Skip to main content
Top
Published in: Knee Surgery, Sports Traumatology, Arthroscopy 5/2015

01-05-2015 | Experimental Study

Bone substitutes and implantation depths for subchondral bone repair in osteochondral defects of porcine knee joints

Authors: Tomohiko Matsuo, Keisuke Kita, Tatsuo Mae, Yasukazu Yonetani, Satoshi Miyamoto, Hideki Yoshikawa, Ken Nakata

Published in: Knee Surgery, Sports Traumatology, Arthroscopy | Issue 5/2015

Login to get access

Abstract

Purpose

The purpose of this study was to identify the optimal material and implantation method for subchondral bone repair.

Methods

Four osteochondral defects in a femoral groove were created in both knees of 12 pigs, and the total number of defects was 96. Eight defects were left empty (empty group). Beta-tricalcium phosphate (β-TCP) bone substitutes with 75 and 67 % porosity were implanted in 30 and 29 defects, respectively (β-TCP75 and β-TCP67 groups). Hydroxyapatite (HA) bone substitutes with 75 % porosity were filled in 29 defects (HA group). Bone substitutes were implanted at 0, 2, or 4 mm below the subchondral bone plate (SBP). The reparative tissue was assessed using microfocus computed tomography and histology 3 months after implantation.

Results

Regardless of the kind of bone substitutes, the defects were filled almost completely after implanting them at the level of the SBP, while the defects remained after implanting them at 2 or 4 mm below the SBP. Reparative tissue of the β-TCP75 group was similar to the normal cancellous bone, while that of the β-TCP67 or HA group was not.

Conclusions

Subchondral bone defects were filled almost completely only when bone substitutes were implanted at the level of the SBP. The reparative tissue after implanting the β-TCP bone substitutes with 75 % porosity was the most similar to the normal cancellous bone. Therefore, implanting the β-TCP bone substitutes with 75 % porosity at the level of the SBP could be recommended as a treatment method for subchondral bone repair in osteochondral defects.

