Skip to main content
Top
Published in: Osteoporosis International 9/2013

01-09-2013 | Original Article

Bone mineral loss at the proximal femur in acute spinal cord injury

Authors: W. B. Edwards, T. J. Schnitzer, K. L. Troy

Published in: Osteoporosis International | Issue 9/2013

Login to get access

Abstract

Summary

This study used quantitative computed tomography to assess changes in bone mineral at the proximal femur after acute spinal cord injury (SCI). Individuals with acute SCI experienced a marked loss of bone mineral from a combination of trabecular and endocortical resorption. Targeted therapeutic interventions are thus warranted in this population.

Introduction

SCI is associated with a rapid loss of bone mineral and an increased rate of fragility fracture. Some 10 to 20 % of these fractures occur at the proximal femur. The purpose of this study was to quantify changes to bone mineral, geometry, and measures of strength at the proximal femur in acute SCI.

Methods

Quantitative computed tomography analysis was performed on 13 subjects with acute SCI at serial time points separated by a mean of 3.5 months (range, 2.6–4.8 months). Changes in bone mineral content (BMC) and volumetric bone mineral density (vBMD) were quantified for integral, trabecular, and cortical bone at the femoral neck, trochanteric, and total proximal femur regions. Changes in bone volumes, cross-sectional areas, and surrogate measures of compressive and bending strength were also determined.

Results

During the acute period of SCI, subjects experienced a 2.7–3.3 %/month reduction in integral BMC (p < 0.001) and a 2.5–3.1 %/month reduction in integral vBMD (p < 0.001). Trabecular BMC decreased by 3.1–4.7 %/month (p < 0.001) and trabecular vBMD by 2.8–4.4 %/month (p < 0.001). A 3.9–4.0 %/month reduction was observed for cortical BMC (p < 0.001), while the reduction in cortical vBMD was noticeably lower (0.8–1.0 %/month; p ≤ 0.01). Changes in bone volume and cross-sectional area suggested that cortical bone loss occurred primarily through endosteal resorption. Declines in bone mineral were associated with a 4.9–5.9 %/month reduction in surrogate measures of strength.

