Skip to main content
Top
Published in: Seminars in Immunopathology 5/2020

01-10-2020 | Review

Brain aging and garbage cleaning

Modelling the role of sleep, glymphatic system, and microglia senescence in the propagation of inflammaging

Authors: Susanna Gordleeva, Oleg Kanakov, Mikhail Ivanchenko, Alexey Zaikin, Claudio Franceschi

Published in: Seminars in Immunopathology | Issue 5/2020

Login to get access

Abstract

Brain aging is a complex process involving many functions of our body and described by the interplay of a sleep pattern and changes in the metabolic waste concentration regulated by the microglial function and the glymphatic system. We review the existing modelling approaches to this topic and derive a novel mathematical model to describe the crosstalk between these components within the conceptual framework of inflammaging. Analysis of the model gives insight into the dynamics of garbage concentration and linked microglial senescence process resulting from a normal or disrupted sleep pattern, hence, explaining an underlying mechanism behind healthy or unhealthy brain aging. The model incorporates accumulation and elimination of garbage, induction of glial activation by garbage, and glial senescence by over-activation, as well as the production of pro-inflammatory molecules by their senescence-associated secretory phenotype (SASP). Assuming that insufficient sleep leads to the increase of garbage concentration and promotes senescence, the model predicts that if the accumulation of senescent glia overcomes an inflammaging threshold, further progression of senescence becomes unstoppable even if a normal sleep pattern is restored. Inverting this process by “rejuvenating the brain” is only possible via a reset of concentration of senescent glia below this threshold. Our model approach enables analysis of space-time dynamics of senescence, and in this way, we show that heterogeneous patterns of inflammation will accelerate the propagation of senescence profile through a network, confirming a negative effect of heterogeneity.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kennedy BK, Berger SL, Brunet A, Campisi J, Cuervo AM, Epel ES, Franceschi C, Lithgow GJ, Morimoto RI, Pessin JE, Rando TA, Richardson A, Schadt EE, Wyss-Coray T, Sierra F (2014) Geroscience: Linking aging to chronic disease. Cell 159(4):709–713PubMedPubMedCentralCrossRef Kennedy BK, Berger SL, Brunet A, Campisi J, Cuervo AM, Epel ES, Franceschi C, Lithgow GJ, Morimoto RI, Pessin JE, Rando TA, Richardson A, Schadt EE, Wyss-Coray T, Sierra F (2014) Geroscience: Linking aging to chronic disease. Cell 159(4):709–713PubMedPubMedCentralCrossRef
2.
go back to reference Whitwell HJ, Bacalini MG, Blyuss O, Chen S, Garagnani P, Gordleeva SY, Jalan S, Ivanchenko M, Kanakov O, Kustikova V, Mariño IP, Meyerov I, Ullner E, Franceschi C, Zaikin A (2020) The human body as a super network: Digital methods to analyze the propagation of aging. Front Aging Neurosci 12:136PubMedPubMedCentralCrossRef Whitwell HJ, Bacalini MG, Blyuss O, Chen S, Garagnani P, Gordleeva SY, Jalan S, Ivanchenko M, Kanakov O, Kustikova V, Mariño IP, Meyerov I, Ullner E, Franceschi C, Zaikin A (2020) The human body as a super network: Digital methods to analyze the propagation of aging. Front Aging Neurosci 12:136PubMedPubMedCentralCrossRef
4.
go back to reference Sundaram S, Hughes RL, Peterson E, Müller-Oehring EM, Brontë-Stewart HM, Poston KL, Faerman A, Bhowmick C, Schulte T (2019) Establishing a framework for neuropathological correlates and glymphatic system functioning in Parkinson’s disease. Neuroscience & Biobehavioral Reviews 103:305–315CrossRef Sundaram S, Hughes RL, Peterson E, Müller-Oehring EM, Brontë-Stewart HM, Poston KL, Faerman A, Bhowmick C, Schulte T (2019) Establishing a framework for neuropathological correlates and glymphatic system functioning in Parkinson’s disease. Neuroscience & Biobehavioral Reviews 103:305–315CrossRef
5.
go back to reference Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, O’Donnell J, Christensen DJ, Nicholson C, Iliff JJ, Takano T, Deane R, Nedergaard M (2013) Sleep drives metabolite clearance from the adult brain. Science 342:373–377PubMedCrossRef Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, O’Donnell J, Christensen DJ, Nicholson C, Iliff JJ, Takano T, Deane R, Nedergaard M (2013) Sleep drives metabolite clearance from the adult brain. Science 342:373–377PubMedCrossRef
7.
go back to reference Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, Benveniste H, Vates GE, Deane R, Goldman SA, Nagelhus EA, Nedergaard M (2012) A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med 4(147):147ra111–147ra111PubMedPubMedCentralCrossRef Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, Benveniste H, Vates GE, Deane R, Goldman SA, Nagelhus EA, Nedergaard M (2012) A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med 4(147):147ra111–147ra111PubMedPubMedCentralCrossRef
9.
go back to reference Kress BT, Iliff JJ, Xia M, Wang M, Wei HS, Zeppenfeld D, Xie L, Kang H, Xu Q, Liew JA, Plog BA, Ding F, Deane R, Nedergaard M (2014) Impairment of paravascular clearance pathways in the aging brain. Ann Neurol 76(6):845–861PubMedPubMedCentralCrossRef Kress BT, Iliff JJ, Xia M, Wang M, Wei HS, Zeppenfeld D, Xie L, Kang H, Xu Q, Liew JA, Plog BA, Ding F, Deane R, Nedergaard M (2014) Impairment of paravascular clearance pathways in the aging brain. Ann Neurol 76(6):845–861PubMedPubMedCentralCrossRef
10.
go back to reference Verheggen ICM, Boxtel MPJV, Verhey FRJ, Jansen JFA, Backes WH (2018) Interaction between blood-brain barrier and glymphatic system in solute clearance. Neuroscience & Biobehavioral Reviews 90:26–33CrossRef Verheggen ICM, Boxtel MPJV, Verhey FRJ, Jansen JFA, Backes WH (2018) Interaction between blood-brain barrier and glymphatic system in solute clearance. Neuroscience & Biobehavioral Reviews 90:26–33CrossRef
11.
go back to reference Tarasoff-Conway JM, Carare RO, Osorio RS, Glodzik L, Butler T, Fieremans E, Axel L, Rusinek H, Nicholson C, Zlokovic BV, Frangione B, Blennow K, Ménard J, Zetterberg H, Wisniewski T, deLeon MJ (2015) Clearance systems in the brain — implications for Alzheimer disease. Nat Rev Neurol 11(8):457–470PubMedPubMedCentralCrossRef Tarasoff-Conway JM, Carare RO, Osorio RS, Glodzik L, Butler T, Fieremans E, Axel L, Rusinek H, Nicholson C, Zlokovic BV, Frangione B, Blennow K, Ménard J, Zetterberg H, Wisniewski T, deLeon MJ (2015) Clearance systems in the brain — implications for Alzheimer disease. Nat Rev Neurol 11(8):457–470PubMedPubMedCentralCrossRef
12.
go back to reference Abbott NJ, Patabendige AAK, Dolman DEM, Yusof SR, Begley DJ (2010) Structure and function of the blood–brain barrier. Neurobiol Dis 37(1):13–25PubMedCrossRef Abbott NJ, Patabendige AAK, Dolman DEM, Yusof SR, Begley DJ (2010) Structure and function of the blood–brain barrier. Neurobiol Dis 37(1):13–25PubMedCrossRef
13.
go back to reference Yin K-J, Cirrito JR, Yan P, Hu X, Xiao Q, Pan X, Bateman R, Song H, Hsu F-F, Turk J, Xu J, Hsu CY, Mills JC, Holtzman DM, Lee J-M (2006) Matrix metalloproteinases expressed by astrocytes mediate extracellular amyloid-beta peptide catabolism. J Neurosci 26(43):10939–10948PubMedPubMedCentralCrossRef Yin K-J, Cirrito JR, Yan P, Hu X, Xiao Q, Pan X, Bateman R, Song H, Hsu F-F, Turk J, Xu J, Hsu CY, Mills JC, Holtzman DM, Lee J-M (2006) Matrix metalloproteinases expressed by astrocytes mediate extracellular amyloid-beta peptide catabolism. J Neurosci 26(43):10939–10948PubMedPubMedCentralCrossRef
14.
go back to reference Wilcock DM, Munireddy SK, Rosenthal A, Ugen KE, Gordon MN, Morgan D (2004) Microglial activation facilitates Aβ plaque removal following intracranial anti-Aβ antibody administration. Neurobiol Dis 15(1):11–20PubMedCrossRef Wilcock DM, Munireddy SK, Rosenthal A, Ugen KE, Gordon MN, Morgan D (2004) Microglial activation facilitates Aβ plaque removal following intracranial anti-Aβ antibody administration. Neurobiol Dis 15(1):11–20PubMedCrossRef
15.
go back to reference Hawkes CA, McLaurin J (2009) Selective targeting of perivascular macrophages for clearance of β-amyloid in cerebral amyloid angiopathy. Proceedings of the National Academy of Sciences 106(4):1261–1266CrossRef Hawkes CA, McLaurin J (2009) Selective targeting of perivascular macrophages for clearance of β-amyloid in cerebral amyloid angiopathy. Proceedings of the National Academy of Sciences 106(4):1261–1266CrossRef
16.
go back to reference Morrone CD, Liu M, Black SE, McLaurin J (2015) Interaction between therapeutic interventions for Alzheimer’s disease and physiological Aβ clearance mechanisms. Front Aging Neurosci 7:64PubMedPubMedCentralCrossRef Morrone CD, Liu M, Black SE, McLaurin J (2015) Interaction between therapeutic interventions for Alzheimer’s disease and physiological Aβ clearance mechanisms. Front Aging Neurosci 7:64PubMedPubMedCentralCrossRef
17.
go back to reference Salter MW, Stevens B (2017) Microglia emerge as central players in brain disease. Nat Med 23(9):1018–1027PubMedCrossRef Salter MW, Stevens B (2017) Microglia emerge as central players in brain disease. Nat Med 23(9):1018–1027PubMedCrossRef
18.
go back to reference Tay TL, Savage JC, Hui CW, Bisht K, Tremblay M-E (2016) Microglia across the lifespan: from origin to function in brain development, plasticity and cognition. The Journal of Physiology 595 (6):1929–1945PubMedPubMedCentralCrossRef Tay TL, Savage JC, Hui CW, Bisht K, Tremblay M-E (2016) Microglia across the lifespan: from origin to function in brain development, plasticity and cognition. The Journal of Physiology 595 (6):1929–1945PubMedPubMedCentralCrossRef
21.
go back to reference Ritzel RM, Patel AR, Pan S, Crapser J, Hammond M, Jellison E, McCullough LD (2015) Age- and location-related changes in microglial function. Neurobiol Aging 36(6):2153–2163PubMedCrossRef Ritzel RM, Patel AR, Pan S, Crapser J, Hammond M, Jellison E, McCullough LD (2015) Age- and location-related changes in microglial function. Neurobiol Aging 36(6):2153–2163PubMedCrossRef
22.
go back to reference Clarke LE, Liddelow SA, Chakraborty C, Münch AE, Heiman M, Barres BA (2018) Normal aging induces A1-like astrocyte reactivity. Proceedings of the National Academy of Sciences 115 (8):E1896–E1905CrossRef Clarke LE, Liddelow SA, Chakraborty C, Münch AE, Heiman M, Barres BA (2018) Normal aging induces A1-like astrocyte reactivity. Proceedings of the National Academy of Sciences 115 (8):E1896–E1905CrossRef
23.
go back to reference Mullington JM, Simpson NS, Meier-Ewert HK, Haack M (2010) Sleep loss and inflammation. Best Practice & Research Clinical Endocrinology & Metabolism 24(5):775–784CrossRef Mullington JM, Simpson NS, Meier-Ewert HK, Haack M (2010) Sleep loss and inflammation. Best Practice & Research Clinical Endocrinology & Metabolism 24(5):775–784CrossRef
24.
go back to reference Hurtado-Alvarado G, Pavón L, Castillo-García SA, Hernández ME, Domínguez-Salazar E, Velázquez-Moctezuma J, Gómez-González B (2013) Sleep loss as a factor to induce cellular and molecular inflammatory variations. Clin Dev Immunol 2013:1–14CrossRef Hurtado-Alvarado G, Pavón L, Castillo-García SA, Hernández ME, Domínguez-Salazar E, Velázquez-Moctezuma J, Gómez-González B (2013) Sleep loss as a factor to induce cellular and molecular inflammatory variations. Clin Dev Immunol 2013:1–14CrossRef
25.
go back to reference Irwin MR, Olmstead R, Carroll JE (2016) Sleep disturbance, sleep duration, and inflammation: A systematic review and meta-analysis of cohort studies and experimental sleep deprivation. Biol Psychiatry 80 (1):40–52PubMedCrossRef Irwin MR, Olmstead R, Carroll JE (2016) Sleep disturbance, sleep duration, and inflammation: A systematic review and meta-analysis of cohort studies and experimental sleep deprivation. Biol Psychiatry 80 (1):40–52PubMedCrossRef
26.
go back to reference Bellesi M, deVivo L, Chini M, Gilli F, Tononi G, Cirelli C (2017) Sleep loss promotes astrocytic phagocytosis and microglial activation in mouse cerebral cortex. The Journal of Neuroscience 37 (21):5263–5273PubMedPubMedCentralCrossRef Bellesi M, deVivo L, Chini M, Gilli F, Tononi G, Cirelli C (2017) Sleep loss promotes astrocytic phagocytosis and microglial activation in mouse cerebral cortex. The Journal of Neuroscience 37 (21):5263–5273PubMedPubMedCentralCrossRef
27.
go back to reference Perry VH, Holmes C (2014) Microglial priming in neurodegenerative disease. Nat Rev Neurol 10(4):217–224PubMedCrossRef Perry VH, Holmes C (2014) Microglial priming in neurodegenerative disease. Nat Rev Neurol 10(4):217–224PubMedCrossRef
28.
go back to reference Boespflug EL, Iliff JJ (2018) The emerging relationship between interstitial fluid-cerebrospinal fluid exchange, amyloid-β, and sleep. Biological psychiatry 83:328–336PubMedCrossRef Boespflug EL, Iliff JJ (2018) The emerging relationship between interstitial fluid-cerebrospinal fluid exchange, amyloid-β, and sleep. Biological psychiatry 83:328–336PubMedCrossRef
29.
go back to reference Carroll JE, Cole SW, Seeman TE, Breen EC, Witarama T, Arevalo JMG, Ma J, Irwin MR (2016) Partial sleep deprivation activates the DNA damage response (DDR) and the senescence-associated secretory phenotype (SASP) in aged adult humans. Brain Behav Immun 51:223–229PubMedCrossRef Carroll JE, Cole SW, Seeman TE, Breen EC, Witarama T, Arevalo JMG, Ma J, Irwin MR (2016) Partial sleep deprivation activates the DNA damage response (DDR) and the senescence-associated secretory phenotype (SASP) in aged adult humans. Brain Behav Immun 51:223–229PubMedCrossRef
30.
go back to reference Ritzel RM, Doran SJ, Glaser EP, Meadows VE, Faden AI, Stoica BA, Loane DJ (2019) Old age increases microglial senescence, exacerbates secondary neuroinflammation, and worsens neurological outcomes after acute traumatic brain injury in mice. Neurobiol Aging 77:194–206PubMedPubMedCentralCrossRef Ritzel RM, Doran SJ, Glaser EP, Meadows VE, Faden AI, Stoica BA, Loane DJ (2019) Old age increases microglial senescence, exacerbates secondary neuroinflammation, and worsens neurological outcomes after acute traumatic brain injury in mice. Neurobiol Aging 77:194–206PubMedPubMedCentralCrossRef
31.
go back to reference Baker DJ, Petersen RC (2018) Cellular senescence in brain aging and neurodegenerative diseases: evidence and perspectives. The Journal of clinical investigation 128:1208–1216PubMedPubMedCentralCrossRef Baker DJ, Petersen RC (2018) Cellular senescence in brain aging and neurodegenerative diseases: evidence and perspectives. The Journal of clinical investigation 128:1208–1216PubMedPubMedCentralCrossRef
32.
go back to reference Salminen A, Ojala J, Kaarniranta K, Haapasalo A, Hiltunen M, Soininen H (2011) Astrocytes in the aging brain express characteristics of senescence-associated secretory phenotype. Eur J NeuroSci 34(1):3–11PubMedCrossRef Salminen A, Ojala J, Kaarniranta K, Haapasalo A, Hiltunen M, Soininen H (2011) Astrocytes in the aging brain express characteristics of senescence-associated secretory phenotype. Eur J NeuroSci 34(1):3–11PubMedCrossRef
33.
34.
go back to reference Chen NC, Partridge AT, Tuzer F, Cohen J, Nacarelli T, Navas-Martín S, Sell C, Torres C, Martín-García J (2018) Induction of a senescence-like phenotype in cultured human fetal microglia during HIV-1 infection. The Journals of Gerontology: Series A 73(9):1187–1196CrossRef Chen NC, Partridge AT, Tuzer F, Cohen J, Nacarelli T, Navas-Martín S, Sell C, Torres C, Martín-García J (2018) Induction of a senescence-like phenotype in cultured human fetal microglia during HIV-1 infection. The Journals of Gerontology: Series A 73(9):1187–1196CrossRef
35.
go back to reference Nelson G, Wordsworth J, Wang C, Jurk D, Lawless C, Martin-Ruiz C, von Zglinicki T (2012) A senescent cell bystander effect: senescence-induced senescence. Aging Cell 11(2):345–349PubMedCrossRef Nelson G, Wordsworth J, Wang C, Jurk D, Lawless C, Martin-Ruiz C, von Zglinicki T (2012) A senescent cell bystander effect: senescence-induced senescence. Aging Cell 11(2):345–349PubMedCrossRef
36.
go back to reference Prattichizzo F, Bonafè M, Olivieri F, Franceschi C (2016) Senescence associated macrophages and “macroph-aging”: are they pieces of the same puzzle?. Aging 8(12):3159–3160PubMedPubMedCentralCrossRef Prattichizzo F, Bonafè M, Olivieri F, Franceschi C (2016) Senescence associated macrophages and “macroph-aging”: are they pieces of the same puzzle?. Aging 8(12):3159–3160PubMedPubMedCentralCrossRef
37.
go back to reference Franceschi C, Campisi J (2014) Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences 69(Suppl 1):S4–S9CrossRef Franceschi C, Campisi J (2014) Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences 69(Suppl 1):S4–S9CrossRef
38.
go back to reference Franceschi C, Garagnani P, Parini P, Giuliani C, Santoro A (2018) Inflammaging: a new immune–metabolic viewpoint for age-related diseases. Nat Rev Endocrinol 14(10):576– 590PubMedCrossRef Franceschi C, Garagnani P, Parini P, Giuliani C, Santoro A (2018) Inflammaging: a new immune–metabolic viewpoint for age-related diseases. Nat Rev Endocrinol 14(10):576– 590PubMedCrossRef
39.
go back to reference Franceschi C, Zaikin A, Gordleeva S, Ivanchenko M, Bonifazi F, Storci G, Bonafe M (2018) Inflammaging 2018: An update and a model. Semin Immunol 40:1–5PubMedCrossRef Franceschi C, Zaikin A, Gordleeva S, Ivanchenko M, Bonifazi F, Storci G, Bonafe M (2018) Inflammaging 2018: An update and a model. Semin Immunol 40:1–5PubMedCrossRef
40.
go back to reference Franceschi C, Garagnani P, Vitale G, Capri M, Salvioli S (2017) Inflammaging and ‘garb-aging’. Trends in Endocrinology & Metabolism 28(3):199–212CrossRef Franceschi C, Garagnani P, Vitale G, Capri M, Salvioli S (2017) Inflammaging and ‘garb-aging’. Trends in Endocrinology & Metabolism 28(3):199–212CrossRef
41.
go back to reference Wekerle H (2018) Brain inflammatory cascade controlled by gut-derived molecules. Nature 557 (7707):642–643PubMedCrossRef Wekerle H (2018) Brain inflammatory cascade controlled by gut-derived molecules. Nature 557 (7707):642–643PubMedCrossRef
42.
go back to reference Gompertz B (1825) XXIV. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. In a letter to Francis Baily, Esq. F. R. S. &c. Philos Trans R Soc Lond 115:513–583 Gompertz B (1825) XXIV. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. In a letter to Francis Baily, Esq. F. R. S. &c. Philos Trans R Soc Lond 115:513–583
43.
go back to reference Brown KS, Math B, Forbes WF (1974) A mathematical model of aging processes. II. J Gerontol 29(4):401–409PubMedCrossRef Brown KS, Math B, Forbes WF (1974) A mathematical model of aging processes. II. J Gerontol 29(4):401–409PubMedCrossRef
44.
go back to reference Periwal A (2013) Cellular senescence in the Penna model of aging. Phys Rev E 88(5):052702CrossRef Periwal A (2013) Cellular senescence in the Penna model of aging. Phys Rev E 88(5):052702CrossRef
45.
go back to reference deMedeiros N GF, Onody RN (2001) Heumann-Hötzel model for aging revisited. Phys. Rev. E 64:041915CrossRef deMedeiros N GF, Onody RN (2001) Heumann-Hötzel model for aging revisited. Phys. Rev. E 64:041915CrossRef
46.
go back to reference Taneja S, Mitnitski AB, Rockwood K, Rutenberg AD (2016) Dynamical network model for age-related health deficits and mortality. Phys Rev E 93(2):022309PubMedCrossRef Taneja S, Mitnitski AB, Rockwood K, Rutenberg AD (2016) Dynamical network model for age-related health deficits and mortality. Phys Rev E 93(2):022309PubMedCrossRef
47.
go back to reference Farrell SG, Mitnitski AB, Theou O, Rockwood K, Rutenberg AD (2018) Probing the network structure of health deficits in human aging. Phys. Rev. E 98:032302CrossRef Farrell SG, Mitnitski AB, Theou O, Rockwood K, Rutenberg AD (2018) Probing the network structure of health deficits in human aging. Phys. Rev. E 98:032302CrossRef
48.
go back to reference Farrell SG, Mitnitski AB, Rockwood K, Rutenberg AD (2016) Network model of human aging: Frailty limits and information measures. Phys. Rev. E 94:052409PubMedCrossRef Farrell SG, Mitnitski AB, Rockwood K, Rutenberg AD (2016) Network model of human aging: Frailty limits and information measures. Phys. Rev. E 94:052409PubMedCrossRef
49.
go back to reference Weismann A (1889) The duration of life. In: Poulton EB, Schönland S, Shipley AE (eds) Essays upon heredity and kindred biological problems. Authorised translation, Clarendon Press, Oxford Weismann A (1889) The duration of life. In: Poulton EB, Schönland S, Shipley AE (eds) Essays upon heredity and kindred biological problems. Authorised translation, Clarendon Press, Oxford
50.
go back to reference Pearl R (1928) The rate of living: Being an account of some experimental studies on the biology of life duration. Knopf, New York Pearl R (1928) The rate of living: Being an account of some experimental studies on the biology of life duration. Knopf, New York
51.
go back to reference Sohal RS (1986) The rate of living theory: a contemporary interpretation. In: Collatz KG, Sohal RS (eds) Insect aging, Springer, pp 23–44 Sohal RS (1986) The rate of living theory: a contemporary interpretation. In: Collatz KG, Sohal RS (eds) Insect aging, Springer, pp 23–44
52.
go back to reference Medawar PB (1952) An unsolved problem of biology: an inaugural lecture delivered at university college, london, 6 december 1951. H.K. Lewis & Co. for U.C.L., London. Reprinted in [53] Medawar PB (1952) An unsolved problem of biology: an inaugural lecture delivered at university college, london, 6 december 1951. H.K. Lewis & Co. for U.C.L., London. Reprinted in [53]
53.
go back to reference Medawar PB (1957) An unsolved problem of biology. In: The uniqueness of the individual, pp 44–70. Basic Books, New York Medawar PB (1957) An unsolved problem of biology. In: The uniqueness of the individual, pp 44–70. Basic Books, New York
55.
go back to reference Emanuel NM (1976) Free radicals and the action of inhibitors of radical processes under pathological states and ageing in living organisms and in man. Q Rev Biophys 9(2):283–308PubMedCrossRef Emanuel NM (1976) Free radicals and the action of inhibitors of radical processes under pathological states and ageing in living organisms and in man. Q Rev Biophys 9(2):283–308PubMedCrossRef
56.
go back to reference Nesse RM, Williams GC (1995) Evolution by natural selection. In: Evolution and Healing: New Science of Darwinian Medicine, pp 13–25. Weidenfeld & Nicolson, London Nesse RM, Williams GC (1995) Evolution by natural selection. In: Evolution and Healing: New Science of Darwinian Medicine, pp 13–25. Weidenfeld & Nicolson, London
57.
go back to reference Clarke JM, Smith JM (1961) Two phases of ageing in drosophila subobscura. J Exp Biol 38 (3):679–684 Clarke JM, Smith JM (1961) Two phases of ageing in drosophila subobscura. J Exp Biol 38 (3):679–684
58.
go back to reference Smith JM (1963) Temperature and the rate of ageing in poikilotherms. Nature 199(4891):400–402CrossRef Smith JM (1963) Temperature and the rate of ageing in poikilotherms. Nature 199(4891):400–402CrossRef
60.
go back to reference Gladyshev GP (1999) Thermodynamic theory of biological evolution and aging. Experimental confirmation of theory. Entropy 1(4):55–68CrossRef Gladyshev GP (1999) Thermodynamic theory of biological evolution and aging. Experimental confirmation of theory. Entropy 1(4):55–68CrossRef
61.
go back to reference Olovnikov AM (2003) The redusome hypothesis of aging and the control of biological time during individual development. Biochemistry (Moscow) 68:2–33CrossRef Olovnikov AM (2003) The redusome hypothesis of aging and the control of biological time during individual development. Biochemistry (Moscow) 68:2–33CrossRef
62.
go back to reference Holbek S, Bendtsen KM, Juul J (2013) Moderate stem-cell telomere shortening rate postpones cancer onset in a stochastic model. Phys. Rev. E 88:042706CrossRef Holbek S, Bendtsen KM, Juul J (2013) Moderate stem-cell telomere shortening rate postpones cancer onset in a stochastic model. Phys. Rev. E 88:042706CrossRef
63.
go back to reference Mc Auley MT, Mooney KM (2015) Computationally modeling lipid metabolism and aging: A mini-review. Computational and Structural Biotechnology Journal 13:38–46PubMedCrossRef Mc Auley MT, Mooney KM (2015) Computationally modeling lipid metabolism and aging: A mini-review. Computational and Structural Biotechnology Journal 13:38–46PubMedCrossRef
64.
go back to reference Mc Auley MT, Guimera AM, Hodgson D, Mcdonald N, Mooney KM, Morgan AE, Proctor CJ (2017) Modelling the molecular mechanisms of aging. Biosci Rep 37(1):BSR20160177PubMedPubMedCentralCrossRef Mc Auley MT, Guimera AM, Hodgson D, Mcdonald N, Mooney KM, Morgan AE, Proctor CJ (2017) Modelling the molecular mechanisms of aging. Biosci Rep 37(1):BSR20160177PubMedPubMedCentralCrossRef
66.
go back to reference Arino O, Kimmel M, Webb GF (1995) Mathematical modeling of the loss of telomere sequences. J Theor Biol 177(1):45–57PubMedCrossRef Arino O, Kimmel M, Webb GF (1995) Mathematical modeling of the loss of telomere sequences. J Theor Biol 177(1):45–57PubMedCrossRef
67.
68.
go back to reference Tan Z (1999) Telomere shortening and the population size-dependency of life span of human cell culture: further implication for two proliferation-restricting telomeres. Exp Gerontol 34(7):831–842PubMedCrossRef Tan Z (1999) Telomere shortening and the population size-dependency of life span of human cell culture: further implication for two proliferation-restricting telomeres. Exp Gerontol 34(7):831–842PubMedCrossRef
69.
go back to reference Labbadia J, Morimoto RI (2015) The biology of proteostasis in aging and disease. Ann Rev Biochem 84(1):435–464PubMedCrossRef Labbadia J, Morimoto RI (2015) The biology of proteostasis in aging and disease. Ann Rev Biochem 84(1):435–464PubMedCrossRef
70.
go back to reference Zou J, Guo Y, Guettouche T, Smith DF, Voellmy R (1998) Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell 94(4):471–480PubMedCrossRef Zou J, Guo Y, Guettouche T, Smith DF, Voellmy R (1998) Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell 94(4):471–480PubMedCrossRef
71.
go back to reference Liepe J, Holzhütter H-G, Bellavista E, Kloetzel PM, Stumpf MichaelPH, Mishto M (2015) Quantitative time-resolved analysis reveals intricate, differential regulation of standard- and immuno-proteasomes. eLife 4:e07545PubMedPubMedCentralCrossRef Liepe J, Holzhütter H-G, Bellavista E, Kloetzel PM, Stumpf MichaelPH, Mishto M (2015) Quantitative time-resolved analysis reveals intricate, differential regulation of standard- and immuno-proteasomes. eLife 4:e07545PubMedPubMedCentralCrossRef
72.
go back to reference Proctor CJ, Tsirigotis M, Gray DA (2007) An in silico model of the ubiquitin-proteasome system that incorporates normal homeostasis and age-related decline. BMC Systems Biology 1(1):17PubMedPubMedCentralCrossRef Proctor CJ, Tsirigotis M, Gray DA (2007) An in silico model of the ubiquitin-proteasome system that incorporates normal homeostasis and age-related decline. BMC Systems Biology 1(1):17PubMedPubMedCentralCrossRef
73.
go back to reference Tavassoly I, Parmar J, Shajahan-Haq AN, Clarke R, Baumann WT, Tyson JJ (2015) Dynamic modeling of the interaction between autophagy and apoptosis in mammalian cells. CPT: Pharmacometrics & Systems Pharmacology 4(4):263–272 Tavassoly I, Parmar J, Shajahan-Haq AN, Clarke R, Baumann WT, Tyson JJ (2015) Dynamic modeling of the interaction between autophagy and apoptosis in mammalian cells. CPT: Pharmacometrics & Systems Pharmacology 4(4):263–272
74.
go back to reference Schulzer M, Lee CS, Mak EK, Vingerhoets F JG, Calne DB (1994) A mathematical model of pathogenesis in idiopathic parkinsonism. Brain 117(3):509–516PubMedCrossRef Schulzer M, Lee CS, Mak EK, Vingerhoets F JG, Calne DB (1994) A mathematical model of pathogenesis in idiopathic parkinsonism. Brain 117(3):509–516PubMedCrossRef
75.
go back to reference Raichur A, Vali S, Gorin F (2006) Dynamic modeling of alpha-synuclein aggregation for the sporadic and genetic forms of Parkinson’s disease. Neuroscience 142(3):859–870PubMedCrossRef Raichur A, Vali S, Gorin F (2006) Dynamic modeling of alpha-synuclein aggregation for the sporadic and genetic forms of Parkinson’s disease. Neuroscience 142(3):859–870PubMedCrossRef
76.
77.
go back to reference Cloutier M, Wellstead P (2012) Dynamic modelling of protein and oxidative metabolisms simulates the pathogenesis of Parkinson’s disease. IET Systems Biology 6(3):65PubMedCrossRef Cloutier M, Wellstead P (2012) Dynamic modelling of protein and oxidative metabolisms simulates the pathogenesis of Parkinson’s disease. IET Systems Biology 6(3):65PubMedCrossRef
78.
go back to reference Proctor CJ, Pienaar I, Elson JL, Kirkwood ThomasBL (2012) Aggregation, impaired degradation and immunization targeting of amyloid-beta dimers in Alzheimer’s disease: a stochastic modelling approach. Mol Neurodegener 7(1):32PubMedPubMedCentralCrossRef Proctor CJ, Pienaar I, Elson JL, Kirkwood ThomasBL (2012) Aggregation, impaired degradation and immunization targeting of amyloid-beta dimers in Alzheimer’s disease: a stochastic modelling approach. Mol Neurodegener 7(1):32PubMedPubMedCentralCrossRef
79.
80.
go back to reference Kowald A, Kirkwood T BL (2011) Evolution of the mitochondrial fusion-fission cycle and its role in aging. Proceedings of the National Academy of Sciences 108(25):10237– 10242CrossRef Kowald A, Kirkwood T BL (2011) Evolution of the mitochondrial fusion-fission cycle and its role in aging. Proceedings of the National Academy of Sciences 108(25):10237– 10242CrossRef
81.
go back to reference Pezze PD, Sonntag AG, Thien A, Prentzell MT, Godel M, Fischer S, Neumann-Haefelin E, Huber TB, Baumeister R, Shanley DP, Thedieck K (2012) A dynamic network model of mTOR signaling reveals TSC-independent mTORC2 regulation. Sci Signal 5(217):ra25–ra25 Pezze PD, Sonntag AG, Thien A, Prentzell MT, Godel M, Fischer S, Neumann-Haefelin E, Huber TB, Baumeister R, Shanley DP, Thedieck K (2012) A dynamic network model of mTOR signaling reveals TSC-independent mTORC2 regulation. Sci Signal 5(217):ra25–ra25
82.
go back to reference Sonntag AG, Pezze PD, Shanley DP, Thedieck K (2012) A modelling-experimental approach reveals insulin receptor substrate (IRS)-dependent regulation of adenosine monosphosphate-dependent kinase (AMPK) by insulin. FEBS Journal 279(18):3314–3328PubMedCrossRef Sonntag AG, Pezze PD, Shanley DP, Thedieck K (2012) A modelling-experimental approach reveals insulin receptor substrate (IRS)-dependent regulation of adenosine monosphosphate-dependent kinase (AMPK) by insulin. FEBS Journal 279(18):3314–3328PubMedCrossRef
83.
go back to reference Pezze PD, Nelson G, Otten EG, Korolchuk VI, Kirkwood T BL, von Zglinicki T, Shanley DP (2014) Dynamic modelling of pathways to cellular senescence reveals strategies for targeted interventions. PLoS Computational Biology 10(8): e1003728CrossRef Pezze PD, Nelson G, Otten EG, Korolchuk VI, Kirkwood T BL, von Zglinicki T, Shanley DP (2014) Dynamic modelling of pathways to cellular senescence reveals strategies for targeted interventions. PLoS Computational Biology 10(8): e1003728CrossRef
84.
go back to reference Oeckinghaus A, Ghosh S (2009) The NF-κ B family of transcription factors and its regulation. Cold Spring Harbor Perspectives in Biology 1 (4):a000034–a000034PubMedPubMedCentralCrossRef Oeckinghaus A, Ghosh S (2009) The NF-κ B family of transcription factors and its regulation. Cold Spring Harbor Perspectives in Biology 1 (4):a000034–a000034PubMedPubMedCentralCrossRef
87.
go back to reference Williams R, Timmis J, Qwarnstrom E (2014) Computational models of the NF-κ B signalling pathway. Computation 2(4):131–158CrossRef Williams R, Timmis J, Qwarnstrom E (2014) Computational models of the NF-κ B signalling pathway. Computation 2(4):131–158CrossRef
88.
go back to reference Scheff JD, Calvano SE, Lowry SF, Androulakis IP (2010) Modeling the influence of circadian rhythms on the acute inflammatory response. J Theor Biol 264(3):1068–1076PubMedCrossRef Scheff JD, Calvano SE, Lowry SF, Androulakis IP (2010) Modeling the influence of circadian rhythms on the acute inflammatory response. J Theor Biol 264(3):1068–1076PubMedCrossRef
89.
go back to reference McGovern AP, Powell BE, Chevassut TJT (2012) A dynamic multi-compartmental model of DNA methylation with demonstrable predictive value in hematological malignancies. J Theor Biol 310:14–20PubMedCrossRef McGovern AP, Powell BE, Chevassut TJT (2012) A dynamic multi-compartmental model of DNA methylation with demonstrable predictive value in hematological malignancies. J Theor Biol 310:14–20PubMedCrossRef
90.
go back to reference Przybilla J, Rohlf T, Loeffler M, Galle J (2014) Understanding epigenetic changes in aging stem cells — a computational model approach. Aging Cell 13(2):320–328PubMedPubMedCentralCrossRef Przybilla J, Rohlf T, Loeffler M, Galle J (2014) Understanding epigenetic changes in aging stem cells — a computational model approach. Aging Cell 13(2):320–328PubMedPubMedCentralCrossRef
92.
go back to reference Lai X, Wolkenhauer O, Vera J (2016) Understanding microRNA-mediated gene regulatory networks through mathematical modelling. Nucleic Acids Res 44(13):6019–6035PubMedPubMedCentralCrossRef Lai X, Wolkenhauer O, Vera J (2016) Understanding microRNA-mediated gene regulatory networks through mathematical modelling. Nucleic Acids Res 44(13):6019–6035PubMedPubMedCentralCrossRef
94.
go back to reference Pekovic V, Hutchison CJ (2008) Adult stem cell maintenance and tissue regeneration in the ageing context: the role for A-type lamins as intrinsic modulators of ageing in adult stem cells and their niches. J Anat 213(1):5–25PubMedPubMedCentralCrossRef Pekovic V, Hutchison CJ (2008) Adult stem cell maintenance and tissue regeneration in the ageing context: the role for A-type lamins as intrinsic modulators of ageing in adult stem cells and their niches. J Anat 213(1):5–25PubMedPubMedCentralCrossRef
95.
go back to reference Duscher D, Rennert RC, Januszyk M, Anghel E, Maan ZN, Whittam AJ, Perez MG, Kosaraju R, Hu MS, Walmsley GG, Atashroo D, Khong S, Butte AJ, Gurtner GC (2014) Aging disrupts cell subpopulation dynamics and diminishes the function of mesenchymal stem cells. Scientific Reports 4 (1):7144PubMedPubMedCentralCrossRef Duscher D, Rennert RC, Januszyk M, Anghel E, Maan ZN, Whittam AJ, Perez MG, Kosaraju R, Hu MS, Walmsley GG, Atashroo D, Khong S, Butte AJ, Gurtner GC (2014) Aging disrupts cell subpopulation dynamics and diminishes the function of mesenchymal stem cells. Scientific Reports 4 (1):7144PubMedPubMedCentralCrossRef
96.
go back to reference Kyrtsos CR, Baras JS (2015) Modeling the role of the glymphatic pathway and cerebral blood vessel properties in Alzheimer’s disease pathogenesis. PLOS ONE 10(10):e0139574PubMedPubMedCentralCrossRef Kyrtsos CR, Baras JS (2015) Modeling the role of the glymphatic pathway and cerebral blood vessel properties in Alzheimer’s disease pathogenesis. PLOS ONE 10(10):e0139574PubMedPubMedCentralCrossRef
97.
go back to reference Leloup J-C, Goldbeter A (2008) Modeling the circadian clock: From molecular mechanism to physiological disorders. BioEssays 30(6):590–600PubMedCrossRef Leloup J-C, Goldbeter A (2008) Modeling the circadian clock: From molecular mechanism to physiological disorders. BioEssays 30(6):590–600PubMedCrossRef
98.
go back to reference Altinok A, Lévi F, Goldbeter A (2007) A cell cycle automaton model for probing circadian patterns of anticancer drug delivery. Adv Drug Deliv Rev 59(9-10):1036–1053PubMedCrossRef Altinok A, Lévi F, Goldbeter A (2007) A cell cycle automaton model for probing circadian patterns of anticancer drug delivery. Adv Drug Deliv Rev 59(9-10):1036–1053PubMedCrossRef
99.
go back to reference Irwin MR (2019) Sleep and inflammation: partners in sickness and in health. Nat Rev Immunol 19(11):702–715PubMedCrossRef Irwin MR (2019) Sleep and inflammation: partners in sickness and in health. Nat Rev Immunol 19(11):702–715PubMedCrossRef
101.
go back to reference Albrecht U, Ripperger JA (2018) Circadian clocks and sleep: Impact of rhythmic metabolism and waste clearance on the brain. Trends Neurosci 41(10):677–688PubMedCrossRef Albrecht U, Ripperger JA (2018) Circadian clocks and sleep: Impact of rhythmic metabolism and waste clearance on the brain. Trends Neurosci 41(10):677–688PubMedCrossRef
103.
go back to reference Obata Y, Castaño A, Boeing S, Bon-Frauches AC, Fung C, Fallesen T, de Agüero MG, Yilmaz B, Lopes R, Huseynova A, Horswell S, Maradana MR, Boesmans W, Berghe PV, Murray AJ, Stockinger B, Macpherson AJ, Pachnis V (2020) Neuronal programming by microbiota regulates intestinal physiology. Nature 578(7794):284–289PubMedCrossRef Obata Y, Castaño A, Boeing S, Bon-Frauches AC, Fung C, Fallesen T, de Agüero MG, Yilmaz B, Lopes R, Huseynova A, Horswell S, Maradana MR, Boesmans W, Berghe PV, Murray AJ, Stockinger B, Macpherson AJ, Pachnis V (2020) Neuronal programming by microbiota regulates intestinal physiology. Nature 578(7794):284–289PubMedCrossRef
104.
go back to reference Franceschi C, Ostan R, Santoro A (2018) Nutrition and inflammation: Are centenarians similar to individuals on calorie-restricted diets?. Annu Rev Nutr 38(1):329–356PubMedCrossRef Franceschi C, Ostan R, Santoro A (2018) Nutrition and inflammation: Are centenarians similar to individuals on calorie-restricted diets?. Annu Rev Nutr 38(1):329–356PubMedCrossRef
105.
go back to reference Stenholm S, Head J, Kivimäki M, Hanson L LM, Pentti J, Rod NH, Clark AJ, Oksanen T, Westerlund H, Vahtera J (2018) Sleep duration and sleep disturbances as predictors of healthy and chronic disease–free life expectancy between ages 50 and 75: A pooled analysis of three cohorts. The Journals of Gerontology: Series A 74(2):204–210CrossRef Stenholm S, Head J, Kivimäki M, Hanson L LM, Pentti J, Rod NH, Clark AJ, Oksanen T, Westerlund H, Vahtera J (2018) Sleep duration and sleep disturbances as predictors of healthy and chronic disease–free life expectancy between ages 50 and 75: A pooled analysis of three cohorts. The Journals of Gerontology: Series A 74(2):204–210CrossRef
106.
go back to reference Tobaldini E, Fiorelli EM, Solbiati M, Costantino G, Nobili L, Montano N (2018) Short sleep duration and cardiometabolic risk: from pathophysiology to clinical evidence. Nat Rev Cardiol 16 (4):213–224CrossRef Tobaldini E, Fiorelli EM, Solbiati M, Costantino G, Nobili L, Montano N (2018) Short sleep duration and cardiometabolic risk: from pathophysiology to clinical evidence. Nat Rev Cardiol 16 (4):213–224CrossRef
107.
go back to reference Gerdes E OW, Zhu Y, Tchkonia T, Kirkland JL (2020) Discovery, development, and future application of senolytics: theories and predictions. The FEBS Journal 287(12):2418–2427CrossRef Gerdes E OW, Zhu Y, Tchkonia T, Kirkland JL (2020) Discovery, development, and future application of senolytics: theories and predictions. The FEBS Journal 287(12):2418–2427CrossRef
108.
go back to reference Khosla S, Farr JN, Tchkonia T, Kirkland JL (2020) The role of cellular senescence in ageing and endocrine disease. Nat Rev Endocrinol 16(5):263–275PubMedCrossRef Khosla S, Farr JN, Tchkonia T, Kirkland JL (2020) The role of cellular senescence in ageing and endocrine disease. Nat Rev Endocrinol 16(5):263–275PubMedCrossRef
109.
go back to reference Musi N, Valentine JM, Sickora KR, Baeuerle E, Thompson CS, Shen Q, Orr ME (2018) Tau protein aggregation is associated with cellular senescence in the brain. Aging Cell 17(6):e12840PubMedPubMedCentralCrossRef Musi N, Valentine JM, Sickora KR, Baeuerle E, Thompson CS, Shen Q, Orr ME (2018) Tau protein aggregation is associated with cellular senescence in the brain. Aging Cell 17(6):e12840PubMedPubMedCentralCrossRef
110.
go back to reference Zhang P, Kishimoto Y, Grammatikakis I, Gottimukkala K, Cutler RG, Zhang S, Abdelmohsen K, Bohr VA, Sen JM, Gorospe M, Mattson MP (2019) Senolytic therapy alleviates aβ-associated oligodendrocyte progenitor cell senescence and cognitive deficits in an alzheimer’s disease model. Nat Neurosci 22(5):719–728PubMedPubMedCentralCrossRef Zhang P, Kishimoto Y, Grammatikakis I, Gottimukkala K, Cutler RG, Zhang S, Abdelmohsen K, Bohr VA, Sen JM, Gorospe M, Mattson MP (2019) Senolytic therapy alleviates aβ-associated oligodendrocyte progenitor cell senescence and cognitive deficits in an alzheimer’s disease model. Nat Neurosci 22(5):719–728PubMedPubMedCentralCrossRef
111.
go back to reference Chinta SJ, Woods G, Demaria M, Rane A, Zou Y, McQuade A, Rajagopalan S, Limbad C, Madden DT, Campisi J, Andersen JK (2018) Cellular senescence is induced by the environmental neurotoxin paraquat and contributes to neuropathology linked to parkinson’s disease. Cell Reports 22(4):930–940PubMedCrossRef Chinta SJ, Woods G, Demaria M, Rane A, Zou Y, McQuade A, Rajagopalan S, Limbad C, Madden DT, Campisi J, Andersen JK (2018) Cellular senescence is induced by the environmental neurotoxin paraquat and contributes to neuropathology linked to parkinson’s disease. Cell Reports 22(4):930–940PubMedCrossRef
112.
go back to reference Bussian TJ, Aziz A, Meyer CF, Swenson BL, van Deursen JM, Baker DJ (2018) Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline. Nature 562(7728):578–582PubMedPubMedCentralCrossRef Bussian TJ, Aziz A, Meyer CF, Swenson BL, van Deursen JM, Baker DJ (2018) Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline. Nature 562(7728):578–582PubMedPubMedCentralCrossRef
113.
go back to reference Hickson LJ, Prata L GPL, Bobart SA, Evans TK, Giorgadze N, Hashmi SK, Herrmann SM, Jensen MD, Jia Q, Jordan KL, Kellogg TA, Khosla S, Koerber DM, Lagnado AB, Lawson DK, LeBrasseur NK, Lerman LO, McDonald KM, McKenzie TJ, Passos JF, Pignolo RJ, Pirtskhalava T, Saadiq IM, Schaefer KK, Textor SC, Victorelli SG, Volkman TL, Xue A, Wentworth MA, Gerdes E OW, Zhu Y, Tchkonia T, Kirkland JL (2019) Senolytics decrease senescent cells in humans: Preliminary report from a clinical trial of dasatinib plus quercetin in individuals with diabetic kidney disease. EBioMedicine 47:446–456PubMedPubMedCentralCrossRef Hickson LJ, Prata L GPL, Bobart SA, Evans TK, Giorgadze N, Hashmi SK, Herrmann SM, Jensen MD, Jia Q, Jordan KL, Kellogg TA, Khosla S, Koerber DM, Lagnado AB, Lawson DK, LeBrasseur NK, Lerman LO, McDonald KM, McKenzie TJ, Passos JF, Pignolo RJ, Pirtskhalava T, Saadiq IM, Schaefer KK, Textor SC, Victorelli SG, Volkman TL, Xue A, Wentworth MA, Gerdes E OW, Zhu Y, Tchkonia T, Kirkland JL (2019) Senolytics decrease senescent cells in humans: Preliminary report from a clinical trial of dasatinib plus quercetin in individuals with diabetic kidney disease. EBioMedicine 47:446–456PubMedPubMedCentralCrossRef
114.
go back to reference Benveniste H, Liu X, Koundal S, Sanggaard S, Lee H, Wardlaw J (2018) The glymphatic system and waste clearance with brain aging: A review. Gerontology 65(2):106–119PubMedCrossRef Benveniste H, Liu X, Koundal S, Sanggaard S, Lee H, Wardlaw J (2018) The glymphatic system and waste clearance with brain aging: A review. Gerontology 65(2):106–119PubMedCrossRef
115.
go back to reference Xu M, Bradley EW, Weivoda MM, Hwang SM, Pirtskhalava T, Decklever T, Curran GL, Ogrodnik M, Jurk D, Johnson KO, Lowe V, Tchkonia T, Westendorf JJ, Kirkland JL (2017) Transplanted Senescent Cells Induce an Osteoarthritis-Like Condition in Mice. The Journals of Gerontology: Series A 72(6):780–785 Xu M, Bradley EW, Weivoda MM, Hwang SM, Pirtskhalava T, Decklever T, Curran GL, Ogrodnik M, Jurk D, Johnson KO, Lowe V, Tchkonia T, Westendorf JJ, Kirkland JL (2017) Transplanted Senescent Cells Induce an Osteoarthritis-Like Condition in Mice. The Journals of Gerontology: Series A 72(6):780–785
116.
go back to reference Hall BM, Balan V, Gleiberman AS, Strom E, Krasnov P, Virtuoso LP, Rydkina E, Vujcic S, Balan K, Gitlin I, Leonova K, Polinsky A, Chernova OB, Gudkov AV (2016) Aging of mice is associated with p16(Ink4a)- and β-galactosidase-positive macrophage accumulation that can be induced in young mice by senescent cells. Aging 8(7):1294–1315PubMedPubMedCentralCrossRef Hall BM, Balan V, Gleiberman AS, Strom E, Krasnov P, Virtuoso LP, Rydkina E, Vujcic S, Balan K, Gitlin I, Leonova K, Polinsky A, Chernova OB, Gudkov AV (2016) Aging of mice is associated with p16(Ink4a)- and β-galactosidase-positive macrophage accumulation that can be induced in young mice by senescent cells. Aging 8(7):1294–1315PubMedPubMedCentralCrossRef
117.
Metadata
Title
Brain aging and garbage cleaning
Modelling the role of sleep, glymphatic system, and microglia senescence in the propagation of inflammaging
Authors
Susanna Gordleeva
Oleg Kanakov
Mikhail Ivanchenko
Alexey Zaikin
Claudio Franceschi
Publication date
01-10-2020
Publisher
Springer Berlin Heidelberg
Published in
Seminars in Immunopathology / Issue 5/2020
Print ISSN: 1863-2297
Electronic ISSN: 1863-2300
DOI
https://doi.org/10.1007/s00281-020-00816-x

Other articles of this Issue 5/2020

Seminars in Immunopathology 5/2020 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.