Skip to main content
Top
Published in: BMC Pediatrics 1/2020

01-12-2020 | Research article

Body temperature instability and respiratory morbidity in the very low birth weight infant: a multiple case, intensive longitudinal study

Authors: Jane L. Ralphe, Susan G. Silva, Robin B. Dail, Debra H. Brandon

Published in: BMC Pediatrics | Issue 1/2020

Login to get access

Abstract

Background

Very low birth weight (VLBW) infant thermal instability upon neonatal intensive care unit admission has been associated with respiratory morbidity; however, the association between ongoing thermal instability and respiratory morbidity remains unclear.

Methods

A longitudinal data analysis was conducted on 12 VLBW infants. Chronic respiratory morbidity risk was defined as supplemental oxygen requirement (FiO2) or scheduled diuretic dosing at 36 weeks post-menstrual age. Acute respiratory morbidity was quantified as desaturations (SpO2<90%), bradycardia with desaturations (HR<100 and SpO2<90%), apnea, increase in FiO2 requirement, or increase in respiratory support. Multi-level, mixed-effects models and regression analysis examined the relationships between body temperature over the first 14 days of life and respiratory morbidities.

Results

Body temperature was not associated with chronic respiratory morbidity risk (p=0.2765). Desaturations, bradycardia with desaturations, increased FiO2 requirement, and increased respiratory support were associated with decreased body temperature (p<0.05). Apnea was associated with increased body temperature (p<0.05). The covariate-adjusted risk of desaturations (aOR=1.3), bradycardia with desaturations (aOR=2.2), increase in FiO2 requirement (aOR=1.2), and increase in respiratory support (aOR=1.2) were significantly greater during episodes of hypothermia.

Conclusion

VLBW infants are dependent on a neutral thermal environment for optimal growth and development. Therefore, the significant associations between hypothermia and symptoms of acute respiratory morbidity require further study to delineate if these are causal relationships that could be attenuated with clinical practice changes, or if these are concurrent symptoms that cluster during episodes of physiological instability.
Literature
2.
go back to reference Horbar JD, Carpenter JH, Badger GJ, Kenny MJ, Soll RF, Morrow KA, Buzas JS. Mortality and neonatal morbidity among infants 501 to 1500 grams from 2000 to 2009. Pediatrics. 2012;129(6):1019–26.PubMedCrossRef Horbar JD, Carpenter JH, Badger GJ, Kenny MJ, Soll RF, Morrow KA, Buzas JS. Mortality and neonatal morbidity among infants 501 to 1500 grams from 2000 to 2009. Pediatrics. 2012;129(6):1019–26.PubMedCrossRef
4.
go back to reference Johnson TJ, Patel AL, Jegier BJ, Engstrom JL, Meier PP. Cost of morbidities in very low birth weight infants. J Pediatr. 2013;162(2):243–9.e241.PubMedCrossRef Johnson TJ, Patel AL, Jegier BJ, Engstrom JL, Meier PP. Cost of morbidities in very low birth weight infants. J Pediatr. 2013;162(2):243–9.e241.PubMedCrossRef
5.
go back to reference Stoll BJ, Hansen NI, Bell EF, Walsh MC, Carlo WA, Shankaran S, Laptook AR, Sanchez PJ, Van Meurs KP, Wyckoff M, Das A, Hale EC, Ball MB, Newman NS, Schibler K, Poindexter BB, Kennedy KA, Cotten CM, Watterberg KL, D’Angio, CT, DeMauro, SB, Truog, WE, Devaskar, U, & Higgins RD. Trends in Care Practices, Morbidity, and Mortality of Extremely Preterm Neonates, 1993–2012. JAMA. 2015;314(10):1039–51.PubMedPubMedCentralCrossRef Stoll BJ, Hansen NI, Bell EF, Walsh MC, Carlo WA, Shankaran S, Laptook AR, Sanchez PJ, Van Meurs KP, Wyckoff M, Das A, Hale EC, Ball MB, Newman NS, Schibler K, Poindexter BB, Kennedy KA, Cotten CM, Watterberg KL, D’Angio, CT, DeMauro, SB, Truog, WE, Devaskar, U, & Higgins RD. Trends in Care Practices, Morbidity, and Mortality of Extremely Preterm Neonates, 1993–2012. JAMA. 2015;314(10):1039–51.PubMedPubMedCentralCrossRef
6.
7.
go back to reference Younge N, Goldstein RF, Bann CM, Hintz SR, Patel RM, Smith PB, Bell EF, Rysavy MA, Duncan AF, Vohr BR, et al. Survival and Neurodevelopmental Outcomes among Periviable Infants. N Engl J Med. 2017;376(7):617–28.PubMedPubMedCentralCrossRef Younge N, Goldstein RF, Bann CM, Hintz SR, Patel RM, Smith PB, Bell EF, Rysavy MA, Duncan AF, Vohr BR, et al. Survival and Neurodevelopmental Outcomes among Periviable Infants. N Engl J Med. 2017;376(7):617–28.PubMedPubMedCentralCrossRef
8.
go back to reference Ashmeade TL, Haubner L, Collins S, Miladinovic B, Fugate K. Outcomes of a Neonatal Golden Hour Implementation Project. Am J Med Qual. 2016;31(1):73–80.PubMedCrossRef Ashmeade TL, Haubner L, Collins S, Miladinovic B, Fugate K. Outcomes of a Neonatal Golden Hour Implementation Project. Am J Med Qual. 2016;31(1):73–80.PubMedCrossRef
9.
go back to reference Castrodale V, Rinehart S. The golden hour: improving the stabilization of the very low birth-weight infant. Adv Neonatal Care. 2014;14(1):9–14.PubMedCrossRef Castrodale V, Rinehart S. The golden hour: improving the stabilization of the very low birth-weight infant. Adv Neonatal Care. 2014;14(1):9–14.PubMedCrossRef
10.
go back to reference Lyu Y, Shah PS, Ye XY, Warre R, Piedboeuf B, Deshpandey A, Dunn M, Lee SK. Association between admission temperature and mortality and major morbidity in preterm infants born at fewer than 33 weeks’ gestation. JAMA pediatrics. 2015;169(4):e150277.PubMedCrossRef Lyu Y, Shah PS, Ye XY, Warre R, Piedboeuf B, Deshpandey A, Dunn M, Lee SK. Association between admission temperature and mortality and major morbidity in preterm infants born at fewer than 33 weeks’ gestation. JAMA pediatrics. 2015;169(4):e150277.PubMedCrossRef
11.
go back to reference Knobel RB. Thermal Stability of the Premature Infant in Neonatal Intensive Care. Newborn Infant Nurs Rev. 2014;14(2):72–6.CrossRef Knobel RB. Thermal Stability of the Premature Infant in Neonatal Intensive Care. Newborn Infant Nurs Rev. 2014;14(2):72–6.CrossRef
12.
go back to reference Knobel RB, Holditch-Davis D. Thermoregulation and heat loss prevention after birth and during neonatal intensive-care unit stabilization of extremely low-birthweight infants. J Obstet Gynecol Neonatal Nurs. 2007;36(3):280–7.PubMedCrossRef Knobel RB, Holditch-Davis D. Thermoregulation and heat loss prevention after birth and during neonatal intensive-care unit stabilization of extremely low-birthweight infants. J Obstet Gynecol Neonatal Nurs. 2007;36(3):280–7.PubMedCrossRef
13.
go back to reference Martin RJ, Fanaroff AA, Walsh MC. Neonatal-Perinatal Medicine. Disease of the Fetus and Infant. 11th ed. Philadelphia: Elsevier; 2019. Martin RJ, Fanaroff AA, Walsh MC. Neonatal-Perinatal Medicine. Disease of the Fetus and Infant. 11th ed. Philadelphia: Elsevier; 2019.
14.
go back to reference Knobel RB, Guenther BD, Rice HE. Thermoregulation and thermography in neonatal physiology and disease. Biol Res Nurs. 2011;13(3):274–82.PubMedCrossRef Knobel RB, Guenther BD, Rice HE. Thermoregulation and thermography in neonatal physiology and disease. Biol Res Nurs. 2011;13(3):274–82.PubMedCrossRef
15.
go back to reference Knobel RB, Holditch-Davis D, Schwartz TA, Wimmer JE. Extremely low birth weight preterm infants lack vasomotor response in relationship to cold body temperatures at birth. J Perinatol. 2009;29(12):814–21.PubMedPubMedCentralCrossRef Knobel RB, Holditch-Davis D, Schwartz TA, Wimmer JE. Extremely low birth weight preterm infants lack vasomotor response in relationship to cold body temperatures at birth. J Perinatol. 2009;29(12):814–21.PubMedPubMedCentralCrossRef
16.
go back to reference Lyon AJ, Pikaar ME, Badger P, McIntosh N. Temperature control in very low birthweight infants during first five days of life. Arch Dis Child Fetal Neonatal Ed. 1997;76(1):F47–50.PubMedPubMedCentralCrossRef Lyon AJ, Pikaar ME, Badger P, McIntosh N. Temperature control in very low birthweight infants during first five days of life. Arch Dis Child Fetal Neonatal Ed. 1997;76(1):F47–50.PubMedPubMedCentralCrossRef
17.
go back to reference Guyton AC, Hall JE. The Textbook of Medical Physiology. 14th ed. Philadelphia: Elsevier; 2020. Guyton AC, Hall JE. The Textbook of Medical Physiology. 14th ed. Philadelphia: Elsevier; 2020.
18.
go back to reference Houstek J, Vizek K, Pavelka S, Kopecky J, Krejcova E, Hermanska J, Cermakova M. Type II iodothyronine 5’-deiodinase and uncoupling protein in brown adipose tissue of human newborns. J Clin Endocrinol Metab. 1993;77(2):382–7.PubMed Houstek J, Vizek K, Pavelka S, Kopecky J, Krejcova E, Hermanska J, Cermakova M. Type II iodothyronine 5’-deiodinase and uncoupling protein in brown adipose tissue of human newborns. J Clin Endocrinol Metab. 1993;77(2):382–7.PubMed
19.
go back to reference Marks KH, Lee CA, Bolan CD Jr, Maisels MJ. Oxygen consumption and temperature control of premature infants in a double-wall incubator. Pediatrics. 1981;68(1):93–8.PubMed Marks KH, Lee CA, Bolan CD Jr, Maisels MJ. Oxygen consumption and temperature control of premature infants in a double-wall incubator. Pediatrics. 1981;68(1):93–8.PubMed
20.
go back to reference Mathew OP. Respiratory Control and Disorders in the Newborn. Vol. 173. New York: Marcel Dekker; 2003.CrossRef Mathew OP. Respiratory Control and Disorders in the Newborn. Vol. 173. New York: Marcel Dekker; 2003.CrossRef
21.
go back to reference Poets CF, Roberts RS, Schmidt B, Whyte RK, Asztalos EV, Bader D, Bairam A, Moddemann D, Peliowski A, Rabi Y, et al. Association Between Intermittent Hypoxemia or Bradycardia and Late Death or Disability in Extremely Preterm Infants. JAMA. 2015;314(6):595–603.PubMedCrossRef Poets CF, Roberts RS, Schmidt B, Whyte RK, Asztalos EV, Bader D, Bairam A, Moddemann D, Peliowski A, Rabi Y, et al. Association Between Intermittent Hypoxemia or Bradycardia and Late Death or Disability in Extremely Preterm Infants. JAMA. 2015;314(6):595–603.PubMedCrossRef
22.
go back to reference Di Fiore JM, Dylag AM, Honomichl RD, Hibbs AM, Martin RJ, Tatsuoka C, Raffay TM. Early inspired oxygen and intermittent hypoxemic events in extremely premature infants are associated with asthma medication use at 2 years of age. J Perinatol. 2019;39(2):203–11.PubMedCrossRef Di Fiore JM, Dylag AM, Honomichl RD, Hibbs AM, Martin RJ, Tatsuoka C, Raffay TM. Early inspired oxygen and intermittent hypoxemic events in extremely premature infants are associated with asthma medication use at 2 years of age. J Perinatol. 2019;39(2):203–11.PubMedCrossRef
23.
go back to reference Fairchild KD, Nagraj VP, Sullivan BA, Moorman JR, Lake DE. Oxygen desaturations in the early neonatal period predict development of bronchopulmonary dysplasia. Pediatr Res. 2019;85(7):987–93.PubMedCrossRef Fairchild KD, Nagraj VP, Sullivan BA, Moorman JR, Lake DE. Oxygen desaturations in the early neonatal period predict development of bronchopulmonary dysplasia. Pediatr Res. 2019;85(7):987–93.PubMedCrossRef
25.
26.
go back to reference Jensen CF, Ebbesen F, Petersen JP, Sellmer A, Bach CC, Henriksen TB. Hypothermia at neonatal intensive care unit admission was not associated with respiratory disease or death in very preterm infants. Acta Paediatr. 2017;106(12):1934–9.PubMedCrossRef Jensen CF, Ebbesen F, Petersen JP, Sellmer A, Bach CC, Henriksen TB. Hypothermia at neonatal intensive care unit admission was not associated with respiratory disease or death in very preterm infants. Acta Paediatr. 2017;106(12):1934–9.PubMedCrossRef
27.
go back to reference Ting JY, Synnes AR, Lee SK, Shah PS. Association of admission temperature and death or adverse neurodevelopmental outcomes in extremely low-gestational age neonates. J Perinatol. 2018;38(7):844–9.PubMedCrossRef Ting JY, Synnes AR, Lee SK, Shah PS. Association of admission temperature and death or adverse neurodevelopmental outcomes in extremely low-gestational age neonates. J Perinatol. 2018;38(7):844–9.PubMedCrossRef
28.
go back to reference Knobel-Dail RB, Sloan R, Holdich-Davis D, Tanaka DT. Negative temperature differential in preterm infants less than 29 weeks gestational age: Associations with infection and maternal smoking. Nurs Res. 2017;66(6):442–53.PubMedPubMedCentralCrossRef Knobel-Dail RB, Sloan R, Holdich-Davis D, Tanaka DT. Negative temperature differential in preterm infants less than 29 weeks gestational age: Associations with infection and maternal smoking. Nurs Res. 2017;66(6):442–53.PubMedPubMedCentralCrossRef
29.
go back to reference Dollberg S, Rimon A, Atherton HD, Hoath SB. Continuous measurement of core body temperature in preterm infants. Am J Perinatol. 2000;17(5):257–64.PubMedCrossRef Dollberg S, Rimon A, Atherton HD, Hoath SB. Continuous measurement of core body temperature in preterm infants. Am J Perinatol. 2000;17(5):257–64.PubMedCrossRef
30.
go back to reference Okken A, Koch J: Thermoregulation of Sick and Low Birth Weight Neonates. Temperature Control. 1st ed. Springer Berlin; 2012. Okken A, Koch J: Thermoregulation of Sick and Low Birth Weight Neonates. Temperature Control. 1st ed. Springer Berlin; 2012.
31.
go back to reference Ehrenkranz RA, Walsh MC, Vohr BR, Jobe AH, Wright LL, Fanaroff AA, Wrage LA, Poole K. Validation of the National Institutes of Health consensus definition of bronchopulmonary dysplasia. Pediatrics. 2005;116(6):1353–60.PubMedCrossRef Ehrenkranz RA, Walsh MC, Vohr BR, Jobe AH, Wright LL, Fanaroff AA, Wrage LA, Poole K. Validation of the National Institutes of Health consensus definition of bronchopulmonary dysplasia. Pediatrics. 2005;116(6):1353–60.PubMedCrossRef
32.
go back to reference McEvoy CT, Jain L, Schmidt B, Abman S, Bancalari E, Aschner JL. Bronchopulmonary dysplasia: NHLBI Workshop on the Primary Prevention of Chronic Lung Diseases. Ann Am Thorac Soc. 2014;11(Suppl 3):146–53.CrossRef McEvoy CT, Jain L, Schmidt B, Abman S, Bancalari E, Aschner JL. Bronchopulmonary dysplasia: NHLBI Workshop on the Primary Prevention of Chronic Lung Diseases. Ann Am Thorac Soc. 2014;11(Suppl 3):146–53.CrossRef
33.
go back to reference Jobe AH, Steinhorn R. Can We Define Bronchopulmonary Dysplasia? J Pediatr. 2017;188:19–23.PubMed Jobe AH, Steinhorn R. Can We Define Bronchopulmonary Dysplasia? J Pediatr. 2017;188:19–23.PubMed
34.
go back to reference Mandell EW, Kratimenos P, Abman SH, Steinhorn RH. Drugs for the Prevention and Treatment of Bronchopulmonary Dysplasia. Clin Perinatol. 2019;46(2):291–310.PubMedCrossRef Mandell EW, Kratimenos P, Abman SH, Steinhorn RH. Drugs for the Prevention and Treatment of Bronchopulmonary Dysplasia. Clin Perinatol. 2019;46(2):291–310.PubMedCrossRef
35.
go back to reference Steinhorn R, Davis JM, Gopel W, Jobe A, Abman S, Laughon M, Bancalari E, Aschner J, Ballard R, Greenough A, et al. Chronic Pulmonary Insufficiency of Prematurity: Developing Optimal Endpoints for Drug Development. J Pediatr. 2017;191:15–21.e11.PubMedCrossRef Steinhorn R, Davis JM, Gopel W, Jobe A, Abman S, Laughon M, Bancalari E, Aschner J, Ballard R, Greenough A, et al. Chronic Pulmonary Insufficiency of Prematurity: Developing Optimal Endpoints for Drug Development. J Pediatr. 2017;191:15–21.e11.PubMedCrossRef
36.
go back to reference Bamat NA, et al. Medication use in infants with severe bronchopulmonary dysplasia admitted to United States children’s hospitals. J Perinatol. 2019;39(9):1291–9.PubMedPubMedCentralCrossRef Bamat NA, et al. Medication use in infants with severe bronchopulmonary dysplasia admitted to United States children’s hospitals. J Perinatol. 2019;39(9):1291–9.PubMedPubMedCentralCrossRef
37.
go back to reference Greenberg, et al. Furosemide Exposure and Prevention of Bronchopulmonary Dysplasia in Premature Infants. J Pediatr. 2019;208:134–40.e132.PubMedCrossRef Greenberg, et al. Furosemide Exposure and Prevention of Bronchopulmonary Dysplasia in Premature Infants. J Pediatr. 2019;208:134–40.e132.PubMedCrossRef
38.
go back to reference Lahra MM, Beeby PJ, Jeffery HE. Intrauterine inflammation, neonatal sepsis, and chronic lung disease: a 13-year hospital cohort study. Pediatrics. 2009;123(5):1314–9.PubMedCrossRef Lahra MM, Beeby PJ, Jeffery HE. Intrauterine inflammation, neonatal sepsis, and chronic lung disease: a 13-year hospital cohort study. Pediatrics. 2009;123(5):1314–9.PubMedCrossRef
39.
go back to reference Altinsoy C, Tuzun F, Duman N, Sever AH, Dilek M, Ozbal S, Ergur BU, Yesilirmak DC, Yilmaz O, Kumral A, et al. Effect of induced hypothermia on lipopolysaccharide-induced lung injury in neonatal rats. J Matern Fetal Neonatal Med. 2014;27(4):421–9.PubMedCrossRef Altinsoy C, Tuzun F, Duman N, Sever AH, Dilek M, Ozbal S, Ergur BU, Yesilirmak DC, Yilmaz O, Kumral A, et al. Effect of induced hypothermia on lipopolysaccharide-induced lung injury in neonatal rats. J Matern Fetal Neonatal Med. 2014;27(4):421–9.PubMedCrossRef
40.
go back to reference Ball MK, Hillman NH, Kallapur SG, Polglase GR, Jobe AH, Pillow JJ. Body temperature effects on lung injury in ventilated preterm lambs. Resuscitation. 2010;81(6):749–54.PubMedPubMedCentralCrossRef Ball MK, Hillman NH, Kallapur SG, Polglase GR, Jobe AH, Pillow JJ. Body temperature effects on lung injury in ventilated preterm lambs. Resuscitation. 2010;81(6):749–54.PubMedPubMedCentralCrossRef
41.
go back to reference Daily WJ, Klaus M, Meyer HB. Apnea in premature infants: monitoring, incidence, heart rate changes, and an effect of environmental temperature. Pediatrics. 1969;43(4):510–8.PubMed Daily WJ, Klaus M, Meyer HB. Apnea in premature infants: monitoring, incidence, heart rate changes, and an effect of environmental temperature. Pediatrics. 1969;43(4):510–8.PubMed
42.
go back to reference Perlstein PH, Edwards NK, Sutherland JM. Apnea in premature infants and incubator-air-temperature changes. N Engl J Med. 1970;282(9):461–6.PubMedCrossRef Perlstein PH, Edwards NK, Sutherland JM. Apnea in premature infants and incubator-air-temperature changes. N Engl J Med. 1970;282(9):461–6.PubMedCrossRef
43.
go back to reference Jost K, Pramana I, Delgado-Eckert E, Kumar N, Datta AN, Frey U, Schulzke SM. Dynamics and complexity of body temperature in preterm infants nursed in incubators. PLoS One. 2017;12(4):e0176670.PubMedPubMedCentralCrossRef Jost K, Pramana I, Delgado-Eckert E, Kumar N, Datta AN, Frey U, Schulzke SM. Dynamics and complexity of body temperature in preterm infants nursed in incubators. PLoS One. 2017;12(4):e0176670.PubMedPubMedCentralCrossRef
44.
go back to reference Ambalavanan N, Van Meurs KP, Perritt R, Carlo WA, Ehrenkranz RA, Stevenson DK, Lemons JA, Poole WK, Higgins RD. Predictors of death or bronchopulmonary dysplasia in preterm infants with respiratory failure. J Perinatol. 2008;28(6):420–6.PubMedPubMedCentralCrossRef Ambalavanan N, Van Meurs KP, Perritt R, Carlo WA, Ehrenkranz RA, Stevenson DK, Lemons JA, Poole WK, Higgins RD. Predictors of death or bronchopulmonary dysplasia in preterm infants with respiratory failure. J Perinatol. 2008;28(6):420–6.PubMedPubMedCentralCrossRef
45.
go back to reference Costeloe KL, Hennessy EM, Haider S, Stacey F, Marlow N, Draper ES. Short term outcomes after extreme preterm birth in England: comparison of two birth cohorts in 1995 and 2006 (the EPICure studies). BMJ. 2012;345:e7976.PubMedPubMedCentralCrossRef Costeloe KL, Hennessy EM, Haider S, Stacey F, Marlow N, Draper ES. Short term outcomes after extreme preterm birth in England: comparison of two birth cohorts in 1995 and 2006 (the EPICure studies). BMJ. 2012;345:e7976.PubMedPubMedCentralCrossRef
46.
go back to reference Flenady VJ, Woodgate PG. Radiant warmers versus incubators for regulating body temperature in newborn infants. Cochrane Database Syst Rev. 2003;2003(4);Cd000435. Flenady VJ, Woodgate PG. Radiant warmers versus incubators for regulating body temperature in newborn infants. Cochrane Database Syst Rev. 2003;2003(4);Cd000435.
Metadata
Title
Body temperature instability and respiratory morbidity in the very low birth weight infant: a multiple case, intensive longitudinal study
Authors
Jane L. Ralphe
Susan G. Silva
Robin B. Dail
Debra H. Brandon
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Pediatrics / Issue 1/2020
Electronic ISSN: 1471-2431
DOI
https://doi.org/10.1186/s12887-020-02351-y

Other articles of this Issue 1/2020

BMC Pediatrics 1/2020 Go to the issue