Conclusions

These data highlight the need for therapeutic interventions in this population that target both trabecular and endocortical bone mineral preservation.
Literature
2.
go back to reference Leslie WD, Nance PW (1993) Dissociated hip and spine demineralization: a specific finding in spinal cord injury. Arch Phys Med Rehabil 74:960–964PubMed Leslie WD, Nance PW (1993) Dissociated hip and spine demineralization: a specific finding in spinal cord injury. Arch Phys Med Rehabil 74:960–964PubMed
3.
go back to reference Dauty M, Perrouin Verbe B, Maugars Y, Dubois C, Mathe JF (2000) Supralesional and sublesional bone mineral density in spinal cord-injured patients. Bone 27:305–309PubMedCrossRef Dauty M, Perrouin Verbe B, Maugars Y, Dubois C, Mathe JF (2000) Supralesional and sublesional bone mineral density in spinal cord-injured patients. Bone 27:305–309PubMedCrossRef
4.
go back to reference Garland DE, Adkins RH, Stewart CA, Ashford R, Vigil D (2001) Regional osteoporosis in women who have a complete spinal cord injury. J Bone Joint Surg Am 83-A:1195–1200PubMed Garland DE, Adkins RH, Stewart CA, Ashford R, Vigil D (2001) Regional osteoporosis in women who have a complete spinal cord injury. J Bone Joint Surg Am 83-A:1195–1200PubMed
5.
go back to reference Zehnder Y, Luthi M, Michel D, Knecht H, Perrelet R, Neto I, Kraenzlin M, Zach G, Lippuner K (2004) Long-term changes in bone metabolism, bone mineral density, quantitative ultrasound parameters, and fracture incidence after spinal cord injury: a cross-sectional observational study in 100 paraplegic men. Osteoporos Int 15:180–189. doi:10.1007/s00198-003-1529-6 PubMedCrossRef Zehnder Y, Luthi M, Michel D, Knecht H, Perrelet R, Neto I, Kraenzlin M, Zach G, Lippuner K (2004) Long-term changes in bone metabolism, bone mineral density, quantitative ultrasound parameters, and fracture incidence after spinal cord injury: a cross-sectional observational study in 100 paraplegic men. Osteoporos Int 15:180–189. doi:10.​1007/​s00198-003-1529-6 PubMedCrossRef
6.
go back to reference Garland DE, Adkins RH (2001) Bone loss at the knee in spinal cord injury. Top Spinal Cord Inj Rehabil 6:37–46CrossRef Garland DE, Adkins RH (2001) Bone loss at the knee in spinal cord injury. Top Spinal Cord Inj Rehabil 6:37–46CrossRef
7.
go back to reference Sabo D, Blaich S, Wenz W, Hohmann M, Loew M, Gerner HJ (2001) Osteoporosis in patients with paralysis after spinal cord injury. A cross sectional study in 46 male patients with dual-energy X-ray absorptiometry. Arch Orthop Trauma Surg 121:75–78PubMedCrossRef Sabo D, Blaich S, Wenz W, Hohmann M, Loew M, Gerner HJ (2001) Osteoporosis in patients with paralysis after spinal cord injury. A cross sectional study in 46 male patients with dual-energy X-ray absorptiometry. Arch Orthop Trauma Surg 121:75–78PubMedCrossRef
8.
go back to reference Demirel G, Yilmaz H, Paker N, Onel S (1998) Osteoporosis after spinal cord injury. Spinal Cord 36:822–825PubMedCrossRef Demirel G, Yilmaz H, Paker N, Onel S (1998) Osteoporosis after spinal cord injury. Spinal Cord 36:822–825PubMedCrossRef
9.
go back to reference Frisbie JH (1997) Fractures after myelopathy: the risk quantified. J Spinal Cord Med 20:66–69PubMed Frisbie JH (1997) Fractures after myelopathy: the risk quantified. J Spinal Cord Med 20:66–69PubMed
12.
go back to reference Ragnarsson KT, Sell GH (1981) Lower extremity fractures after spinal cord injury: a retrospective study. Arch Phys Med Rehabil 62:418–423PubMed Ragnarsson KT, Sell GH (1981) Lower extremity fractures after spinal cord injury: a retrospective study. Arch Phys Med Rehabil 62:418–423PubMed
13.
