2 in other tumor types. Ann Oncol. 2001;12(Suppl 1):S81–7.CrossRefPubMed
8.
go back to reference Hynes NE, Lane HA. ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer. 2005;5:341–54.CrossRefPubMed Hynes NE, Lane HA. ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer. 2005;5:341–54.CrossRefPubMed
9.
go back to reference Santin AD, Bellone S, Roman JJ, McKenney JK, Pecorelli S. Trastuzumab treatment in patients with advanced or recurrent endometrial carcinoma overexpressing HER2/neu. Int J Gynaecol Obstet. 2008;102:128–31.CrossRefPubMed Santin AD, Bellone S, Roman JJ, McKenney JK, Pecorelli S. Trastuzumab treatment in patients with advanced or recurrent endometrial carcinoma overexpressing HER2/neu. Int J Gynaecol Obstet. 2008;102:128–31.CrossRefPubMed
10.
go back to reference Krishnamurti U, Silverman JF. HER2 in breast cancer: a review and update. Adv Anat Pathol. 2014;21:100–7.CrossRefPubMed Krishnamurti U, Silverman JF. HER2 in breast cancer: a review and update. Adv Anat Pathol. 2014;21:100–7.CrossRefPubMed
11.
go back to reference Scaltriti M, Verma C, Guzman M, Jimenez J, Parra JL, Pedersen K, et al. Lapatinib, a HER2 tyrosine kinase inhibitor, induces stabilization and accumulation of HER2 and potentiates trastuzumab-dependent cell cytotoxicity. Oncogene. 2009;28:803–14.CrossRefPubMed Scaltriti M, Verma C, Guzman M, Jimenez J, Parra JL, Pedersen K, et al. Lapatinib, a HER2 tyrosine kinase inhibitor, induces stabilization and accumulation of HER2 and potentiates trastuzumab-dependent cell cytotoxicity. Oncogene. 2009;28:803–14.CrossRefPubMed
12.
go back to reference Sergina NV, Rausch M, Wang D, Blair J, Hann B, Shokat KM, et al. Escape from HER-family tyrosine kinase inhibitor therapy by the kinase-inactive HER3. Nature. 2007;445:437–41.CrossRefPubMedPubMedCentral Sergina NV, Rausch M, Wang D, Blair J, Hann B, Shokat KM, et al. Escape from HER-family tyrosine kinase inhibitor therapy by the kinase-inactive HER3. Nature. 2007;445:437–41.CrossRefPubMedPubMedCentral
13.
go back to reference Tzahar E, Waterman H, Chen X, Levkowitz G, Karunagaran D, Lavi S, et al. A hierarchical network of interreceptor interactions determines signal transduction by Neu differentiation factor/neuregulin and epidermal growth factor. Mol Cell Biol. 1996;16:5276–87.CrossRefPubMedPubMedCentral Tzahar E, Waterman H, Chen X, Levkowitz G, Karunagaran D, Lavi S, et al. A hierarchical network of interreceptor interactions determines signal transduction by Neu differentiation factor/neuregulin and epidermal growth factor. Mol Cell Biol. 1996;16:5276–87.CrossRefPubMedPubMedCentral
14.
go back to reference Iqbal N, Iqbal N. Human epidermal growth factor receptor 2 (HER2) in cancers: overexpression and therapeutic implications. Mol Biol Int. 2014;2014:852748.CrossRefPubMedPubMedCentral Iqbal N, Iqbal N. Human epidermal growth factor receptor 2 (HER2) in cancers: overexpression and therapeutic implications. Mol Biol Int. 2014;2014:852748.CrossRefPubMedPubMedCentral
15.
go back to reference Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol. 2001;2:127–37.CrossRefPubMed Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol. 2001;2:127–37.CrossRefPubMed
16.
go back to reference Olayioye MA, Graus-Porta D, Beerli RR, Rohrer J, Gay B, Hynes NE. ErbB-1 and ErbB-2 acquire distinct signaling properties dependent upon their dimerization partner. Mol Cell Biol. 1998;18:5042–51.CrossRefPubMedPubMedCentral Olayioye MA, Graus-Porta D, Beerli RR, Rohrer J, Gay B, Hynes NE. ErbB-1 and ErbB-2 acquire distinct signaling properties dependent upon their dimerization partner. Mol Cell Biol. 1998;18:5042–51.CrossRefPubMedPubMedCentral
17.
go back to reference Mitri Z, Constantine T, O'Regan R. The HER2 receptor in breast cancer: pathophysiology, clinical use, and new advances in therapy. Chemother Res Pract. 2012;2012:743193.PubMedPubMedCentral Mitri Z, Constantine T, O'Regan R. The HER2 receptor in breast cancer: pathophysiology, clinical use, and new advances in therapy. Chemother Res Pract. 2012;2012:743193.PubMedPubMedCentral
18.
go back to reference Ponde N, Brandao M, El-Hachem G, Werbrouck E, Piccart M. Treatment of advanced HER2-positive breast cancer: 2018 and beyond. Cancer Treat Rev. 2018;67:10–20.CrossRefPubMed Ponde N, Brandao M, El-Hachem G, Werbrouck E, Piccart M. Treatment of advanced HER2-positive breast cancer: 2018 and beyond. Cancer Treat Rev. 2018;67:10–20.CrossRefPubMed
19.
go back to reference Andrulis IL, Bull SB, Blackstein ME, Sutherland D, Mak C, Sidlofsky S, et al. neu/erbB-2 amplification identifies a poor-prognosis group of women with node-negative breast cancer. Toronto Breast Cancer Study Group. J Clin Oncol. 1998;16:1340–9.CrossRefPubMed Andrulis IL, Bull SB, Blackstein ME, Sutherland D, Mak C, Sidlofsky S, et al. neu/erbB-2 amplification identifies a poor-prognosis group of women with node-negative breast cancer. Toronto Breast Cancer Study Group. J Clin Oncol. 1998;16:1340–9.CrossRefPubMed
21.
go back to reference Asif HM, Sultana S, Ahmed S, Akhtar N, Tariq M. HER-2 positive breast cancer—a mini-review. Asian Pac J Cancer Prev. 2016;17:1609–15.CrossRefPubMed Asif HM, Sultana S, Ahmed S, Akhtar N, Tariq M. HER-2 positive breast cancer—a mini-review. Asian Pac J Cancer Prev. 2016;17:1609–15.CrossRefPubMed
22.
go back to reference Tsurutani J, West KA, Sayyah J, Gills JJ, Dennis PA. Inhibition of the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin pathway but not the MEK/ERK pathway attenuates laminin-mediated small cell lung cancer cellular survival and resistance to imatinib mesylate or chemotherapy. Cancer Res. 2005;65:8423–32.CrossRefPubMed Tsurutani J, West KA, Sayyah J, Gills JJ, Dennis PA. Inhibition of the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin pathway but not the MEK/ERK pathway attenuates laminin-mediated small cell lung cancer cellular survival and resistance to imatinib mesylate or chemotherapy. Cancer Res. 2005;65:8423–32.CrossRefPubMed
24.
go back to reference Zalloum H, Tayyem R, Irmaileh BA, Bustanji Y, Zihlif M, Mohammad M, et al. Discovery of new human epidermal growth factor receptor-2 (HER2) inhibitors for potential use as anticancer agents via ligand-based pharmacophore modeling. J Mol Graph Model. 2015;61:61–84.CrossRefPubMed Zalloum H, Tayyem R, Irmaileh BA, Bustanji Y, Zihlif M, Mohammad M, et al. Discovery of new human epidermal growth factor receptor-2 (HER2) inhibitors for potential use as anticancer agents via ligand-based pharmacophore modeling. J Mol Graph Model. 2015;61:61–84.CrossRefPubMed
25.
go back to reference Kumler I, Tuxen MK, Nielsen DL. A systematic review of dual targeting in HER2-positive breast cancer. Cancer Treat Rev. 2014;40:259–70.CrossRefPubMed Kumler I, Tuxen MK, Nielsen DL. A systematic review of dual targeting in HER2-positive breast cancer. Cancer Treat Rev. 2014;40:259–70.CrossRefPubMed
26.