Level of evidence

I.
Literature
1.
go back to reference Ando W, Fujie H, Moriguchi Y, Nansai R, Shimomura K, Hart DA, Yoshikawa H, Nakamura N (2012) Detection of abnormalities in the superficial zone of cartilage repaired using a tissue engineered construct derived from synovial stem cells. Eur Cell Mater 24:292–307PubMed Ando W, Fujie H, Moriguchi Y, Nansai R, Shimomura K, Hart DA, Yoshikawa H, Nakamura N (2012) Detection of abnormalities in the superficial zone of cartilage repaired using a tissue engineered construct derived from synovial stem cells. Eur Cell Mater 24:292–307PubMed
2.
go back to reference Arkill KP, Winlove CP (2008) Solute transport in the deep and calcified zones of articular cartilage. Osteoarthr Cartil 16:708–714CrossRefPubMed Arkill KP, Winlove CP (2008) Solute transport in the deep and calcified zones of articular cartilage. Osteoarthr Cartil 16:708–714CrossRefPubMed
3.
go back to reference Benthien JP, Behrens P (2011) The treatment of chondral and osteochondral defects of the knee with autologous matrix-induced chondrogenesis (AMIC): method description and recent developments. Knee Surg Sports Traumatol Arthrosc 19:1316–1319CrossRefPubMed Benthien JP, Behrens P (2011) The treatment of chondral and osteochondral defects of the knee with autologous matrix-induced chondrogenesis (AMIC): method description and recent developments. Knee Surg Sports Traumatol Arthrosc 19:1316–1319CrossRefPubMed
4.
go back to reference Delloye C, Cornu O, Druez V, Barbier O (2007) Bone allografts: what they can offer and what they cannot. J Bone Joint Surg Br 89:574–579CrossRefPubMed Delloye C, Cornu O, Druez V, Barbier O (2007) Bone allografts: what they can offer and what they cannot. J Bone Joint Surg Br 89:574–579CrossRefPubMed
5.
go back to reference Feng YF, Wang L, Li X, Ma ZS, Zhang Y, Zhang ZY, Lei W (2012) Influence of architecture of beta-tricalcium phosphate scaffolds on biological performance in repairing segmental bone defects. PLoS One 7:e49955CrossRefPubMedCentralPubMed Feng YF, Wang L, Li X, Ma ZS, Zhang Y, Zhang ZY, Lei W (2012) Influence of architecture of beta-tricalcium phosphate scaffolds on biological performance in repairing segmental bone defects. PLoS One 7:e49955CrossRefPubMedCentralPubMed
6.
go back to reference Finkemeier CG (2002) Bone-grafting and bone-graft substitutes. J Bone Joint Surg Am 84(A):454–464PubMed Finkemeier CG (2002) Bone-grafting and bone-graft substitutes. J Bone Joint Surg Am 84(A):454–464PubMed
7.
go back to reference Goff T, Kanakaris NK, Giannoudis PV (2013) Use of bone graft substitutes in the management of tibial plateau fractures. Injury 44(Suppl 1):S86–S94CrossRefPubMed Goff T, Kanakaris NK, Giannoudis PV (2013) Use of bone graft substitutes in the management of tibial plateau fractures. Injury 44(Suppl 1):S86–S94CrossRefPubMed
8.
go back to reference Goldberg VM, Stevenson S (1987) Natural history of autografts and allografts. Clin Orthop Relat Res 225:7–16PubMed Goldberg VM, Stevenson S (1987) Natural history of autografts and allografts. Clin Orthop Relat Res 225:7–16PubMed
9.
go back to reference Gomoll AH, Madry H, Knutsen G, van Dijk N, Seil R, Brittberg M, Kon E (2010) The subchondral bone in articular cartilage repair: current problems in the surgical management. Knee Surg Sports Traumatol Arthrosc 18:434–447CrossRefPubMedCentralPubMed Gomoll AH, Madry H, Knutsen G, van Dijk N, Seil R, Brittberg M, Kon E (2010) The subchondral bone in articular cartilage repair: current problems in the surgical management. Knee Surg Sports Traumatol Arthrosc 18:434–447CrossRefPubMedCentralPubMed
10.
go back to reference Goto A, Murase T, Oka K, Yoshikawa H (2011) Use of the volar fixed angle plate for comminuted distal radius fractures and augmentation with a hydroxyapatite bone graft substitute. Hand Surg 16:29–37CrossRefPubMed Goto A, Murase T, Oka K, Yoshikawa H (2011) Use of the volar fixed angle plate for comminuted distal radius fractures and augmentation with a hydroxyapatite bone graft substitute. Hand Surg 16:29–37CrossRefPubMed
11.
go back to reference Koepp HE, Schorlemmer S, Kessler S, Brenner RE, Claes L, Gunther KP, Ignatius AA (2004) Biocompatibility and osseointegration of beta-TCP: histomorphological and biomechanical studies in a weight-bearing sheep model. J Biomed Mater Res B Appl Biomater 70:209–217CrossRefPubMed Koepp HE, Schorlemmer S, Kessler S, Brenner RE, Claes L, Gunther KP, Ignatius AA (2004) Biocompatibility and osseointegration of beta-TCP: histomorphological and biomechanical studies in a weight-bearing sheep model. J Biomed Mater Res B Appl Biomater 70:209–217CrossRefPubMed
12.
go back to reference Koga H, Engebretsen L, Brinchmann JE, Muneta T, Sekiya I (2009) Mesenchymal stem cell-based therapy for cartilage repair: a review. Knee Surg Sports Traumatol Arthrosc 17:1289–1297CrossRefPubMed Koga H, Engebretsen L, Brinchmann JE, Muneta T, Sekiya I (2009) Mesenchymal stem cell-based therapy for cartilage repair: a review. Knee Surg Sports Traumatol Arthrosc 17:1289–1297CrossRefPubMed
13.
go back to reference Kurien T, Pearson RG, Scammell BE (2013) Bone graft substitutes currently available in orthopaedic practice: the evidence for their use. Bone Joint J 95(B):583–597CrossRefPubMed Kurien T, Pearson RG, Scammell BE (2013) Bone graft substitutes currently available in orthopaedic practice: the evidence for their use. Bone Joint J 95(B):583–597CrossRefPubMed
14.
go back to reference Lafantaisie-Favreau CH, Guzman-Morales J, Sun J, Chen G, Harris A, Smith TD, Carli A, Henderson J, Stanish WD, Hoemann CD (2013) Subchondral pre-solidified chitosan/blood implants elicit reproducible early osteochondral wound-repair responses including neutrophil and stromal cell chemotaxis, bone resorption and repair, enhanced repair tissue integration and delayed matrix deposition. BMC Musculoskelet Disord 14:27CrossRefPubMedCentralPubMed Lafantaisie-Favreau CH, Guzman-Morales J, Sun J, Chen G, Harris A, Smith TD, Carli A, Henderson J, Stanish WD, Hoemann CD (2013) Subchondral pre-solidified chitosan/blood implants elicit reproducible early osteochondral wound-repair responses including neutrophil and stromal cell chemotaxis, bone resorption and repair, enhanced repair tissue integration and delayed matrix deposition. BMC Musculoskelet Disord 14:27CrossRefPubMedCentralPubMed
15.
go back to reference LaPrade RF, Botker JC (2004) Donor-site morbidity after osteochondral autograft transfer procedures. Arthroscopy 20:e69–e73CrossRefPubMed LaPrade RF, Botker JC (2004) Donor-site morbidity after osteochondral autograft transfer procedures. Arthroscopy 20:e69–e73CrossRefPubMed
16.
go back to reference Lopiz-Morales Y, Abarrategi A, Ramos V, Moreno-Vicente C, Lopez-Duran L, Lopez-Lacomba JL, Marco F (2010) In vivo comparison of the effects of rhBMP-2 and rhBMP-4 in osteochondral tissue regeneration. Eur Cell Mater 20:367–378PubMed Lopiz-Morales Y, Abarrategi A, Ramos V, Moreno-Vicente C, Lopez-Duran L, Lopez-Lacomba JL, Marco F (2010) In vivo comparison of the effects of rhBMP-2 and rhBMP-4 in osteochondral tissue regeneration. Eur Cell Mater 20:367–378PubMed
17.
go back to reference Madry H, van Dijk CN, Mueller-Gerbl M (2010) The basic science of the subchondral bone. Knee Surg Sports Traumatol Arthrosc 18:419–433CrossRefPubMed Madry H, van Dijk CN, Mueller-Gerbl M (2010) The basic science of the subchondral bone. Knee Surg Sports Traumatol Arthrosc 18:419–433CrossRefPubMed
18.
go back to reference Maehara H, Sotome S, Yoshii T, Torigoe I, Kawasaki Y, Sugata Y, Yuasa M, Hirano M, Mochizuki N, Kikuchi M, Shinomiya K, Okawa A (2010) Repair of large osteochondral defects in rabbits using porous hydroxyapatite/collagen (HAp/Col) and fibroblast growth factor-2 (FGF-2). J Orthop Res 28:677–686PubMed Maehara H, Sotome S, Yoshii T, Torigoe I, Kawasaki Y, Sugata Y, Yuasa M, Hirano M, Mochizuki N, Kikuchi M, Shinomiya K, Okawa A (2010) Repair of large osteochondral defects in rabbits using porous hydroxyapatite/collagen (HAp/Col) and fibroblast growth factor-2 (FGF-2). J Orthop Res 28:677–686PubMed
19.
go back to reference Matsumine A, Myoui A, Kusuzaki K, Araki N, Seto M, Yoshikawa H, Uchida A (2004) Calcium hydroxyapatite ceramic implants in bone tumour surgery: a long-term follow-up study. J Bone Joint Surg Br 86:719–725CrossRefPubMed Matsumine A, Myoui A, Kusuzaki K, Araki N, Seto M, Yoshikawa H, Uchida A (2004) Calcium hydroxyapatite ceramic implants in bone tumour surgery: a long-term follow-up study. J Bone Joint Surg Br 86:719–725CrossRefPubMed
20.
go back to reference Mauffrey C, Seligson D, Lichte P, Pape HC, Al-Rayyan M (2011) Bone graft substitutes for articular support and metaphyseal comminution: what are the options? Injury 42(Suppl 2):S35–S39CrossRefPubMed Mauffrey C, Seligson D, Lichte P, Pape HC, Al-Rayyan M (2011) Bone graft substitutes for articular support and metaphyseal comminution: what are the options? Injury 42(Suppl 2):S35–S39CrossRefPubMed
21.
go back to reference Ng AM, Tan KK, Phang MY, Aziyati O, Tan GH, Isa MR, Aminuddin BS, Naseem M, Fauziah O, Ruszymah BH (2008) Differential osteogenic activity of osteoprogenitor cells on HA and TCP/HA scaffold of tissue engineered bone. J Biomed Mater Res A 85:301–312CrossRefPubMed Ng AM, Tan KK, Phang MY, Aziyati O, Tan GH, Isa MR, Aminuddin BS, Naseem M, Fauziah O, Ruszymah BH (2008) Differential osteogenic activity of osteoprogenitor cells on HA and TCP/HA scaffold of tissue engineered bone. J Biomed Mater Res A 85:301–312CrossRefPubMed
22.
go back to reference Nosewicz TL, Reilingh ML, van Dijk CN, Duda GN, Schell H (2012) Weightbearing ovine osteochondral defects heal with inadequate subchondral bone plate restoration: implications regarding osteochondral autograft harvesting. Knee Surg Sports Traumatol Arthrosc 20:1923–1930CrossRefPubMedCentralPubMed Nosewicz TL, Reilingh ML, van Dijk CN, Duda GN, Schell H (2012) Weightbearing ovine osteochondral defects heal with inadequate subchondral bone plate restoration: implications regarding osteochondral autograft harvesting. Knee Surg Sports Traumatol Arthrosc 20:1923–1930CrossRefPubMedCentralPubMed
23.
go back to reference Oka K, Murase T, Moritomo H, Goto A, Sugamoto K, Yoshikawa H (2010) Corrective osteotomy using customized hydroxyapatite implants prepared by preoperative computer simulation. Int J Med Robot 6:186–193PubMed Oka K, Murase T, Moritomo H, Goto A, Sugamoto K, Yoshikawa H (2010) Corrective osteotomy using customized hydroxyapatite implants prepared by preoperative computer simulation. Int J Med Robot 6:186–193PubMed
24.
go back to reference Onodera J, Kondo E, Omizu N, Ueda D, Yagi T, Yasuda K (2013) Beta-tricalcium phosphate shows superior absorption rate and osteoconductivity compared to hydroxyapatite in open-wedge high tibial osteotomy. Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-013-2681-y PubMed Onodera J, Kondo E, Omizu N, Ueda D, Yagi T, Yasuda K (2013) Beta-tricalcium phosphate shows superior absorption rate and osteoconductivity compared to hydroxyapatite in open-wedge high tibial osteotomy. Knee Surg Sports Traumatol Arthrosc. doi:10.​1007/​s00167-013-2681-y PubMed
25.
go back to reference Reddy S, Pedowitz DI, Parekh SG, Sennett BJ, Okereke E (2007) The morbidity associated with osteochondral harvest from asymptomatic knees for the treatment of osteochondral lesions of the talus. Am J Sports Med 35:80–85CrossRefPubMed Reddy S, Pedowitz DI, Parekh SG, Sennett BJ, Okereke E (2007) The morbidity associated with osteochondral harvest from asymptomatic knees for the treatment of osteochondral lesions of the talus. Am J Sports Med 35:80–85CrossRefPubMed
26.
go back to reference Sakamoto M, Nakasu M, Matsumoto T, Okihana H (2007) Development of superporous hydroxyapatites and their examination with a culture of primary rat osteoblasts. J Biomed Mater Res A 82:238–242CrossRefPubMed Sakamoto M, Nakasu M, Matsumoto T, Okihana H (2007) Development of superporous hydroxyapatites and their examination with a culture of primary rat osteoblasts. J Biomed Mater Res A 82:238–242CrossRefPubMed
27.
go back to reference Shimomura K, Ando W, Tateishi K, Nansai R, Fujie H, Hart DA, Kohda H, Kita K, Kanamoto T, Mae T, Nakata K, Shino K, Yoshikawa H, Nakamura N (2010) The influence of skeletal maturity on allogenic synovial mesenchymal stem cell-based repair of cartilage in a large animal model. Biomaterials 31:8004–8011CrossRefPubMed Shimomura K, Ando W, Tateishi K, Nansai R, Fujie H, Hart DA, Kohda H, Kita K, Kanamoto T, Mae T, Nakata K, Shino K, Yoshikawa H, Nakamura N (2010) The influence of skeletal maturity on allogenic synovial mesenchymal stem cell-based repair of cartilage in a large animal model. Biomaterials 31:8004–8011CrossRefPubMed
28.
go back to reference Tamai N, Myoui A, Tomita T, Nakase T, Tanaka J, Ochi T, Yoshikawa H (2002) Novel hydroxyapatite ceramics with an interconnective porous structure exhibit superior osteoconduction in vivo. J Biomed Mater Res 59:110–117CrossRefPubMed Tamai N, Myoui A, Tomita T, Nakase T, Tanaka J, Ochi T, Yoshikawa H (2002) Novel hydroxyapatite ceramics with an interconnective porous structure exhibit superior osteoconduction in vivo. J Biomed Mater Res 59:110–117CrossRefPubMed
29.
go back to reference Tamai N, Myoui A, Kudawara I, Ueda T, Yoshikawa H (2010) Novel fully interconnected porous hydroxyapatite ceramic in surgical treatment of benign bone tumor. J Orthop Sci 15:560–568CrossRefPubMed Tamai N, Myoui A, Kudawara I, Ueda T, Yoshikawa H (2010) Novel fully interconnected porous hydroxyapatite ceramic in surgical treatment of benign bone tumor. J Orthop Sci 15:560–568CrossRefPubMed
30.
go back to reference Tomford WW (1995) Transmission of disease through transplantation of musculoskeletal allografts. J Bone Joint Surg Am 77:1742–1754PubMed Tomford WW (1995) Transmission of disease through transplantation of musculoskeletal allografts. J Bone Joint Surg Am 77:1742–1754PubMed
31.
go back to reference Valderrabano V, Leumann A, Rasch H, Egelhof T, Hintermann B, Pagenstert G (2009) Knee-to-ankle mosaicplasty for the treatment of osteochondral lesions of the ankle joint. Am J Sports Med 37(Suppl 1):105S–111SCrossRefPubMed Valderrabano V, Leumann A, Rasch H, Egelhof T, Hintermann B, Pagenstert G (2009) Knee-to-ankle mosaicplasty for the treatment of osteochondral lesions of the ankle joint. Am J Sports Med 37(Suppl 1):105S–111SCrossRefPubMed
32.
go back to reference Van Hoff C, Samora JB, Griesser MJ, Crist MK, Scharschmidt TJ, Mayerson JL (2012) Effectiveness of ultraporous beta-tricalcium phosphate (vitoss) as bone graft substitute for cavitary defects in benign and low-grade malignant bone tumors. Am J Orthop 41:20–23PubMed Van Hoff C, Samora JB, Griesser MJ, Crist MK, Scharschmidt TJ, Mayerson JL (2012) Effectiveness of ultraporous beta-tricalcium phosphate (vitoss) as bone graft substitute for cavitary defects in benign and low-grade malignant bone tumors. Am J Orthop 41:20–23PubMed
33.
go back to reference Wang W, Li B, Yang J, Xin L, Li Y, Yin H, Qi Y, Jiang Y, Ouyang H, Gao C (2010) The restoration of full-thickness cartilage defects with BMSCs and TGF-beta 1 loaded PLGA/fibrin gel constructs. Biomaterials 31:8964–8973CrossRefPubMed Wang W, Li B, Yang J, Xin L, Li Y, Yin H, Qi Y, Jiang Y, Ouyang H, Gao C (2010) The restoration of full-thickness cartilage defects with BMSCs and TGF-beta 1 loaded PLGA/fibrin gel constructs. Biomaterials 31:8964–8973CrossRefPubMed
34.
go back to reference Yamasaki N, Hirao M, Nanno K, Sugiyasu K, Tamai N, Hashimoto N, Yoshikawa H, Myoui A (2009) A comparative assessment of synthetic ceramic bone substitutes with different composition and microstructure in rabbit femoral condyle model. J Biomed Mater Res B Appl Biomater 91:788–798CrossRefPubMed Yamasaki N, Hirao M, Nanno K, Sugiyasu K, Tamai N, Hashimoto N, Yoshikawa H, Myoui A (2009) A comparative assessment of synthetic ceramic bone substitutes with different composition and microstructure in rabbit femoral condyle model. J Biomed Mater Res B Appl Biomater 91:788–798CrossRefPubMed
35.
go back to reference Yoshikawa H, Tamai N, Murase T, Myoui A (2009) Interconnected porous hydroxyapatite ceramics for bone tissue engineering. J R Soc Interface 6(Suppl 3):S341–S348CrossRefPubMedCentralPubMed Yoshikawa H, Tamai N, Murase T, Myoui A (2009) Interconnected porous hydroxyapatite ceramics for bone tissue engineering. J R Soc Interface 6(Suppl 3):S341–S348CrossRefPubMedCentralPubMed
Metadata
Title
Bone substitutes and implantation depths for subchondral bone repair in osteochondral defects of porcine knee joints
Authors
Tomohiko Matsuo
Keisuke Kita
Tatsuo Mae
Yasukazu Yonetani
Satoshi Miyamoto
Hideki Yoshikawa
Ken Nakata
Publication date
01-05-2015
Publisher
Springer Berlin Heidelberg
Published in
Knee Surgery, Sports Traumatology, Arthroscopy / Issue 5/2015
Print ISSN: 0942-2056
Electronic ISSN: 1433-7347
DOI
https://doi.org/10.1007/s00167-014-2853-4

Other articles of this Issue 5/2015

Knee Surgery, Sports Traumatology, Arthroscopy 5/2015 Go to the issue