go back to reference Black DM, Delmas PD, Eastell R, Reid IR, Boonen S, Cauley JA, Cosman F, Lakatos P, Leung PC, Man Z, Mautalen C, Mesenbrink P, Hu H, Caminis J, Tong K, Rosario-Jansen T, Krasnow J, Hue TF, Sellmeyer D, Eriksen EF, Cummings SR, Pivotal Fracture Trial HORIZON (2007) Once-yearly zoledronic acid for treatment of postmenopausal osteoporosis. N Engl J Med 356:1809–1822. doi:10.1056/NEJMoa067312 PubMedCrossRef Black DM, Delmas PD, Eastell R, Reid IR, Boonen S, Cauley JA, Cosman F, Lakatos P, Leung PC, Man Z, Mautalen C, Mesenbrink P, Hu H, Caminis J, Tong K, Rosario-Jansen T, Krasnow J, Hue TF, Sellmeyer D, Eriksen EF, Cummings SR, Pivotal Fracture Trial HORIZON (2007) Once-yearly zoledronic acid for treatment of postmenopausal osteoporosis. N Engl J Med 356:1809–1822. doi:10.​1056/​NEJMoa067312 PubMedCrossRef
14.
go back to reference Cummings SR, San Martin J, McClung MR, Siris ES, Eastell R, Reid IR, Delmas P, Zoog HB, Austin M, Wang A, Kutilek S, Adami S, Zanchetta J, Libanati C, Siddhanti S, Christiansen C, Trial FREEDOM (2009) Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med 361:756–765. doi:10.1056/NEJMoa0809493 PubMedCrossRef Cummings SR, San Martin J, McClung MR, Siris ES, Eastell R, Reid IR, Delmas P, Zoog HB, Austin M, Wang A, Kutilek S, Adami S, Zanchetta J, Libanati C, Siddhanti S, Christiansen C, Trial FREEDOM (2009) Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med 361:756–765. doi:10.​1056/​NEJMoa0809493 PubMedCrossRef
16.
go back to reference Morse LR, Battaglino RA, Stolzmann KL, Hallett LD, Waddimba A, Gagnon D, Lazzari AA, Garshick E (2009) Osteoporotic fractures and hospitalization risk in chronic spinal cord injury. Osteoporos Int 20:385–392. doi:10.1007/s00198-008-0671-6 PubMedCrossRef Morse LR, Battaglino RA, Stolzmann KL, Hallett LD, Waddimba A, Gagnon D, Lazzari AA, Garshick E (2009) Osteoporotic fractures and hospitalization risk in chronic spinal cord injury. Osteoporos Int 20:385–392. doi:10.​1007/​s00198-008-0671-6 PubMedCrossRef
17.
go back to reference Rogers T, Shokes LK, Woodworth PH (2005) Pathologic extremity fracture care in spinal cord injury. Top Spinal Cord Inj Rehabil 11:70–78CrossRef Rogers T, Shokes LK, Woodworth PH (2005) Pathologic extremity fracture care in spinal cord injury. Top Spinal Cord Inj Rehabil 11:70–78CrossRef
18.
go back to reference Biering-Sorensen F, Bohr HH, Schaadt OP (1988) Bone mineral content of the lumbar spine and lower extremities years after spinal cord lesion. Paraplegia 26:293–301PubMedCrossRef Biering-Sorensen F, Bohr HH, Schaadt OP (1988) Bone mineral content of the lumbar spine and lower extremities years after spinal cord lesion. Paraplegia 26:293–301PubMedCrossRef
19.
go back to reference Biering-Sorensen F, Bohr HH, Schaadt OP (1990) Longitudinal study of bone mineral content in the lumbar spine, the forearm and the lower extremities after spinal cord injury. Eur J Clin Invest 20:330–335PubMedCrossRef Biering-Sorensen F, Bohr HH, Schaadt OP (1990) Longitudinal study of bone mineral content in the lumbar spine, the forearm and the lower extremities after spinal cord injury. Eur J Clin Invest 20:330–335PubMedCrossRef
20.
go back to reference Szollar SM, Martin EM, Sartoris DJ, Parthemore JG, Deftos LJ (1998) Bone mineral density and indexes of bone metabolism in spinal cord injury. Am J Phys Med Rehabil 77:28–35PubMedCrossRef Szollar SM, Martin EM, Sartoris DJ, Parthemore JG, Deftos LJ (1998) Bone mineral density and indexes of bone metabolism in spinal cord injury. Am J Phys Med Rehabil 77:28–35PubMedCrossRef
21.
go back to reference Bousson V, Le Bras A, Roqueplan F, Kang Y, Mitton D, Kolta S, Bergot C, Skalli W, Vicaut E, Kalender W, Engelke K, Laredo JD (2006) Volumetric quantitative computed tomography of the proximal femur: relationships linking geometric and densitometric variables to bone strength. Role for compact bone. Osteoporos Int 17:855–864. doi:10.1007/s00198-006-0074-5 PubMedCrossRef Bousson V, Le Bras A, Roqueplan F, Kang Y, Mitton D, Kolta S, Bergot C, Skalli W, Vicaut E, Kalender W, Engelke K, Laredo JD (2006) Volumetric quantitative computed tomography of the proximal femur: relationships linking geometric and densitometric variables to bone strength. Role for compact bone. Osteoporos Int 17:855–864. doi:10.​1007/​s00198-006-0074-5 PubMedCrossRef
22.
go back to reference Manske SL, Liu-Ambrose T, Cooper DM, Kontulainen S, Guy P, Forster BB, McKay HA (2009) Cortical and trabecular bone in the femoral neck both contribute to proximal femur failure load prediction. Osteoporos Int 20:445–453. doi:10.1007/s00198-008-0675-2 PubMedCrossRef Manske SL, Liu-Ambrose T, Cooper DM, Kontulainen S, Guy P, Forster BB, McKay HA (2009) Cortical and trabecular bone in the femoral neck both contribute to proximal femur failure load prediction. Osteoporos Int 20:445–453. doi:10.​1007/​s00198-008-0675-2 PubMedCrossRef
23.
go back to reference Keaveny TM, Hoffmann PF, Singh M, Palermo L, Bilezikian JP, Greenspan SL, Black DM (2008) Femoral bone strength and its relation to cortical and trabecular changes after treatment with PTH, alendronate, and their combination as assessed by finite element analysis of quantitative CT scans. J Bone Miner Res 23:1974–1982. doi:10.1359/jbmr.080805 PubMedCrossRef Keaveny TM, Hoffmann PF, Singh M, Palermo L, Bilezikian JP, Greenspan SL, Black DM (2008) Femoral bone strength and its relation to cortical and trabecular changes after treatment with PTH, alendronate, and their combination as assessed by finite element analysis of quantitative CT scans. J Bone Miner Res 23:1974–1982. doi:10.​1359/​jbmr.​080805 PubMedCrossRef
25.
go back to reference Lang TF, Keyak JH, Heitz MW, Augat P, Lu Y, Mathur A, Genant HK (1997) Volumetric quantitative computed tomography of the proximal femur: precision and relation to bone strength. Bone 21:101–108PubMedCrossRef Lang TF, Keyak JH, Heitz MW, Augat P, Lu Y, Mathur A, Genant HK (1997) Volumetric quantitative computed tomography of the proximal femur: precision and relation to bone strength. Bone 21:101–108PubMedCrossRef
26.
28.
29.
go back to reference Gluer CC, Blake G, Lu Y, Blunt BA, Jergas M, Genant HK (1995) Accurate assessment of precision errors: how to measure the reproducibility of bone densitometry techniques. Osteoporos Int 5:262–270PubMedCrossRef Gluer CC, Blake G, Lu Y, Blunt BA, Jergas M, Genant HK (1995) Accurate assessment of precision errors: how to measure the reproducibility of bone densitometry techniques. Osteoporos Int 5:262–270PubMedCrossRef
31.
go back to reference Frey-Rindova P, de Bruin ED, Stussi E, Dambacher MA, Dietz V (2000) Bone mineral density in upper and lower extremities during 12 months after spinal cord injury measured by peripheral quantitative computed tomography. Spinal Cord 38:26–32PubMedCrossRef Frey-Rindova P, de Bruin ED, Stussi E, Dambacher MA, Dietz V (2000) Bone mineral density in upper and lower extremities during 12 months after spinal cord injury measured by peripheral quantitative computed tomography. Spinal Cord 38:26–32PubMedCrossRef
32.
go back to reference Rittweger J, Simunic B, Bilancio G, De Santo NG, Cirillo M, Biolo G, Pisot R, Eiken O, Mekjavic IB, Narici M (2009) Bone loss in the lower leg during 35 days of bed rest is predominantly from the cortical compartment. Bone 44:612–618. doi:10.1016/j.bone.2009.01.001 PubMedCrossRef Rittweger J, Simunic B, Bilancio G, De Santo NG, Cirillo M, Biolo G, Pisot R, Eiken O, Mekjavic IB, Narici M (2009) Bone loss in the lower leg during 35 days of bed rest is predominantly from the cortical compartment. Bone 44:612–618. doi:10.​1016/​j.​bone.​2009.​01.​001 PubMedCrossRef
