Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2015

Open Access 01-12-2015 | Research article

Brazilian red propolis: phytochemical screening, antioxidant activity and effect against cancer cells

Authors: Izabel Cristina Gomes de Mendonça, Isabel Cristina Celerino de Moraes Porto, Ticiano Gomes do Nascimento, Naiana Soares de Souza, José Marcos dos Santos Oliveira, Rodolfo Elleson dos Santos Arruda, Kristiana Cerqueira Mousinho, Aldenir Feitosa dos Santos, Irinaldo Diniz Basílio-Júnior, Abhishek Parolia, Francisco Stefânio Barreto

Published in: BMC Complementary Medicine and Therapies | Issue 1/2015

Login to get access

Abstract

Background

The implementation of new public healthcare models that stimulate the use of natural products from traditional medicine, as a so-called integrated medicine, refers to an approach that use best of both conventional medicine and traditional medicine. Propolis is a widely used natural product by different ancient cultures and known to exhibit biological activities beneficial for health. The large number of studies conducted with propolis had shown that its chemical composition differs as a function of the climate, plant diversity and bee species and plays an important role on its therapeutic properties. The aim of this study was to analyse the phytochemical profile of the ethanolic extract of red propolis (EEP) and its fractionation, antioxidant action of EEP and its fractions hexane, cloroform and ethyl acetate and cytotoxic activity of EEP on human tumour cell lines SF-295 (glioblastoma), OVCAR-8 (ovary) and HCT-116 (colon).

Methods

EEP was obtained by maceration with absolute ethanol, then it was concentrated in rotaevaporator up to complete evaporation of the solvent. The crude extract was fractionated with hexane, ethyl acetate, chloroform and methanol and they were subjected to phytochemical screening and total phenolic compounds. Antioxidant activity of EEP and fractions was done by means of the 2,2-diphenyl-1-picryhydrazyl (DPPH) method. Biomarkers of red propolis were identified by LC-Orbitrap-FTMS. To assess cytotoxic activity of the extract, cells were exposed to EEP over 72 h. Cell viability was assessed by means of MTT assay. The percentage of cell growth inhibition (IC50) was analysed by means of non-linear regression, and the absorbance values of the various investigated concentrations were subjected to one-factor analysis of variance (ANOVA) followed by Tukey’s or Tamhane’s tests (α = 0.05).

Results

The results obtained using phytochemical screening and LC-Orbitrap-FTMS indicated the presence of phlobaphene tannins, catechins, chalcones, aurones, flavonones, flavonols, xanthones, pentacyclic triterpenoids and guttiferones in Brazilian red propolis. EEP and its hexane, chloroform and ethyl acetate fractions obtained by liquid-liquid partitioning exhibited satisfactory antioxidant percentages. EEP (IC50 < 34.27 μg/mL) exhibited high levels of cytotoxicity on all human tumour cell lines tested when compared to negative control.

Conclusions

C-Orbitrap-FTMS was useful to establish the chemical profile of the red propolis. Brazilian red propolis has antioxidant properties and decreases substantially the percentage of cell survival of human tumour cells; thus, it has potential to serve as an anticancer drug.
Literature
1.
go back to reference Carvalho AC, Perfeito JPS, Silva LV C e, Ramalho LS, Marques RFO, Silveira D. Regulation of herbal medicines in Brazil: advances and perspectives. Braz J Pharm Sci. 2011;47:467–73. Carvalho AC, Perfeito JPS, Silva LV C e, Ramalho LS, Marques RFO, Silveira D. Regulation of herbal medicines in Brazil: advances and perspectives. Braz J Pharm Sci. 2011;47:467–73.
2.
go back to reference Franchi Jr. GC, Moraes CS, Toreti VC, Daugsch A, Nowill AE, Park YK. Comparison of effects of the ethanolic extracts of Brazilian propolis on human leukemic cells as assessed with the MTT assay. Evid Based Complement Alternat Med. 2012; doi:10.1155/2012/918956. Franchi Jr. GC, Moraes CS, Toreti VC, Daugsch A, Nowill AE, Park YK. Comparison of effects of the ethanolic extracts of Brazilian propolis on human leukemic cells as assessed with the MTT assay. Evid Based Complement Alternat Med. 2012; doi:10.​1155/​2012/​918956.
3.
go back to reference Li F, Awale S, Tezuka Y, Kadota S. Cytotoxic constituents from Brazilian red propolis and their structure-activity relationship. Bioorg Med Chem. 2008;15:5434–40.CrossRef Li F, Awale S, Tezuka Y, Kadota S. Cytotoxic constituents from Brazilian red propolis and their structure-activity relationship. Bioorg Med Chem. 2008;15:5434–40.CrossRef
4.
go back to reference Sawadogo WR, Schumacher M, Teiten MH, Dicato M, Diederich M. Traditional pharmacopoeia, plants and derived compounds for cancer therapy. Biochem Pharmacol. 2012;84:1225–40.CrossRefPubMed Sawadogo WR, Schumacher M, Teiten MH, Dicato M, Diederich M. Traditional pharmacopoeia, plants and derived compounds for cancer therapy. Biochem Pharmacol. 2012;84:1225–40.CrossRefPubMed
5.
go back to reference Tang XL. Protective effects of the ethanolic extract of Meliatoosendan fruit against colon cancer. Indian J Biochem Biophys. 2012;49:173–218.PubMed Tang XL. Protective effects of the ethanolic extract of Meliatoosendan fruit against colon cancer. Indian J Biochem Biophys. 2012;49:173–218.PubMed
6.
go back to reference Kuropatnicki AK, Szliszka E, Krol W. Historical aspects of propolis research in modern times. Evid Based Complement Alternat Med. 2013. doi:10.1155/2013/964149. Kuropatnicki AK, Szliszka E, Krol W. Historical aspects of propolis research in modern times. Evid Based Complement Alternat Med. 2013. doi:10.​1155/​2013/​964149.
7.
go back to reference Toreti VC, Sato HH, Pastore GM, Park YK. Recent progress of propolis for its biological and chemical compositions and its botanical origin Evid Based Complement Alternat Med. 2013. doi:10.1155/2013/697390. Toreti VC, Sato HH, Pastore GM, Park YK. Recent progress of propolis for its biological and chemical compositions and its botanical origin Evid Based Complement Alternat Med. 2013. doi:10.​1155/​2013/​697390.
8.
go back to reference Sforcin JM, Bankova V. Propolis: is there a potential for the development of new drugs? J Ethnopharmacol. 2011;133:253–60.CrossRefPubMed Sforcin JM, Bankova V. Propolis: is there a potential for the development of new drugs? J Ethnopharmacol. 2011;133:253–60.CrossRefPubMed
10.
go back to reference Pereira EMR. Clinical evidence of the efficacy of a mouthwash containing propolis for the control of plaque and gingivitis: A phase II study. Evid Based Complement Alternat Med. 2011. doi:10.1155/2011/750249. Pereira EMR. Clinical evidence of the efficacy of a mouthwash containing propolis for the control of plaque and gingivitis: A phase II study. Evid Based Complement Alternat Med. 2011. doi:10.​1155/​2011/​750249.
11.
go back to reference Cavalcante DRR. Effect of green propolis on oral epithelial dysplasia in rats. Braz J Otorhinolaryngol. 2010;77:278–84. Cavalcante DRR. Effect of green propolis on oral epithelial dysplasia in rats. Braz J Otorhinolaryngol. 2010;77:278–84.
12.
go back to reference Frozza CO, Ribeiro TS, Gambato G, Menti C, Moura S, Pinto PM, et al. Proteomic analysis identifies differentially expressed proteins after red propolis treatment in Hep-2 cells. Food Chem Toxicol. 2014;63:195–204.CrossRefPubMed Frozza CO, Ribeiro TS, Gambato G, Menti C, Moura S, Pinto PM, et al. Proteomic analysis identifies differentially expressed proteins after red propolis treatment in Hep-2 cells. Food Chem Toxicol. 2014;63:195–204.CrossRefPubMed
13.
go back to reference Bankova VS, Castro SL, Marcucci MC. Propolis: recent advances in chemistry and plant origin. Apidologie. 2000;31:3–15.CrossRef Bankova VS, Castro SL, Marcucci MC. Propolis: recent advances in chemistry and plant origin. Apidologie. 2000;31:3–15.CrossRef
14.
go back to reference Bankova V. Chemical diversity of propolis and the problem of standardisation. J Ethnopharmacol. 2005;100:114–7.CrossRefPubMed Bankova V. Chemical diversity of propolis and the problem of standardisation. J Ethnopharmacol. 2005;100:114–7.CrossRefPubMed
17.
go back to reference Daugsch A, Fort P, Park YK. Brazilian red propolis—chemical composition and botanical origin. Evid Based Complement Alternat Med. 2008;5:435–41.CrossRefPubMed Daugsch A, Fort P, Park YK. Brazilian red propolis—chemical composition and botanical origin. Evid Based Complement Alternat Med. 2008;5:435–41.CrossRefPubMed
18.
go back to reference Grenho L, Barros J, Ferreira C, Santos VR, Monteiro FJ, Ferraz MP et al. In vitro antimicrobial activity and biocompatibility of propolis containing nanohydroxyapatite. Biomed Mater. 2015; doi:10.1088/1748-6041/10/2/025004. Grenho L, Barros J, Ferreira C, Santos VR, Monteiro FJ, Ferraz MP et al. In vitro antimicrobial activity and biocompatibility of propolis containing nanohydroxyapatite. Biomed Mater. 2015; doi:10.​1088/​1748-6041/​10/​2/​025004.
19.
go back to reference Ozan F, Sümer Z, Polat ZA, Er K, Ozan U, Deger O. Effect of mouthrinse containing propolis on oral microorganisms and human gingival fibroblasts. Eur J Dent. 2007;1:195–201.PubMedPubMedCentral Ozan F, Sümer Z, Polat ZA, Er K, Ozan U, Deger O. Effect of mouthrinse containing propolis on oral microorganisms and human gingival fibroblasts. Eur J Dent. 2007;1:195–201.PubMedPubMedCentral
20.
go back to reference Dota KF, Consolaro ME, Svidzinski TI, Bruschi ML. Antifungal activity of brazilian propolis microparticles against yeasts isolated from vulvovaginal candidiasis. Evid Based Complement Alternat Med. 2011. doi:10.1093/ecam/neq029. Dota KF, Consolaro ME, Svidzinski TI, Bruschi ML. Antifungal activity of brazilian propolis microparticles against yeasts isolated from vulvovaginal candidiasis. Evid Based Complement Alternat Med. 2011. doi:10.​1093/​ecam/​neq029.
21.
go back to reference Pippi B, Lana AJ, Moraes RC, Güez CM, Machado M, de Oliveira LF, et al. In vitro evaluation of the acquisition of resistance, antifungal activity and synergism of Brazilian red propolis with antifungal drugs on candida spp. J Appl Microbiol. 2015;118:839–50.CrossRefPubMed Pippi B, Lana AJ, Moraes RC, Güez CM, Machado M, de Oliveira LF, et al. In vitro evaluation of the acquisition of resistance, antifungal activity and synergism of Brazilian red propolis with antifungal drugs on candida spp. J Appl Microbiol. 2015;118:839–50.CrossRefPubMed
22.
go back to reference Begnini KR, de Leon PMM, Thurow H, Schultze E, Campos VF, Rodrigues FM, et al. Brazilian red propolis induces apoptosis-like cell death and decreases migration potential in bladder cancer cells. Evid Based Complement Alternat Med. 2014. doi:10.1155/2014/639856. Begnini KR, de Leon PMM, Thurow H, Schultze E, Campos VF, Rodrigues FM, et al. Brazilian red propolis induces apoptosis-like cell death and decreases migration potential in bladder cancer cells. Evid Based Complement Alternat Med. 2014. doi:10.​1155/​2014/​639856.
23.
go back to reference Isla MI, Dantur Y, Salas A, Danert C, Zampini C, Arias M, et al. Effect of seasonality on chemical composition and antibacterial and anti candida activities of Argentine propolis. Design of a topical formulation. Nat Prod Commun. 2012;7:131518. Isla MI, Dantur Y, Salas A, Danert C, Zampini C, Arias M, et al. Effect of seasonality on chemical composition and antibacterial and anti candida activities of Argentine propolis. Design of a topical formulation. Nat Prod Commun. 2012;7:131518.
24.
go back to reference Jorge R, Furtado NAJC, Sousa JPB, da Silva Filho AA, Gregório-Jr LE, Martins CHG, et al. Brazilian propolis: seasonal variation of the prenylated p-coumaric acids and antimicrobial activity. Pharmaceutical Biol. 2008;46:889–93.CrossRef Jorge R, Furtado NAJC, Sousa JPB, da Silva Filho AA, Gregório-Jr LE, Martins CHG, et al. Brazilian propolis: seasonal variation of the prenylated p-coumaric acids and antimicrobial activity. Pharmaceutical Biol. 2008;46:889–93.CrossRef
25.
26.
go back to reference Park YK, Alencar SM, Aguiar CL. Botanical origin and chemical composition of Brazilian propolis. J Agric Food Chem. 2002;50:2502–06.CrossRefPubMed Park YK, Alencar SM, Aguiar CL. Botanical origin and chemical composition of Brazilian propolis. J Agric Food Chem. 2002;50:2502–06.CrossRefPubMed
27.
go back to reference Silva BB, Rosalen PL, Cury JA, Ikegaki M, Souza VC, Esteves A, et al. Chemical composition and botanical origin of red propolis, a new type of brazilian propolis. Evid Based Complement Alternat Med. 2008;5:313–6.CrossRefPubMed Silva BB, Rosalen PL, Cury JA, Ikegaki M, Souza VC, Esteves A, et al. Chemical composition and botanical origin of red propolis, a new type of brazilian propolis. Evid Based Complement Alternat Med. 2008;5:313–6.CrossRefPubMed
28.
go back to reference Trusheva B, Popova M, Bankova V, Simova S, Marcucci MC, Miorin PL, et al. Bioactive constituents of Brazilian red propolis. Evid Based Complement Alternat Med. 2006;3:249–54.CrossRefPubMedPubMedCentral Trusheva B, Popova M, Bankova V, Simova S, Marcucci MC, Miorin PL, et al. Bioactive constituents of Brazilian red propolis. Evid Based Complement Alternat Med. 2006;3:249–54.CrossRefPubMedPubMedCentral
29.
go back to reference Costa Silva MS. Study of the effect of some fractions of Brazilian red propolis on tumor cells proliferation. 153f. Master's dissertation, Medicine School. São Paulo, Brazil: São Paulo University; 2007. Costa Silva MS. Study of the effect of some fractions of Brazilian red propolis on tumor cells proliferation. 153f. Master's dissertation, Medicine School. São Paulo, Brazil: São Paulo University; 2007.
30.
go back to reference Frozza COS, Garcia CSC, Gambato G, Souza MDO, Salvador M, Moura S, et al. Chemical characterization, antioxidant and cytotoxic activities of Brazilian red propolis. Food Chem Toxicol. 2013;52:137–42.CrossRefPubMed Frozza COS, Garcia CSC, Gambato G, Souza MDO, Salvador M, Moura S, et al. Chemical characterization, antioxidant and cytotoxic activities of Brazilian red propolis. Food Chem Toxicol. 2013;52:137–42.CrossRefPubMed
31.
go back to reference Li Y, Tong Y, Cao R, Tian Z, Yang B, Yang P. In vivo enhancement of anticancer therapy using bare or chemotherapeutic drug-bearing nanodiamond particles. Int J Nanomedicine. 2014;21:1065–82.CrossRef Li Y, Tong Y, Cao R, Tian Z, Yang B, Yang P. In vivo enhancement of anticancer therapy using bare or chemotherapeutic drug-bearing nanodiamond particles. Int J Nanomedicine. 2014;21:1065–82.CrossRef
32.
go back to reference Matos FJA. Introduction to Experimental Phytochemistry. 2nd ed. Fortaleza: Ed UFC; 1997. Matos FJA. Introduction to Experimental Phytochemistry. 2nd ed. Fortaleza: Ed UFC; 1997.
33.
go back to reference Brand-Williams W, Cuvelier ME, Berset C. Use of a free radical method to evaluate antioxidant activity. Lebensm-Wiss Technol. 1995;28:25–30.CrossRef Brand-Williams W, Cuvelier ME, Berset C. Use of a free radical method to evaluate antioxidant activity. Lebensm-Wiss Technol. 1995;28:25–30.CrossRef
34.
go back to reference Firuzi O, Miri R, Asadollahi M, Eslami S, Jassbi AR. Cytotoxic, antioxidant and antimicrobial activities and phenolic contents of eleven salvia species from Iran. Iran J Pharm Res. 2013;12:801–10.PubMedPubMedCentral Firuzi O, Miri R, Asadollahi M, Eslami S, Jassbi AR. Cytotoxic, antioxidant and antimicrobial activities and phenolic contents of eleven salvia species from Iran. Iran J Pharm Res. 2013;12:801–10.PubMedPubMedCentral
35.
go back to reference Righi AA, Negri G, Salatino A. Comparative chemistry of propolis from eight Brazilian localities. Evid Based Complement Alternat Med. 2013. doi:10.1155/2013/267878. Righi AA, Negri G, Salatino A. Comparative chemistry of propolis from eight Brazilian localities. Evid Based Complement Alternat Med. 2013. doi:10.​1155/​2013/​267878.
36.
go back to reference Wenyingn R, Zhenhua Q, Hongwei W, Lei Z, Li Z. Flavonoids: promising anticancer agents. Med Res Rev. 2003;23:519–34.CrossRef Wenyingn R, Zhenhua Q, Hongwei W, Lei Z, Li Z. Flavonoids: promising anticancer agents. Med Res Rev. 2003;23:519–34.CrossRef
37.
go back to reference Wang T, Chen L, Wu W, Long Y, Wang R. Potential cytoprotection: antioxidant defence by caffeic acid phenethyl ester against free radical-induced damage of lipids, DNA, and proteins. Can J Physiol Pharmacol. 2008;86:279–87.CrossRefPubMed Wang T, Chen L, Wu W, Long Y, Wang R. Potential cytoprotection: antioxidant defence by caffeic acid phenethyl ester against free radical-induced damage of lipids, DNA, and proteins. Can J Physiol Pharmacol. 2008;86:279–87.CrossRefPubMed
38.
go back to reference Kuntz S, Wenzel U, Daniel H. Comparative analysis of the effects of flavonoids on proliferation, cytotoxicity, and apoptosis in human colon cancer cell lines. Eur J Nutr. 1999;38:133–42.CrossRefPubMed Kuntz S, Wenzel U, Daniel H. Comparative analysis of the effects of flavonoids on proliferation, cytotoxicity, and apoptosis in human colon cancer cell lines. Eur J Nutr. 1999;38:133–42.CrossRefPubMed
39.
go back to reference Kamei H, Koide T, Kojimam T, Hasegawa M, Terabe K, Umeda T, et al. Flavonoid-mediated tumor growth suppression demonstrated by in vivo study. Cancer Biother Radiopharm. 1996;11:193–96.CrossRefPubMed Kamei H, Koide T, Kojimam T, Hasegawa M, Terabe K, Umeda T, et al. Flavonoid-mediated tumor growth suppression demonstrated by in vivo study. Cancer Biother Radiopharm. 1996;11:193–96.CrossRefPubMed
40.
go back to reference Mulholland PJ, Ferry DR, Anderson D, Hussain SA, Young AM, Cook JE, et al. Pre-clinical and clinical study of QC12, a water-soluble, pro-drug of quercetin. Ann Oncol. 2001;12:245–8.CrossRefPubMed Mulholland PJ, Ferry DR, Anderson D, Hussain SA, Young AM, Cook JE, et al. Pre-clinical and clinical study of QC12, a water-soluble, pro-drug of quercetin. Ann Oncol. 2001;12:245–8.CrossRefPubMed
41.
go back to reference Szliszka E, Sokół-Łętowska A, Kucharska AZ, Jaworska D, Czuba ZP, Król W. Ethanolic extract of polish propolis: chemical composition and trail-r2 death receptor targeting apoptotic activity against prostate cancer cells. Evid Based Complement Alternat Med. 2013. doi: 10.1155/2013/757628. Szliszka E, Sokół-Łętowska A, Kucharska AZ, Jaworska D, Czuba ZP, Król W. Ethanolic extract of polish propolis: chemical composition and trail-r2 death receptor targeting apoptotic activity against prostate cancer cells. Evid Based Complement Alternat Med. 2013. doi: 10.​1155/​2013/​757628.
42.
go back to reference Kamiya T, Nishihara H, Hara H, Adachi T. Ethanol extract of Brazilian red propolis induces apoptosis in human breast cancer MCF-7 cells through endoplasmic reticulum stress. J Agric Food Chem. 2012;60:11065–70.CrossRefPubMed Kamiya T, Nishihara H, Hara H, Adachi T. Ethanol extract of Brazilian red propolis induces apoptosis in human breast cancer MCF-7 cells through endoplasmic reticulum stress. J Agric Food Chem. 2012;60:11065–70.CrossRefPubMed
43.
go back to reference Ramos AFN, Miranda JL. Propolis: a review of its anti-inflammatory and healing actions. J Venom Anim Toxins Incl Trop Dis. 2007;13:697–710.CrossRef Ramos AFN, Miranda JL. Propolis: a review of its anti-inflammatory and healing actions. J Venom Anim Toxins Incl Trop Dis. 2007;13:697–710.CrossRef
44.
go back to reference Okoh SO, Asekun OT, Familoni OB, Afolayan AJ. Antioxidant and free radical scavenging capacity of seed and shell essential oils extracted from abrus precatorius (L). Antioxidants. 2014;3:278–87.CrossRefPubMedPubMedCentral Okoh SO, Asekun OT, Familoni OB, Afolayan AJ. Antioxidant and free radical scavenging capacity of seed and shell essential oils extracted from abrus precatorius (L). Antioxidants. 2014;3:278–87.CrossRefPubMedPubMedCentral
45.
go back to reference Cabral ISR, Oldoni TLC, Prado A. Phenolic composition and antibacterial and antioxidant activity of Brazilian red propolis. Quim Nova. 2009;32:1523–7.CrossRef Cabral ISR, Oldoni TLC, Prado A. Phenolic composition and antibacterial and antioxidant activity of Brazilian red propolis. Quim Nova. 2009;32:1523–7.CrossRef
46.
go back to reference Zhang X, Yeung ED, Wang J, Panzhinskiy EE, Tong C, Li W, et al. Isoliquiritigenin, a natural anti-oxidant, selectively inhibits the proliferation of prostate cancer cells. Clin Exp Pharmacol Physiol. 2010;37:841–7.PubMed Zhang X, Yeung ED, Wang J, Panzhinskiy EE, Tong C, Li W, et al. Isoliquiritigenin, a natural anti-oxidant, selectively inhibits the proliferation of prostate cancer cells. Clin Exp Pharmacol Physiol. 2010;37:841–7.PubMed
47.
go back to reference Ondrias K, Stasko A, Hromadová M, Suchy V, Nagy M. Pinobanksin inhibits peroxidation of low density lipoprotein and it has electron donor properties reducing alpha-tocopherol radicals. DiePharmazie. 1997;52:566–7. Ondrias K, Stasko A, Hromadová M, Suchy V, Nagy M. Pinobanksin inhibits peroxidation of low density lipoprotein and it has electron donor properties reducing alpha-tocopherol radicals. DiePharmazie. 1997;52:566–7.
48.
go back to reference Blanco-Ayala T, Lugo-Huitrón R, Serrano-López EM, Reyes-Chilpa R, Rangel-López E, Pineda B, et al. Antioxidant properties of xanthones from Calophyllum brasiliense: prevention of oxidative damage induced by FeSO. BMC Complement Altern Med. 2013;11:213. 62. Blanco-Ayala T, Lugo-Huitrón R, Serrano-López EM, Reyes-Chilpa R, Rangel-López E, Pineda B, et al. Antioxidant properties of xanthones from Calophyllum brasiliense: prevention of oxidative damage induced by FeSO. BMC Complement Altern Med. 2013;11:213. 62.
49.
go back to reference Kiełbus M, Skalicka-Woźniak K, Grabarska A, Jeleniewicz W, Dmoszyńska-Graniczka M, Marston A, et al. 7-Substituted Coumarins Inhibit Proliferation and Migration of Laryngeal Cancer Cells In Vitro. Anticancer Res. 2013;33:4347–56.PubMed Kiełbus M, Skalicka-Woźniak K, Grabarska A, Jeleniewicz W, Dmoszyńska-Graniczka M, Marston A, et al. 7-Substituted Coumarins Inhibit Proliferation and Migration of Laryngeal Cancer Cells In Vitro. Anticancer Res. 2013;33:4347–56.PubMed
50.
go back to reference Rashed KN, Butnariu M. Isolation and antimicrobial and antioxidant evaluation of bioactive compounds from eriobotrya japonica stems. Adv Pharm Bull. 2014;4:75–81.PubMed Rashed KN, Butnariu M. Isolation and antimicrobial and antioxidant evaluation of bioactive compounds from eriobotrya japonica stems. Adv Pharm Bull. 2014;4:75–81.PubMed
51.
go back to reference Zhang T, Omar R, Siheri W, Al-Mutairi S, Clements C, Fearnley J, et al. Chromatographic analysis with different detectors in the chemical characterisation and dereplication of African propolis. Talanta. 2014;120:181–90.CrossRefPubMed Zhang T, Omar R, Siheri W, Al-Mutairi S, Clements C, Fearnley J, et al. Chromatographic analysis with different detectors in the chemical characterisation and dereplication of African propolis. Talanta. 2014;120:181–90.CrossRefPubMed
Metadata
Title
Brazilian red propolis: phytochemical screening, antioxidant activity and effect against cancer cells
Authors
Izabel Cristina Gomes de Mendonça
Isabel Cristina Celerino de Moraes Porto
Ticiano Gomes do Nascimento
Naiana Soares de Souza
José Marcos dos Santos Oliveira
Rodolfo Elleson dos Santos Arruda
Kristiana Cerqueira Mousinho
Aldenir Feitosa dos Santos
Irinaldo Diniz Basílio-Júnior
Abhishek Parolia
Francisco Stefânio Barreto
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2015
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-015-0888-9

Other articles of this Issue 1/2015

BMC Complementary Medicine and Therapies 1/2015 Go to the issue