Skip to main content
Top
Published in: European Journal of Medical Research 1/2023

Open Access 01-12-2023 | Breast Cancer | Research

Circulating miRNAs signature on breast cancer: the MCC-Spain project

Authors: Inés Gómez-Acebo, Javier Llorca, Jessica Alonso-Molero, Marta Díaz-Martínez, Beatriz Pérez-Gómez, Pilar Amiano, Thalía Belmonte, Antonio J. Molina, Rosana Burgui, Gemma Castaño-Vinyals, Víctor Moreno, Ana Molina-Barceló, Rafael Marcos-Gragera, Manolis Kogevinas, Marina Pollán, Trinidad Dierssen-Sotos

Published in: European Journal of Medical Research | Issue 1/2023

Login to get access

Abstract

Purpose

To build models combining circulating microRNAs (miRNAs) able to identify women with breast cancer as well as different types of breast cancer, when comparing with controls without breast cancer.

Method

miRNAs analysis was performed in two phases: screening phase, with a total n = 40 (10 controls and 30 BC cases) analyzed by Next Generation Sequencing, and validation phase, which included 131 controls and 269 cases. For this second phase, the miRNAs were selected combining the screening phase results and a revision of the literature. They were quantified using RT-PCR. Models were built using logistic regression with LASSO penalization.

Results

The model for all cases included seven miRNAs (miR-423-3p, miR-139-5p, miR-324-5p, miR-1299, miR-101-3p, miR-186-5p and miR-29a-3p); which had an area under the ROC curve of 0.73. The model for cases diagnosed via screening only took in one miRNA (miR-101-3p); the area under the ROC curve was 0.63. The model for disease-free cases in the follow-up had five miRNAs (miR-101-3p, miR-186-5p, miR-423-3p, miR-142-3p and miR-1299) and the area under the ROC curve was 0.73. Finally, the model for cases with active disease in the follow-up contained six miRNAs (miR-101-3p, miR-423-3p, miR-139-5p, miR-1307-3p, miR-331-3p and miR-21-3p) and its area under the ROC curve was 0.82.

Conclusion

We present four models involving eleven miRNAs to differentiate healthy controls from different types of BC cases. Our models scarcely overlap with those previously reported.
Appendix
Available only for authorised users
Literature
1.
go back to reference Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.PubMedCrossRef Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.PubMedCrossRef
2.
go back to reference Golubnitschaja O, Debald M, Yeghiazaryan K, Kuhn W, Pešta M, Costigliola V, et al. Breast cancer epidemic in the early twenty-first century: evaluation of risk factors, cumulative questionnaires and recommendations for preventive measures. Tumour Biol. 2016;37:12941–57.PubMedCrossRef Golubnitschaja O, Debald M, Yeghiazaryan K, Kuhn W, Pešta M, Costigliola V, et al. Breast cancer epidemic in the early twenty-first century: evaluation of risk factors, cumulative questionnaires and recommendations for preventive measures. Tumour Biol. 2016;37:12941–57.PubMedCrossRef
3.
go back to reference Lambertini M, Santoro L, Del Mastro L, Nguyen B, Livraghi L, Ugolini D, et al. Reproductive behaviors and risk of developing breast cancer according to tumor subtype: a systematic review and meta-analysis of epidemiological studies. Cancer Treat Rev. 2016;49:65–76.PubMedCrossRef Lambertini M, Santoro L, Del Mastro L, Nguyen B, Livraghi L, Ugolini D, et al. Reproductive behaviors and risk of developing breast cancer according to tumor subtype: a systematic review and meta-analysis of epidemiological studies. Cancer Treat Rev. 2016;49:65–76.PubMedCrossRef
4.
go back to reference Hankinson S, Tamimi R, Hunter D. Breast cancer textbook of cancer epidemiology. Oxford: Oxford University Press; 2008. Hankinson S, Tamimi R, Hunter D. Breast cancer textbook of cancer epidemiology. Oxford: Oxford University Press; 2008.
6.
go back to reference Kapoor PM, Mavaddat N, Choudhury PP, Wilcox AN, Lindström S, Behrens S, et al. Combined associations of a polygenic risk score and classical risk factors with breast cancer risk. J Natl Cancer Instit. 2021;113:329–37.CrossRef Kapoor PM, Mavaddat N, Choudhury PP, Wilcox AN, Lindström S, Behrens S, et al. Combined associations of a polygenic risk score and classical risk factors with breast cancer risk. J Natl Cancer Instit. 2021;113:329–37.CrossRef
7.
go back to reference Curigliano G, Burstein HJ, Winer P, et al. De-escalating and escalating treatments for early-stage breast cancer the St gallen international expert on the primary therapy of early breast cancer 2017. Ann Oncol. 2017;28:1700–12.PubMedPubMedCentralCrossRef Curigliano G, Burstein HJ, Winer P, et al. De-escalating and escalating treatments for early-stage breast cancer the St gallen international expert on the primary therapy of early breast cancer 2017. Ann Oncol. 2017;28:1700–12.PubMedPubMedCentralCrossRef
8.
go back to reference Saliminejad K, KhorramKhorshid HR, SoleymaniFard S, Ghaffari SH. an overview of microRNAs: biology, functions, therapeutics, and analysis methods. J Cell Physiol. 2019;234:5451–65.PubMedCrossRef Saliminejad K, KhorramKhorshid HR, SoleymaniFard S, Ghaffari SH. an overview of microRNAs: biology, functions, therapeutics, and analysis methods. J Cell Physiol. 2019;234:5451–65.PubMedCrossRef
10.
go back to reference Mu H, Zhang W, Qiu Y, Tao T, Wu H, Chen Z, et al. miRNAs as potential markers for breast cancer and regulators of tumorigenesis and progression (Review). Int J Oncol. 2021;58:16.PubMedCrossRef Mu H, Zhang W, Qiu Y, Tao T, Wu H, Chen Z, et al. miRNAs as potential markers for breast cancer and regulators of tumorigenesis and progression (Review). Int J Oncol. 2021;58:16.PubMedCrossRef
12.
go back to reference Allegra A, Alonci A, Campo S, Penna G, Petrungaro A, Gerace D, et al. Circulating microRNAs: new biomarkers in diagnosis, prognosis and treatment of cancer. Int J Oncol. 2012;41:1897–912.PubMedCrossRef Allegra A, Alonci A, Campo S, Penna G, Petrungaro A, Gerace D, et al. Circulating microRNAs: new biomarkers in diagnosis, prognosis and treatment of cancer. Int J Oncol. 2012;41:1897–912.PubMedCrossRef
14.
go back to reference Castaño-Vinyals G, Aragonés N, Pérez-Gómez B, Martín V, Llorca J, Moreno V, et al. Population-based multicase-control study in common tumors in Spain (MCC-Spain): rationale and study design. Gac Sanit. 2015;29:308–15.PubMedCrossRef Castaño-Vinyals G, Aragonés N, Pérez-Gómez B, Martín V, Llorca J, Moreno V, et al. Population-based multicase-control study in common tumors in Spain (MCC-Spain): rationale and study design. Gac Sanit. 2015;29:308–15.PubMedCrossRef
15.
go back to reference Alonso-Molero J, Molina AJ, Jiménez-Moleón JJ, Pérez-Gómez B, Martin V, Moreno V, et al. Cohort profile: the MCC-Spain follow-up on colorectal, breast and prostate cancers: study design and initial results. BMJ Open. 2019;9: e031904.PubMedPubMedCentralCrossRef Alonso-Molero J, Molina AJ, Jiménez-Moleón JJ, Pérez-Gómez B, Martin V, Moreno V, et al. Cohort profile: the MCC-Spain follow-up on colorectal, breast and prostate cancers: study design and initial results. BMJ Open. 2019;9: e031904.PubMedPubMedCentralCrossRef
16.
go back to reference Gomez-Acebo I, Dierssen-Sotos T, Palazuelos-Calderon C, Perez-Gomez B, Amiano P, Guevara M, et al. Tumour characteristics and survivorship in a cohort of breast cancer: the MCC-Spain study. Breast Cancer Res Treat. 2020;181:667–78.PubMedPubMedCentralCrossRef Gomez-Acebo I, Dierssen-Sotos T, Palazuelos-Calderon C, Perez-Gomez B, Amiano P, Guevara M, et al. Tumour characteristics and survivorship in a cohort of breast cancer: the MCC-Spain study. Breast Cancer Res Treat. 2020;181:667–78.PubMedPubMedCentralCrossRef
18.
go back to reference Escuin D, López-Vilaró L, Mora J, Bell O, Moral A, Pérez I, et al. Circulating microRNAs in early breast cancer patients and its association with lymph node metastases. Front Oncol. 2021;11: 627811.PubMedPubMedCentralCrossRef Escuin D, López-Vilaró L, Mora J, Bell O, Moral A, Pérez I, et al. Circulating microRNAs in early breast cancer patients and its association with lymph node metastases. Front Oncol. 2021;11: 627811.PubMedPubMedCentralCrossRef
19.
go back to reference Galvão-Lima LJ, Morais AHF, Valentim RAM, Barreto EJSS. miRNAs as biomarkers for early cancer detection and their application in the development of new diagnostic tools. Biomed Eng Online. 2021;20:21.PubMedPubMedCentralCrossRef Galvão-Lima LJ, Morais AHF, Valentim RAM, Barreto EJSS. miRNAs as biomarkers for early cancer detection and their application in the development of new diagnostic tools. Biomed Eng Online. 2021;20:21.PubMedPubMedCentralCrossRef
20.
go back to reference Giussani M, Ciniselli CM, De Cecco L, Lecchi M, Dugo M, Gargiuli C, et al. Circulating miRNAs as novel non-invasive biomarkers to aid the early diagnosis of suspicious breast lesions for which biopsy is recommended. Cancers. 2021;13:4028.PubMedPubMedCentralCrossRef Giussani M, Ciniselli CM, De Cecco L, Lecchi M, Dugo M, Gargiuli C, et al. Circulating miRNAs as novel non-invasive biomarkers to aid the early diagnosis of suspicious breast lesions for which biopsy is recommended. Cancers. 2021;13:4028.PubMedPubMedCentralCrossRef
21.
go back to reference Jang JY, Kim YS, Kang KN, Kim KH, Park YJ, Kim CW. Multiple microRNAs as biomarkers for early breast cancer diagnosis. Mol Clin Oncol. 2021;14:31.PubMedCrossRef Jang JY, Kim YS, Kang KN, Kim KH, Park YJ, Kim CW. Multiple microRNAs as biomarkers for early breast cancer diagnosis. Mol Clin Oncol. 2021;14:31.PubMedCrossRef
22.
go back to reference Li X, Zou W, Wang Y, Liao Z, Li L, Zhai Y, et al. Plasma-based microRNA signatures in early diagnosis of breast cancer. Mol Genet Genomic Med. 2020;8: e1092.PubMedPubMedCentralCrossRef Li X, Zou W, Wang Y, Liao Z, Li L, Zhai Y, et al. Plasma-based microRNA signatures in early diagnosis of breast cancer. Mol Genet Genomic Med. 2020;8: e1092.PubMedPubMedCentralCrossRef
23.
go back to reference Liu X, Chen F, Tan F, Li F, Yi R, Yang D, et al. Construction of a potential breast cancer-related miRNA-mRNA regulatory network. Biomed Res Int. 2020;2020:6149174.PubMedPubMedCentralCrossRef Liu X, Chen F, Tan F, Li F, Yi R, Yang D, et al. Construction of a potential breast cancer-related miRNA-mRNA regulatory network. Biomed Res Int. 2020;2020:6149174.PubMedPubMedCentralCrossRef
24.
go back to reference Tibshirani R. Regression shrinkage and selection via the lasso. J Roy Stat Soc: Ser B. 1996;58:267–88. Tibshirani R. Regression shrinkage and selection via the lasso. J Roy Stat Soc: Ser B. 1996;58:267–88.
25.
go back to reference Luque-Fernandez MA, Redondo-Sánchez D, Maringe C. cvauroc: command to compute cross-validated area under the curve for ROC analysis after predictive modeling for binary outcomes. Stand Genomic Sci. 2019;19:615–25. Luque-Fernandez MA, Redondo-Sánchez D, Maringe C. cvauroc: command to compute cross-validated area under the curve for ROC analysis after predictive modeling for binary outcomes. Stand Genomic Sci. 2019;19:615–25.
26.
go back to reference Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57.PubMedCrossRef Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57.PubMedCrossRef
27.
go back to reference Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucl Acids Res. 2009;37:1–13.PubMedCrossRef Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucl Acids Res. 2009;37:1–13.PubMedCrossRef
28.
go back to reference Li J-T, Jia L-T, Liu N-N, Zhu X-S, Liu Q-Q, Wang X-L, et al. MiRNA-101 inhibits breast cancer growth and metastasis by targeting CX chemokine receptor 7. Oncotarget. 2015;6:30818–30.PubMedPubMedCentralCrossRef Li J-T, Jia L-T, Liu N-N, Zhu X-S, Liu Q-Q, Wang X-L, et al. MiRNA-101 inhibits breast cancer growth and metastasis by targeting CX chemokine receptor 7. Oncotarget. 2015;6:30818–30.PubMedPubMedCentralCrossRef
29.
go back to reference Wang R, Wang H-B, Hao CJ, Cui Y, Han X-C, Hu Y, et al. MiR-101 is involved in human breast carcinogenesis by targeting stathmin1. PLoS ONE. 2012;7: e46173.PubMedPubMedCentralCrossRef Wang R, Wang H-B, Hao CJ, Cui Y, Han X-C, Hu Y, et al. MiR-101 is involved in human breast carcinogenesis by targeting stathmin1. PLoS ONE. 2012;7: e46173.PubMedPubMedCentralCrossRef
30.
go back to reference Wang L, Li L, Guo R, Li X, Lu Y, Guan X, et al. miR-101 promotes breast cancer cell apoptosis by targeting Janus kinase 2. Cell Physiol Biochem. 2014;34:413–22.PubMedCrossRef Wang L, Li L, Guo R, Li X, Lu Y, Guan X, et al. miR-101 promotes breast cancer cell apoptosis by targeting Janus kinase 2. Cell Physiol Biochem. 2014;34:413–22.PubMedCrossRef
31.
go back to reference Harati R, Mohammad MG, Tlili A, El-Awady RA, Hamoudi R. Loss of mir-101-3p promotes transmigration of metastatic breast cancer cells through the brain endothelium by inducing COX-2/MMP1 signaling. Pharmaceuticals. 2020;13:1–19.CrossRef Harati R, Mohammad MG, Tlili A, El-Awady RA, Hamoudi R. Loss of mir-101-3p promotes transmigration of metastatic breast cancer cells through the brain endothelium by inducing COX-2/MMP1 signaling. Pharmaceuticals. 2020;13:1–19.CrossRef
32.
go back to reference Harati R, Mabondzo A, Tlili A, Khoder G, Mahfood M, Hamoudi R. Combinatorial targeting of microRNA-26b and microRNA-101 exerts a synergistic inhibition on cyclooxygenase-2 in brain metastatic triple-negative breast cancer cells. Breast Cancer Res Treat. 2021;187:695–713.PubMedCrossRef Harati R, Mabondzo A, Tlili A, Khoder G, Mahfood M, Hamoudi R. Combinatorial targeting of microRNA-26b and microRNA-101 exerts a synergistic inhibition on cyclooxygenase-2 in brain metastatic triple-negative breast cancer cells. Breast Cancer Res Treat. 2021;187:695–713.PubMedCrossRef
33.
go back to reference Liu P, Ye F, Xie X, Li X, Tang H, Li S, et al. mir-101-3p is a key regulator of tumor metabolism in triple negative breast cancer targeting AMPK. Oncotarget. 2016;7:35188–98.PubMedPubMedCentralCrossRef Liu P, Ye F, Xie X, Li X, Tang H, Li S, et al. mir-101-3p is a key regulator of tumor metabolism in triple negative breast cancer targeting AMPK. Oncotarget. 2016;7:35188–98.PubMedPubMedCentralCrossRef
34.
go back to reference Zhao Y, Yu Z, Ma R, Zhang Y, Zhao L, Yan Y, et al. lncRNA-Xist/miR-101-3p/KLF6/C/EBPα axis promotes TAM polarization to regulate cancer cell proliferation and migration. Mol Ther—Nucl Acids. 2021;23:536–51.CrossRef Zhao Y, Yu Z, Ma R, Zhang Y, Zhao L, Yan Y, et al. lncRNA-Xist/miR-101-3p/KLF6/C/EBPα axis promotes TAM polarization to regulate cancer cell proliferation and migration. Mol Ther—Nucl Acids. 2021;23:536–51.CrossRef
35.
go back to reference Wang F, Yuan C, Liu B, Yang Y-F, Wu H-Z. Syringin exerts anti-breast cancer effects through PI3K-AKT and EGFR-RAS-RAF pathways. J Transl Med. 2022;20:310.PubMedPubMedCentralCrossRef Wang F, Yuan C, Liu B, Yang Y-F, Wu H-Z. Syringin exerts anti-breast cancer effects through PI3K-AKT and EGFR-RAS-RAF pathways. J Transl Med. 2022;20:310.PubMedPubMedCentralCrossRef
36.
go back to reference Hamurcu Z, Sener EF, Taheri S, Nalbantoglu U, Kokcu ND, Tahtasakal R, et al. MicroRNA profiling identifies Forkhead box transcription factor M1 (FOXM1) regulated miR-186 and miR-200b alterations in triple negative breast cancer. Cell Signal. 2021;83: 109979.PubMedCrossRef Hamurcu Z, Sener EF, Taheri S, Nalbantoglu U, Kokcu ND, Tahtasakal R, et al. MicroRNA profiling identifies Forkhead box transcription factor M1 (FOXM1) regulated miR-186 and miR-200b alterations in triple negative breast cancer. Cell Signal. 2021;83: 109979.PubMedCrossRef
38.
go back to reference Li W, Yi J, Zheng X, Liu S, Fu W, Ren L, et al. miR-29c plays a suppressive role in breast cancer by targeting the TIMP3/STAT1/FOXO1 pathway. Clin Epigenet. 2018;10:64.CrossRef Li W, Yi J, Zheng X, Liu S, Fu W, Ren L, et al. miR-29c plays a suppressive role in breast cancer by targeting the TIMP3/STAT1/FOXO1 pathway. Clin Epigenet. 2018;10:64.CrossRef
39.
go back to reference Zhao B, Song X, Guan H. CircACAP2 promotes breast cancer proliferation and metastasis by targeting miR-29a/b-3p-COL5A1 axis. Life Sci. 2020;244: 117179.PubMedCrossRef Zhao B, Song X, Guan H. CircACAP2 promotes breast cancer proliferation and metastasis by targeting miR-29a/b-3p-COL5A1 axis. Life Sci. 2020;244: 117179.PubMedCrossRef
40.
go back to reference Wang J, Huang K, Shi L, Zhang Q, Zhang S. CircPVT1 promoted the progression of breast cancer by regulating MiR-29a-3p-mediated AGR2-HIF-1α pathway. Cancer Manag Res. 2020;12:11477–90.PubMedPubMedCentralCrossRef Wang J, Huang K, Shi L, Zhang Q, Zhang S. CircPVT1 promoted the progression of breast cancer by regulating MiR-29a-3p-mediated AGR2-HIF-1α pathway. Cancer Manag Res. 2020;12:11477–90.PubMedPubMedCentralCrossRef
41.
go back to reference Murria R, Palanca S, de Juan I, Alenda C, Egoavil C, Seguí FJ, et al. Immunohistochemical, genetic and epigenetic profiles of hereditary and triple negative breast cancers. Relevance in personalized medicine. Am J Cancer Res. 2015;5:2330–43.PubMedPubMedCentral Murria R, Palanca S, de Juan I, Alenda C, Egoavil C, Seguí FJ, et al. Immunohistochemical, genetic and epigenetic profiles of hereditary and triple negative breast cancers. Relevance in personalized medicine. Am J Cancer Res. 2015;5:2330–43.PubMedPubMedCentral
42.
go back to reference MurriaEstal R, PalancaSuela S, de Juan JI, Egoavil Rojas C, García-Casado Z, Juan Fita MJ, et al. MicroRNA signatures in hereditary breast cancer. Breast Cancer Res Treat. 2013;142:19–30.CrossRef MurriaEstal R, PalancaSuela S, de Juan JI, Egoavil Rojas C, García-Casado Z, Juan Fita MJ, et al. MicroRNA signatures in hereditary breast cancer. Breast Cancer Res Treat. 2013;142:19–30.CrossRef
43.
go back to reference Zhao H, Gao A, Zhang Z, Tian R, Luo A, Li M, et al. Genetic analysis and preliminary function study of miR-423 in breast cancer. Tumour Biol. 2015;36:4763–71.PubMedCrossRef Zhao H, Gao A, Zhang Z, Tian R, Luo A, Li M, et al. Genetic analysis and preliminary function study of miR-423 in breast cancer. Tumour Biol. 2015;36:4763–71.PubMedCrossRef
44.
go back to reference Sun H, Dai J, Chen M, Chen Q, Xie Q, Zhang W, et al. miR-139-5p was identified as biomarker of different molecular subtypes of breast carcinoma. Front Oncol. 2022;12: 857714.PubMedPubMedCentralCrossRef Sun H, Dai J, Chen M, Chen Q, Xie Q, Zhang W, et al. miR-139-5p was identified as biomarker of different molecular subtypes of breast carcinoma. Front Oncol. 2022;12: 857714.PubMedPubMedCentralCrossRef
45.
go back to reference Kuo W-T, Yu S-Y, Li S-C, Lam H-C, Chang H-T, Chen W-S, et al. MicroRNA-324 in human cancer: miR-324-5p and miR-324-3p have distinct biological functions in human cancer. Anticancer Res. 2016;36:5189–96.PubMedCrossRef Kuo W-T, Yu S-Y, Li S-C, Lam H-C, Chang H-T, Chen W-S, et al. MicroRNA-324 in human cancer: miR-324-5p and miR-324-3p have distinct biological functions in human cancer. Anticancer Res. 2016;36:5189–96.PubMedCrossRef
46.
go back to reference Hong H-C, Chuang C-H, Huang W-C, Weng S-L, Chen C-H, Chang K-H, et al. A panel of eight microRNAs is a good predictive parameter for triple-negative breast cancer relapse. Theranostics. 2020;10:8771–89.PubMedPubMedCentralCrossRef Hong H-C, Chuang C-H, Huang W-C, Weng S-L, Chen C-H, Chang K-H, et al. A panel of eight microRNAs is a good predictive parameter for triple-negative breast cancer relapse. Theranostics. 2020;10:8771–89.PubMedPubMedCentralCrossRef
47.
go back to reference Lou W, Ding B, Wang S, Fu P. Overexpression of GPX3, a potential biomarker for diagnosis and prognosis of breast cancer, inhibits progression of breast cancer cells in vitro. Cancer Cell Int. 2020;20:1–15.CrossRef Lou W, Ding B, Wang S, Fu P. Overexpression of GPX3, a potential biomarker for diagnosis and prognosis of breast cancer, inhibits progression of breast cancer cells in vitro. Cancer Cell Int. 2020;20:1–15.CrossRef
48.
go back to reference Turashvili G, Lightbody ED, Tyryshkin K, SenGupta SK, Elliott BE, Madarnas Y, et al. Novel prognostic and predictive microRNA targets for triple-negative breast cancer. FASEB J. 2018;32:5937–54.CrossRef Turashvili G, Lightbody ED, Tyryshkin K, SenGupta SK, Elliott BE, Madarnas Y, et al. Novel prognostic and predictive microRNA targets for triple-negative breast cancer. FASEB J. 2018;32:5937–54.CrossRef
49.
go back to reference Kaiyuan D, Lijuan H, Xueyuan S, Yunhui Z. The role and underlying mechanism of miR-1299 in cancer. Future Sci OA. 2021;7:693.CrossRef Kaiyuan D, Lijuan H, Xueyuan S, Yunhui Z. The role and underlying mechanism of miR-1299 in cancer. Future Sci OA. 2021;7:693.CrossRef
50.
go back to reference Liu L-H, Tian Q-Q, Liu J, Zhou Y, Yong H. Upregulation of hsa_circ_0136666 contributes to breast cancer progression by sponging miR-1299 and targeting CDK6. J Cell Biochem. 2019;120:12684–93.PubMedCrossRef Liu L-H, Tian Q-Q, Liu J, Zhou Y, Yong H. Upregulation of hsa_circ_0136666 contributes to breast cancer progression by sponging miR-1299 and targeting CDK6. J Cell Biochem. 2019;120:12684–93.PubMedCrossRef
51.
go back to reference Sang M, Meng L, Liu S, Ding P, Chang S, Ju Y, et al. Circular RNA ciRS-7 maintains metastatic phenotypes as a ceRNA of miR-1299 to target MMPs. Mol Cancer Res. 2018;16:1665–75.PubMedCrossRef Sang M, Meng L, Liu S, Ding P, Chang S, Ju Y, et al. Circular RNA ciRS-7 maintains metastatic phenotypes as a ceRNA of miR-1299 to target MMPs. Mol Cancer Res. 2018;16:1665–75.PubMedCrossRef
52.
go back to reference Zhang L, Sun D, Zhang J, Tian Y. Circ-UBR1 facilitates proliferation, metastasis, and inhibits apoptosis in breast cancer by regulating the miR-1299/CCND1 axis. Life Sci. 2021;266: 118829.PubMedCrossRef Zhang L, Sun D, Zhang J, Tian Y. Circ-UBR1 facilitates proliferation, metastasis, and inhibits apoptosis in breast cancer by regulating the miR-1299/CCND1 axis. Life Sci. 2021;266: 118829.PubMedCrossRef
53.
go back to reference Schwickert A, Weghake E, Brüggemann K, Engbers A, Brinkmann BF, Kemper B, et al. microRNA miR-142-3p inhibits breast cancer cell invasiveness by synchronous targeting of WASL, integrin alpha v, and additional cytoskeletal elements. PLoS ONE. 2015;10: e0143993.PubMedPubMedCentralCrossRef Schwickert A, Weghake E, Brüggemann K, Engbers A, Brinkmann BF, Kemper B, et al. microRNA miR-142-3p inhibits breast cancer cell invasiveness by synchronous targeting of WASL, integrin alpha v, and additional cytoskeletal elements. PLoS ONE. 2015;10: e0143993.PubMedPubMedCentralCrossRef
54.
go back to reference Mansoori B, Duijf PHG, Mohammadi A, Safarzadeh E, Ditzel HJ, Gjerstorff MF, et al. MiR-142-3p targets HMGA2 and suppresses breast cancer malignancy. Life Sci. 2021;276: 119431.PubMedCrossRef Mansoori B, Duijf PHG, Mohammadi A, Safarzadeh E, Ditzel HJ, Gjerstorff MF, et al. MiR-142-3p targets HMGA2 and suppresses breast cancer malignancy. Life Sci. 2021;276: 119431.PubMedCrossRef
55.
go back to reference Jusoh AR, Mohan S, Lu Ping T, Tengku Din TADAA, Haron J, Romli R, et al. Plasma circulating mirnas profiling for identification of potential breast cancer early detection biomarkers. Asian Pac J Cancer Prev. 2021;22:1375–81.PubMedPubMedCentralCrossRef Jusoh AR, Mohan S, Lu Ping T, Tengku Din TADAA, Haron J, Romli R, et al. Plasma circulating mirnas profiling for identification of potential breast cancer early detection biomarkers. Asian Pac J Cancer Prev. 2021;22:1375–81.PubMedPubMedCentralCrossRef
56.
go back to reference Naseri Z, KazemiOskuee R, Jaafari MR, Forouzandeh M. Exosome-mediated delivery of functionally active miRNA-142-3p inhibitor reduces tumorigenicity of breast cancer in vitro and in vivo. Int J Nanomed. 2018;13:7727–47.CrossRef Naseri Z, KazemiOskuee R, Jaafari MR, Forouzandeh M. Exosome-mediated delivery of functionally active miRNA-142-3p inhibitor reduces tumorigenicity of breast cancer in vitro and in vivo. Int J Nanomed. 2018;13:7727–47.CrossRef
57.
go back to reference Han S, Zou H, Lee J-W, Han J, Kim HC, Cheol JJ, et al. miR-1307-3p stimulates breast cancer development and progression by targeting SMYD4. J Cancer. 2019;10:441–8.PubMedPubMedCentralCrossRef Han S, Zou H, Lee J-W, Han J, Kim HC, Cheol JJ, et al. miR-1307-3p stimulates breast cancer development and progression by targeting SMYD4. J Cancer. 2019;10:441–8.PubMedPubMedCentralCrossRef
58.
go back to reference Shimomura A, Shiino S, Kawauchi J, Takizawa S, Sakamoto H, Matsuzaki J, et al. Novel combination of serum microRNA for detecting breast cancer in the early stage. Cancer Sci. 2016;107:326–34.PubMedPubMedCentralCrossRef Shimomura A, Shiino S, Kawauchi J, Takizawa S, Sakamoto H, Matsuzaki J, et al. Novel combination of serum microRNA for detecting breast cancer in the early stage. Cancer Sci. 2016;107:326–34.PubMedPubMedCentralCrossRef
59.
go back to reference McAnena P, Tanriverdi K, Curran C, Gilligan K, Freedman JE, Brown JAL, et al. Circulating microRNAs miR-331 and miR-195 differentiate local luminal a from metastatic breast cancer. BMC Cancer. 2019;19:436.PubMedPubMedCentralCrossRef McAnena P, Tanriverdi K, Curran C, Gilligan K, Freedman JE, Brown JAL, et al. Circulating microRNAs miR-331 and miR-195 differentiate local luminal a from metastatic breast cancer. BMC Cancer. 2019;19:436.PubMedPubMedCentralCrossRef
60.
go back to reference Jiang F, Zhang L, Liu Y, Zhou Y, Wang H. Overexpression of miR-331 indicates poor prognosis and promotes progression of breast cancer. Oncol Res Treat. 2020;43:441–8.PubMedCrossRef Jiang F, Zhang L, Liu Y, Zhou Y, Wang H. Overexpression of miR-331 indicates poor prognosis and promotes progression of breast cancer. Oncol Res Treat. 2020;43:441–8.PubMedCrossRef
61.
go back to reference Pane K, Zanfardino M, Grimaldi AM, Baldassarre G, Salvatore M, Incoronato M, et al. Discovering common miRNA signatures underlying female-specific cancers via a machine learning approach driven by the cancer hallmark ERBB. Biomedicines. 2022;10:1306.PubMedPubMedCentralCrossRef Pane K, Zanfardino M, Grimaldi AM, Baldassarre G, Salvatore M, Incoronato M, et al. Discovering common miRNA signatures underlying female-specific cancers via a machine learning approach driven by the cancer hallmark ERBB. Biomedicines. 2022;10:1306.PubMedPubMedCentralCrossRef
62.
go back to reference Amirfallah A, Knutsdottir H, Arason A, Hilmarsdottir B, Johannsson OT, Agnarsson BA, et al. Hsa-miR-21-3p associates with breast cancer patient survival and targets genes in tumor suppressive pathways. PLoS ONE. 2021;16:1–18.CrossRef Amirfallah A, Knutsdottir H, Arason A, Hilmarsdottir B, Johannsson OT, Agnarsson BA, et al. Hsa-miR-21-3p associates with breast cancer patient survival and targets genes in tumor suppressive pathways. PLoS ONE. 2021;16:1–18.CrossRef
63.
go back to reference Ouyang M, Li Y, Ye S, Ma J, Lu L, Lv W, et al. MicroRNA profiling implies new markers of chemoresistance of triple-negative breast cancer. PLoS ONE. 2014;9: e96228.PubMedPubMedCentralCrossRef Ouyang M, Li Y, Ye S, Ma J, Lu L, Lv W, et al. MicroRNA profiling implies new markers of chemoresistance of triple-negative breast cancer. PLoS ONE. 2014;9: e96228.PubMedPubMedCentralCrossRef
64.
go back to reference Aure M, Leivonen S-K, Fleischer T, Zhu Q, Overgaard J, Alsner J, et al. Individual and combined effects of DNA methylation and copy number alterations on miRNA expression in breast tumors. Genome Biol. 2013;14:R126.PubMedPubMedCentralCrossRef Aure M, Leivonen S-K, Fleischer T, Zhu Q, Overgaard J, Alsner J, et al. Individual and combined effects of DNA methylation and copy number alterations on miRNA expression in breast tumors. Genome Biol. 2013;14:R126.PubMedPubMedCentralCrossRef
65.
go back to reference Maryam M, Naemi M, Hasani SS. A comprehensive review on oncogenic miRNAs in breast cancer. J Genet. 2021;100:15.PubMedCrossRef Maryam M, Naemi M, Hasani SS. A comprehensive review on oncogenic miRNAs in breast cancer. J Genet. 2021;100:15.PubMedCrossRef
66.
go back to reference Gong C, Nie Y, Qu S, Liao J-Y, Cui X, Yao H, et al. miR-21 induces myofibroblast differentiation and promotes the malignant progression of breast phyllodes tumors. Cancer Res. 2014;74:4341–52.PubMedCrossRef Gong C, Nie Y, Qu S, Liao J-Y, Cui X, Yao H, et al. miR-21 induces myofibroblast differentiation and promotes the malignant progression of breast phyllodes tumors. Cancer Res. 2014;74:4341–52.PubMedCrossRef
67.
go back to reference Kahraman M, Röske A, Laufer T, Fehlmann T, Backes C, Kern F, et al. MicroRNA in diagnosis and therapy monitoring of early-stage triple-negative breast cancer. Sci Rep. 2018;8:11584.PubMedPubMedCentralCrossRef Kahraman M, Röske A, Laufer T, Fehlmann T, Backes C, Kern F, et al. MicroRNA in diagnosis and therapy monitoring of early-stage triple-negative breast cancer. Sci Rep. 2018;8:11584.PubMedPubMedCentralCrossRef
Metadata
Title
Circulating miRNAs signature on breast cancer: the MCC-Spain project
Authors
Inés Gómez-Acebo
Javier Llorca
Jessica Alonso-Molero
Marta Díaz-Martínez
Beatriz Pérez-Gómez
Pilar Amiano
Thalía Belmonte
Antonio J. Molina
Rosana Burgui
Gemma Castaño-Vinyals
Víctor Moreno
Ana Molina-Barceló
Rafael Marcos-Gragera
Manolis Kogevinas
Marina Pollán
Trinidad Dierssen-Sotos
Publication date
01-12-2023
Publisher
BioMed Central
Published in
European Journal of Medical Research / Issue 1/2023
Electronic ISSN: 2047-783X
DOI
https://doi.org/10.1186/s40001-023-01471-2

Other articles of this Issue 1/2023

European Journal of Medical Research 1/2023 Go to the issue