35.
go back to reference Chantraine A, Nusgens B, Lapiere CM (1986) Bone remodeling during the development of osteoporosis in paraplegia. Calcif Tissue Int 38:323–327PubMedCrossRef Chantraine A, Nusgens B, Lapiere CM (1986) Bone remodeling during the development of osteoporosis in paraplegia. Calcif Tissue Int 38:323–327PubMedCrossRef
36.
go back to reference Minaire P, Edouard C, Arlot M, Meunier PJ (1984) Marrow changes in paraplegic patients. Calcif Tissue Int 36:338–340PubMedCrossRef Minaire P, Edouard C, Arlot M, Meunier PJ (1984) Marrow changes in paraplegic patients. Calcif Tissue Int 36:338–340PubMedCrossRef
37.
go back to reference Prevrhal S, Engelke K, Kalender WA (1999) Accuracy limits for the determination of cortical width and density: the influence of object size and CT imaging parameters. Phys Med Biol 44:751–764PubMedCrossRef Prevrhal S, Engelke K, Kalender WA (1999) Accuracy limits for the determination of cortical width and density: the influence of object size and CT imaging parameters. Phys Med Biol 44:751–764PubMedCrossRef
38.
go back to reference Centers for Disease Control and Prevention (2010) Spinal cord injury (SCI): fact sheet. 2012 Centers for Disease Control and Prevention (2010) Spinal cord injury (SCI): fact sheet. 2012
41.
go back to reference Giangregorio LM, Webber CE, Phillips SM, Hicks AL, Craven BC, Bugaresti JM, McCartney N (2006) Can body weight supported treadmill training increase bone mass and reverse muscle atrophy in individuals with chronic incomplete spinal cord injury? Appl Physiol Nutr Metab 31:283–291. doi:10.1139/h05-036 PubMedCrossRef Giangregorio LM, Webber CE, Phillips SM, Hicks AL, Craven BC, Bugaresti JM, McCartney N (2006) Can body weight supported treadmill training increase bone mass and reverse muscle atrophy in individuals with chronic incomplete spinal cord injury? Appl Physiol Nutr Metab 31:283–291. doi:10.​1139/​h05-036 PubMedCrossRef
43.
go back to reference Needham-Shropshire BM, Broton JG, Klose KJ, Lebwohl N, Guest RS, Jacobs PL (1997) Evaluation of a training program for persons with SCI paraplegia using the Parastep 1 ambulation system: part 3. Lack of effect on bone mineral density. Arch Phys Med Rehabil 78:799–803PubMedCrossRef Needham-Shropshire BM, Broton JG, Klose KJ, Lebwohl N, Guest RS, Jacobs PL (1997) Evaluation of a training program for persons with SCI paraplegia using the Parastep 1 ambulation system: part 3. Lack of effect on bone mineral density. Arch Phys Med Rehabil 78:799–803PubMedCrossRef
44.
go back to reference Cusick T, Chen CM, Pennypacker BL, Pickarski M, Kimmel DB, Scott BB, le Duong T (2012) Odanacatib treatment increases hip bone mass and cortical thickness by preserving endocortical bone formation and stimulating periosteal bone formation in the ovariectomized adult rhesus monkey. J Bone Miner Res 27:524–537. doi:10.1002/jbmr.1477 PubMedCrossRef Cusick T, Chen CM, Pennypacker BL, Pickarski M, Kimmel DB, Scott BB, le Duong T (2012) Odanacatib treatment increases hip bone mass and cortical thickness by preserving endocortical bone formation and stimulating periosteal bone formation in the ovariectomized adult rhesus monkey. J Bone Miner Res 27:524–537. doi:10.​1002/​jbmr.​1477 PubMedCrossRef
Metadata
Title
Bone mineral loss at the proximal femur in acute spinal cord injury
Authors
W. B. Edwards
T. J. Schnitzer
K. L. Troy
Publication date
01-09-2013
Publisher
Springer London
Published in
Osteoporosis International / Issue 9/2013
Print ISSN: 0937-941X
Electronic ISSN: 1433-2965
DOI
https://doi.org/10.1007/s00198-013-2323-8

Other articles of this Issue 9/2013

Osteoporosis International 9/2013 Go to the issue