go back to reference Piccart-Gebhart MJ, Procter M, Leyland-Jones B, Goldhirsch A, Untch M, Smith I, et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med. 2005;353:1659–72.CrossRefPubMed Piccart-Gebhart MJ, Procter M, Leyland-Jones B, Goldhirsch A, Untch M, Smith I, et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med. 2005;353:1659–72.CrossRefPubMed
27.
go back to reference Romond EH, Perez EA, Bryant J, Suman VJ, Geyer CE Jr, Davidson NE, et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med. 2005;353:1673–84.CrossRefPubMed Romond EH, Perez EA, Bryant J, Suman VJ, Geyer CE Jr, Davidson NE, et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med. 2005;353:1673–84.CrossRefPubMed
28.
go back to reference Tsang RY, Sadeghi S, Finn RS. Lapatinib, a dual-targeted small molecule inhibitor of Egfr and Her2, in Her2-amplified breast cancer: from bench to bedside. Clin Med Insights Ther. 2011;3:1–13. Tsang RY, Sadeghi S, Finn RS. Lapatinib, a dual-targeted small molecule inhibitor of Egfr and Her2, in Her2-amplified breast cancer: from bench to bedside. Clin Med Insights Ther. 2011;3:1–13.
29.
go back to reference Baselga J, Tripathy D, Mendelsohn J, Baughman S, Benz CC, Dantis L, et al. Phase II study of weekly intravenous recombinant humanized anti-p185HER2 monoclonal antibody in patients with HER2/neu-overexpressing metastatic breast cancer. J Clin Oncol. 1996;14:737–44.CrossRefPubMed Baselga J, Tripathy D, Mendelsohn J, Baughman S, Benz CC, Dantis L, et al. Phase II study of weekly intravenous recombinant humanized anti-p185HER2 monoclonal antibody in patients with HER2/neu-overexpressing metastatic breast cancer. J Clin Oncol. 1996;14:737–44.CrossRefPubMed
31.
go back to reference Gajria D, Chandarlapaty S. HER2-amplified breast cancer: mechanisms of trastuzumab resistance and novel targeted therapies. Expert Rev Anticancer Ther. 2011;11:263–75.CrossRefPubMedPubMedCentral Gajria D, Chandarlapaty S. HER2-amplified breast cancer: mechanisms of trastuzumab resistance and novel targeted therapies. Expert Rev Anticancer Ther. 2011;11:263–75.CrossRefPubMedPubMedCentral
32.
go back to reference Slamon D, Pegram M. Rationale for trastuzumab (herceptin) in adjuvant breast cancer trials. Semin Oncol. 2001;28:13–9.CrossRefPubMed Slamon D, Pegram M. Rationale for trastuzumab (herceptin) in adjuvant breast cancer trials. Semin Oncol. 2001;28:13–9.CrossRefPubMed
33.
go back to reference Callahan R, Hurvitz S. Human epidermal growth factor receptor-2-positive breast cancer: current management of early, advanced, and recurrent disease. Curr Opin Obstet Gynecol. 2011;23:37–433.CrossRefPubMedPubMedCentral Callahan R, Hurvitz S. Human epidermal growth factor receptor-2-positive breast cancer: current management of early, advanced, and recurrent disease. Curr Opin Obstet Gynecol. 2011;23:37–433.CrossRefPubMedPubMedCentral
34.
go back to reference Wood ER, Truesdale AT, McDonald OB, Yuan D, Hassell A, Dickerson SH, et al. A unique structure for epidermal growth factor receptor bound to GW572016 (Lapatinib): relationships among protein conformation, inhibitor off-rate, and receptor activity in tumor cells. Cancer Res. 2004;64:6652–9.CrossRefPubMed Wood ER, Truesdale AT, McDonald OB, Yuan D, Hassell A, Dickerson SH, et al. A unique structure for epidermal growth factor receptor bound to GW572016 (Lapatinib): relationships among protein conformation, inhibitor off-rate, and receptor activity in tumor cells. Cancer Res. 2004;64:6652–9.CrossRefPubMed
35.
go back to reference de Azambuja E, Bedard PL, Suter T, Piccart-Gebhart M. Cardiac toxicity with anti-HER-2 therapies: what have we learned so far? Target Oncol. 2009;4:77–88.CrossRefPubMed de Azambuja E, Bedard PL, Suter T, Piccart-Gebhart M. Cardiac toxicity with anti-HER-2 therapies: what have we learned so far? Target Oncol. 2009;4:77–88.CrossRefPubMed
36.
37.
go back to reference Aertgeerts K, Skene R, Yano J, Sang BC, Zou H, Snell G, et al. Structural analysis of the mechanism of inhibition and allosteric activation of the kinase domain of HER2 protein. J Biol Chem. 2011;286:18756–65.CrossRefPubMedPubMedCentral Aertgeerts K, Skene R, Yano J, Sang BC, Zou H, Snell G, et al. Structural analysis of the mechanism of inhibition and allosteric activation of the kinase domain of HER2 protein. J Biol Chem. 2011;286:18756–65.CrossRefPubMedPubMedCentral
38.
go back to reference O'Shaughnessy J, Blackwell KL, Burstein H, Storniolo AM, Sledge G, Baselga J, et al. A randomized study of Lapatinib alone or in combination with trastuzumab in heavily pretreated HER2+ metastatic breast cancer progressing on trastuzumab therapy. J Clin Oncol. 2008;26(15_suppl):1015.CrossRef O'Shaughnessy J, Blackwell KL, Burstein H, Storniolo AM, Sledge G, Baselga J, et al. A randomized study of Lapatinib alone or in combination with trastuzumab in heavily pretreated HER2+ metastatic breast cancer progressing on trastuzumab therapy. J Clin Oncol. 2008;26(15_suppl):1015.CrossRef
39.
go back to reference Engel RH, Kaklamani VG. HER2-positive breast cancer: current and future treatment strategies. Drugs. 2007;67:1329–41.CrossRefPubMed Engel RH, Kaklamani VG. HER2-positive breast cancer: current and future treatment strategies. Drugs. 2007;67:1329–41.CrossRefPubMed
40.
41.
go back to reference Figueroa-Magalhaes MC, Jelovac D, Connolly R, Wolff AC. Treatment of HER2-positive breast cancer. Breast. 2014;23:128–36.CrossRefPubMed Figueroa-Magalhaes MC, Jelovac D, Connolly R, Wolff AC. Treatment of HER2-positive breast cancer. Breast. 2014;23:128–36.CrossRefPubMed
42.
go back to reference OMEGA (version 2.5.1.4). Santa Fe, New Mexico, USA: OpenEye Scientific Software Inc.; 2013. OMEGA (version 2.5.1.4). Santa Fe, New Mexico, USA: OpenEye Scientific Software Inc.; 2013.
43.
go back to reference Takimoto CH. Anticancer drug development at the US National Cancer Institute. Cancer Chemother Pharmacol. 2003;52(Suppl 1):S29–33.CrossRefPubMed Takimoto CH. Anticancer drug development at the US National Cancer Institute. Cancer Chemother Pharmacol. 2003;52(Suppl 1):S29–33.CrossRefPubMed
44.
go back to reference Knox C, Law V, Jewison T, Liu P, Ly S, Frolkis A, et al. DrugBank 3.0: a comprehensive resource for 'omics' research on drugs. Nucleic Acids Res. 2011;39:D1035–41.CrossRefPubMed Knox C, Law V, Jewison T, Liu P, Ly S, Frolkis A, et al. DrugBank 3.0: a comprehensive resource for 'omics' research on drugs. Nucleic Acids Res. 2011;39:D1035–41.CrossRefPubMed
45.
go back to reference Dijkers PF, Medema RH, Pals C, Banerji L, Thomas NS, Lam EW, et al. Forkhead transcription factor FKHR-L1 modulates cytokine-dependent transcriptional regulation of p27(KIP1). Mol Cell Biol. 2000;20:9138–48.CrossRefPubMedPubMedCentral Dijkers PF, Medema RH, Pals C, Banerji L, Thomas NS, Lam EW, et al. Forkhead transcription factor FKHR-L1 modulates cytokine-dependent transcriptional regulation of p27(KIP1). Mol Cell Biol. 2000;20:9138–48.CrossRefPubMedPubMedCentral
46.
go back to reference Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell. 1997;91:231–41.CrossRefPubMed Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell. 1997;91:231–41.CrossRefPubMed
47.
go back to reference Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF, Stanbridge E, et al. Regulation of cell death protease caspase-9 by phosphorylation. Science. 1998;282:1318–21.CrossRefPubMed Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF, Stanbridge E, et al. Regulation of cell death protease caspase-9 by phosphorylation. Science. 1998;282:1318–21.CrossRefPubMed
48.
go back to reference Thierry L, Hoffmann D. Pharmacophores and pharmacophore searches. Hoboken: Wiley; 2006. p. 395. Thierry L, Hoffmann D. Pharmacophores and pharmacophore searches. Hoboken: Wiley; 2006. p. 395.
49.
go back to reference Kirchmair J, Wolber G, Laggner C, Langer T. Comparative performance assessment of the conformational model generators omega and catalyst: a large-scale survey on the retrieval of protein-bound ligand conformations. J Chem Inf Model. 2006;46:1848–61.CrossRefPubMed Kirchmair J, Wolber G, Laggner C, Langer T. Comparative performance assessment of the conformational model generators omega and catalyst: a large-scale survey on the retrieval of protein-bound ligand conformations. J Chem Inf Model. 2006;46:1848–61.CrossRefPubMed
50.
go back to reference Kirchmair J, Laggner C, Wolber G, Langer T. Comparative analysis of protein-bound ligand conformations with respect to catalyst's conformational space subsampling algorithms. J Chem Inf Model. 2005;45:422–30.CrossRefPubMed Kirchmair J, Laggner C, Wolber G, Langer T. Comparative analysis of protein-bound ligand conformations with respect to catalyst's conformational space subsampling algorithms. J Chem Inf Model. 2005;45:422–30.CrossRefPubMed
51.
go back to reference Charafe-Jauffret E, Ginestier C, Monville F, Finetti P, Adelaide J, Cervera N, et al. Gene expression profiling of breast cell lines identifies potential new basal markers. Oncogene. 2006;25:2273–84.CrossRefPubMed Charafe-Jauffret E, Ginestier C, Monville F, Finetti P, Adelaide J, Cervera N, et al. Gene expression profiling of breast cell lines identifies potential new basal markers. Oncogene. 2006;25:2273–84.CrossRefPubMed
52.
go back to reference Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T, et al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell. 2006;10:515–27.CrossRefPubMedPubMedCentral Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T, et al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell. 2006;10:515–27.CrossRefPubMedPubMedCentral
53.
go back to reference Lacroix M, Leclercq G. Relevance of breast cancer cell lines as models for breast tumours: an update. Breast Cancer Res Treat. 2004;83:249–89.CrossRefPubMed Lacroix M, Leclercq G. Relevance of breast cancer cell lines as models for breast tumours: an update. Breast Cancer Res Treat. 2004;83:249–89.CrossRefPubMed
54.
go back to reference Kacan T, Altun A, Altun GG, Kacan SB, Sarac B, Seker MM, et al. Investigation of antitumor effects of sorafenib and lapatinib alone and in combination on MCF-7 breast cancer cells. Asian Pac J Cancer Prev. 2014;15:3185–9.CrossRefPubMed Kacan T, Altun A, Altun GG, Kacan SB, Sarac B, Seker MM, et al. Investigation of antitumor effects of sorafenib and lapatinib alone and in combination on MCF-7 breast cancer cells. Asian Pac J Cancer Prev. 2014;15:3185–9.CrossRefPubMed
Metadata
Title
Comparative anti-proliferative effects of potential HER2 inhibitors on a panel of breast cancer cell lines
Authors
Hiba Zalloum
Tuka AbuThiab
Tareq Hameduh
Sara AlBayyari
Waleed Zalloum
Basha’er Abu-Irmaileh
Mohammad S. Mubarak
Malek Zihlif
Publication date
01-03-2020
Publisher
Springer Japan
Published in
Breast Cancer / Issue 2/2020
Print ISSN: 1340-6868
Electronic ISSN: 1880-4233
DOI
https://doi.org/10.1007/s12282-019-01011-z

Other articles of this Issue 2/2020

Breast Cancer 2/2020 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine