Skip to main content
Top
Published in: Breast Cancer Research 1/2022

Open Access 01-12-2022 | Breast Cancer | Research

Development and validation of an AI-enabled digital breast cancer assay to predict early-stage breast cancer recurrence within 6 years

Authors: Gerardo Fernandez, Marcel Prastawa, Abishek Sainath Madduri, Richard Scott, Bahram Marami, Nina Shpalensky, Krystal Cascetta, Mary Sawyer, Monica Chan, Giovanni Koll, Alexander Shtabsky, Aaron Feliz, Thomas Hansen, Brandon Veremis, Carlos Cordon-Cardo, Jack Zeineh, Michael J. Donovan

Published in: Breast Cancer Research | Issue 1/2022

Login to get access

Abstract

Background

Breast cancer (BC) grading plays a critical role in patient management despite the considerable inter- and intra-observer variability, highlighting the need for decision support tools to improve reproducibility and prognostic accuracy for use in clinical practice. The objective was to evaluate the ability of a digital artificial intelligence (AI) assay (PDxBr) to enrich BC grading and improve risk categorization for predicting recurrence.

Methods

In our population-based longitudinal clinical development and validation study, we enrolled 2075 patients from Mount Sinai Hospital with infiltrating ductal carcinoma of the breast. With 3:1 balanced training and validation cohorts, patients were retrospectively followed for a median of 6 years. The main outcome was to validate an automated BC phenotyping system combined with clinical features to produce a binomial risk score predicting BC recurrence at diagnosis.

Results

The PDxBr training model (n = 1559 patients) had a C-index of 0.78 (95% CI, 0.76–0.81) versus clinical 0.71 (95% CI, 0.67–0.74) and image feature models 0.72 (95% CI, 0.70–0.74). A risk score of 58 (scale 0–100) stratified patients as low or high risk, hazard ratio (HR) 5.5 (95% CI 4.19–7.2, p < 0.001), with a sensitivity 0.71, specificity 0.77, NPV 0.95, and PPV 0.32 for predicting BC recurrence within 6 years. In the validation cohort (n = 516), the C-index was 0.75 (95% CI, 0.72–0.79) versus clinical 0.71 (95% CI 0.66–0.75) versus image feature models 0.67 (95% CI, 0.63–071). The validation cohort had an HR of 4.4 (95% CI 2.7–7.1, p < 0.001), sensitivity of 0.60, specificity 0.77, NPV 0.94, and PPV 0.24 for predicting BC recurrence within 6 years. PDxBr also improved Oncotype Recurrence Score (RS) performance: RS 31 cutoff, C-index of 0.36 (95% CI 0.26–0.45), sensitivity 37%, specificity 48%, HR 0.48, p = 0.04 versus Oncotype RS plus AI-grade C-index 0.72 (95% CI 0.67–0.79), sensitivity 78%, specificity 49%, HR 4.6, p < 0.001 versus Oncotype RS plus PDxBr, C-index 0.76 (95% CI 0.70–0.82), sensitivity 67%, specificity 80%, HR 6.1, p < 0.001.

Conclusions

PDxBr is a digital BC test combining automated AI-BC prognostic grade with clinical–pathologic features to predict the risk of early-stage BC recurrence. With future validation studies, we anticipate the PDxBr model will enrich current gene expression assays and enhance treatment decision-making.
Appendix
Available only for authorised users
Literature
2.
go back to reference Rakha EA, Reis-Filho JS, Baehner F, Dabbs DJ, Decker T, Eusebi V, et al. Breast cancer prognostic classification in the molecular era: the role of histological grade. Breast Cancer Res. 2010;12:1–12.CrossRef Rakha EA, Reis-Filho JS, Baehner F, Dabbs DJ, Decker T, Eusebi V, et al. Breast cancer prognostic classification in the molecular era: the role of histological grade. Breast Cancer Res. 2010;12:1–12.CrossRef
3.
go back to reference Rakha EA, Aleskandarany MA, Toss MS, Mongan NP, ElSayed ME, Green AR, et al. Impact of breast cancer grade discordance on prediction of outcome. Histopathology. 2018;73:904–15.CrossRef Rakha EA, Aleskandarany MA, Toss MS, Mongan NP, ElSayed ME, Green AR, et al. Impact of breast cancer grade discordance on prediction of outcome. Histopathology. 2018;73:904–15.CrossRef
4.
go back to reference Jiang Y, Yang M, Wang S, Li X, Sun Y. Emerging role of deep learning-based artificial intelligence in tumor pathology. Cancer Commun. 2020;40:154–66.CrossRef Jiang Y, Yang M, Wang S, Li X, Sun Y. Emerging role of deep learning-based artificial intelligence in tumor pathology. Cancer Commun. 2020;40:154–66.CrossRef
5.
go back to reference Acs B, Rantalainen M, Hartman J. Artificial intelligence as the next step towards precision pathology. J Intern Med. 2020;288:62–81.CrossRef Acs B, Rantalainen M, Hartman J. Artificial intelligence as the next step towards precision pathology. J Intern Med. 2020;288:62–81.CrossRef
6.
go back to reference Nagpal K, Foote D, Tan F, Liu Y, Chen PHC, Steiner DF, et al. Development and validation of a deep learning algorithm for gleason grading of prostate cancer from biopsy specimens. JAMA Oncol. 2020;6:1372–80.CrossRef Nagpal K, Foote D, Tan F, Liu Y, Chen PHC, Steiner DF, et al. Development and validation of a deep learning algorithm for gleason grading of prostate cancer from biopsy specimens. JAMA Oncol. 2020;6:1372–80.CrossRef
7.
go back to reference Elsharawy KA, Gerds TA, Rakha EA, Dalton LW. Artificial intelligence grading of breast cancer: a promising method to refine prognostic classification for management precision. Histopathology. 2021;79:187–99.CrossRef Elsharawy KA, Gerds TA, Rakha EA, Dalton LW. Artificial intelligence grading of breast cancer: a promising method to refine prognostic classification for management precision. Histopathology. 2021;79:187–99.CrossRef
8.
go back to reference Korde LA, Somerfield MR, Carey LA, Crews JR, Denduluri N, Shelley Hwang E, et al. Neoadjuvant chemotherapy, endocrine therapy, and targeted therapy for breast cancer: ASCO guideline. J Clin Oncol. 2021;39:1485–505.CrossRef Korde LA, Somerfield MR, Carey LA, Crews JR, Denduluri N, Shelley Hwang E, et al. Neoadjuvant chemotherapy, endocrine therapy, and targeted therapy for breast cancer: ASCO guideline. J Clin Oncol. 2021;39:1485–505.CrossRef
9.
go back to reference Gradishar WJ, Moran MS, Abraham J, Aft R, Agnese D, Allison KH, et al. NCCN guidelines® insights: breast cancer, version 4.2021: featured updates to the NCCN guidelines. J Natl Compr Cancer Netw. 2021;19:484–93.CrossRef Gradishar WJ, Moran MS, Abraham J, Aft R, Agnese D, Allison KH, et al. NCCN guidelines® insights: breast cancer, version 4.2021: featured updates to the NCCN guidelines. J Natl Compr Cancer Netw. 2021;19:484–93.CrossRef
10.
go back to reference Zare S, Rong J, Daehne S, Roma A, Hasteh F, Dell’Aquila M, et al. Implementation of the 2018 American Society of Clinical Oncology/College of American Pathologists Guidelines on HER2/neu Assessment by FISH in breast cancers: predicted impact in a single institutional cohort. Mod Pathol. 2019;32:1566–73.CrossRef Zare S, Rong J, Daehne S, Roma A, Hasteh F, Dell’Aquila M, et al. Implementation of the 2018 American Society of Clinical Oncology/College of American Pathologists Guidelines on HER2/neu Assessment by FISH in breast cancers: predicted impact in a single institutional cohort. Mod Pathol. 2019;32:1566–73.CrossRef
11.
go back to reference Pérez Ramírez S, del Monte-Millán M, López-Tarruella S, Martínez Jáñez N, Márquez-Rodas I, Lobo Samper F, et al. Prospective, multicenter study on the economic and clinical impact of gene-expression assays in early-stage breast cancer from a single region: the PREGECAM registry experience. Clin Transl Oncol. 2020;22:717–24.CrossRef Pérez Ramírez S, del Monte-Millán M, López-Tarruella S, Martínez Jáñez N, Márquez-Rodas I, Lobo Samper F, et al. Prospective, multicenter study on the economic and clinical impact of gene-expression assays in early-stage breast cancer from a single region: the PREGECAM registry experience. Clin Transl Oncol. 2020;22:717–24.CrossRef
12.
go back to reference Bou Zerdan M, Ibrahim M, Nakib CE, Hajjar R, Assi HI. Genomic assays in node positive breast cancer patients: a review. Front Oncol. 2021;10:609100.CrossRef Bou Zerdan M, Ibrahim M, Nakib CE, Hajjar R, Assi HI. Genomic assays in node positive breast cancer patients: a review. Front Oncol. 2021;10:609100.CrossRef
13.
go back to reference Amat S, Penault-Llorca F, Cure H, Le Bouedëc G, Achard JL, Van Praagh I, et al. Scarff-Bloom-Richardson (SBR) grading: a pleiotropic marker of chemosensitivity in invasive ductal breast carcinomas treated by neoadjuvant chemotherapy. Int J Oncol. 2002;20:791–6. Amat S, Penault-Llorca F, Cure H, Le Bouedëc G, Achard JL, Van Praagh I, et al. Scarff-Bloom-Richardson (SBR) grading: a pleiotropic marker of chemosensitivity in invasive ductal breast carcinomas treated by neoadjuvant chemotherapy. Int J Oncol. 2002;20:791–6.
14.
go back to reference Meyer JS, Alvarez C, Milikowski C, Olson N, Russo I, Russo J, et al. Breast carcinoma malignancy grading by Bloom-Richardson system versus proliferation index: reproducibility of grade and advantages of proliferation index. Mod Pathol. 2005;18:1067–78.CrossRef Meyer JS, Alvarez C, Milikowski C, Olson N, Russo I, Russo J, et al. Breast carcinoma malignancy grading by Bloom-Richardson system versus proliferation index: reproducibility of grade and advantages of proliferation index. Mod Pathol. 2005;18:1067–78.CrossRef
16.
go back to reference Donovan MJ, Fernandez G, Scott R, Khan FM, Zeineh J, Koll G, et al. Development and validation of a novel automated Gleason grade and molecular profile that define a highly predictive prostate cancer progression algorithm-based test. Prostate Cancer Prostatic Dis. 2018;21:594–603.CrossRef Donovan MJ, Fernandez G, Scott R, Khan FM, Zeineh J, Koll G, et al. Development and validation of a novel automated Gleason grade and molecular profile that define a highly predictive prostate cancer progression algorithm-based test. Prostate Cancer Prostatic Dis. 2018;21:594–603.CrossRef
17.
go back to reference Carneiro MG, Cheng R, Zhao L, Jin Y. Particle swarm optimization for network-based data classification. Neural Netw. 2019;110:243–55.CrossRef Carneiro MG, Cheng R, Zhao L, Jin Y. Particle swarm optimization for network-based data classification. Neural Netw. 2019;110:243–55.CrossRef
18.
go back to reference Cardoso F, van’t Veer LJ, Bogaerts J, Slaets L, Viale G, Delaloge S, et al. 70-gene signature as an aid to treatment decisions in early-stage breast cancer. N Engl J Med. 2016;375:717–29.CrossRef Cardoso F, van’t Veer LJ, Bogaerts J, Slaets L, Viale G, Delaloge S, et al. 70-gene signature as an aid to treatment decisions in early-stage breast cancer. N Engl J Med. 2016;375:717–29.CrossRef
19.
go back to reference Sparano JA, Gray RJ, Makower DF, Pritchard KI, Albain KS, Hayes DF, et al. Adjuvant chemotherapy guided by a 21-gene expression assay in breast cancer. N Engl J Med. 2018;379:111–21.CrossRef Sparano JA, Gray RJ, Makower DF, Pritchard KI, Albain KS, Hayes DF, et al. Adjuvant chemotherapy guided by a 21-gene expression assay in breast cancer. N Engl J Med. 2018;379:111–21.CrossRef
20.
go back to reference Shmatko A, Laleh N, Gerstung M, Kather J. Artificial intelligence in histopathology: enhancing cancer research and clinical oncology. Nat Cancer. 2022;3:1026–38.CrossRef Shmatko A, Laleh N, Gerstung M, Kather J. Artificial intelligence in histopathology: enhancing cancer research and clinical oncology. Nat Cancer. 2022;3:1026–38.CrossRef
21.
go back to reference Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med. 2004;351:2817–26.CrossRef Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med. 2004;351:2817–26.CrossRef
22.
go back to reference Weiss A, Chavez-MacGregor M, Lichtensztajn DY, Yi M, Tadros A, Hortobagyi GN, et al. Validation study of the American Joint Committee on Cancer eighth edition prognostic stage compared with the anatomic stage in breast cancer. JAMA Oncol. 2018;4:203–9.CrossRef Weiss A, Chavez-MacGregor M, Lichtensztajn DY, Yi M, Tadros A, Hortobagyi GN, et al. Validation study of the American Joint Committee on Cancer eighth edition prognostic stage compared with the anatomic stage in breast cancer. JAMA Oncol. 2018;4:203–9.CrossRef
23.
go back to reference Shpalensky N, Prastawa M, Scott R, Madduri S, Veremis B, Shtabsky A, et al. An AI-digital breast cancer risk discrimination platform (PreciseDx) using a representative H&E image and selected clinical variables accurately categorized patients with Oncotype Dx low risk Recurrence Scores (RS). 2020 San Antonio Breast Cancer Symp.: Virtual. Poster PS6-09. Shpalensky N, Prastawa M, Scott R, Madduri S, Veremis B, Shtabsky A, et al. An AI-digital breast cancer risk discrimination platform (PreciseDx) using a representative H&E image and selected clinical variables accurately categorized patients with Oncotype Dx low risk Recurrence Scores (RS). 2020 San Antonio Breast Cancer Symp.: Virtual. Poster PS6-09.
24.
go back to reference Donovan MJ, Cordon-Cardo C. Implementation of a precision pathology program focused on oncology-based prognostic and predictive outcomes. Mol Diagn Ther. 2017;21:115–23.CrossRef Donovan MJ, Cordon-Cardo C. Implementation of a precision pathology program focused on oncology-based prognostic and predictive outcomes. Mol Diagn Ther. 2017;21:115–23.CrossRef
25.
go back to reference Reyes SA, De La Cruz LM, Ru M, Pisapati KV, Port E. Practice changing potential of TAILORx: a retrospective review of the national cancer data base from 2010 to 2015. Ann Surg Oncol. 2019;26:3397–408.CrossRef Reyes SA, De La Cruz LM, Ru M, Pisapati KV, Port E. Practice changing potential of TAILORx: a retrospective review of the national cancer data base from 2010 to 2015. Ann Surg Oncol. 2019;26:3397–408.CrossRef
26.
go back to reference Sparano JA, Crager MR, Tang G, Gray RJ, Stemmer SM, Shak S. Development and validation of a tool integrating the 21-gene recurrence score and clinical-pathological features to individualize prognosis and prediction of chemotherapy benefit in early breast cancer. J Clin Oncol. 2021;39:557–64.CrossRef Sparano JA, Crager MR, Tang G, Gray RJ, Stemmer SM, Shak S. Development and validation of a tool integrating the 21-gene recurrence score and clinical-pathological features to individualize prognosis and prediction of chemotherapy benefit in early breast cancer. J Clin Oncol. 2021;39:557–64.CrossRef
27.
go back to reference Davidson TM, Rendi MH, Frederick PD, Onega T, Allison KH, Mercan E, et al. Breast cancer prognostic factors in the digital era: comparison of nottingham grade using whole slide images and glass slides. J Pathol Inform. 2019;10:11.CrossRef Davidson TM, Rendi MH, Frederick PD, Onega T, Allison KH, Mercan E, et al. Breast cancer prognostic factors in the digital era: comparison of nottingham grade using whole slide images and glass slides. J Pathol Inform. 2019;10:11.CrossRef
Metadata
Title
Development and validation of an AI-enabled digital breast cancer assay to predict early-stage breast cancer recurrence within 6 years
Authors
Gerardo Fernandez
Marcel Prastawa
Abishek Sainath Madduri
Richard Scott
Bahram Marami
Nina Shpalensky
Krystal Cascetta
Mary Sawyer
Monica Chan
Giovanni Koll
Alexander Shtabsky
Aaron Feliz
Thomas Hansen
Brandon Veremis
Carlos Cordon-Cardo
Jack Zeineh
Michael J. Donovan
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Breast Cancer Research / Issue 1/2022
Electronic ISSN: 1465-542X
DOI
https://doi.org/10.1186/s13058-022-01592-2

Other articles of this Issue 1/2022

Breast Cancer Research 1/2022 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine