Skip to main content
Top
Published in: memo - Magazine of European Medical Oncology 2/2013

01-06-2013 | review

Biomolecular basis of the role of chronic psychological stress hormone ‘‘glucocorticoid’’ in alteration of cellular immunity during cancer

Authors: Md. Rubayet Ahsan, Abdullah Mahmud-Al-Rafat, Mahbub-E. Sobhani, Md. Abdul Wadud Molla

Published in: memo - Magazine of European Medical Oncology | Issue 2/2013

Login to get access

Abstract

Psychoneuroimmunology is the newly evolved science that describes the interaction between mind and body, mediated by reciprocal communications among the nervous, endocrine, and immune systems. This paper reviews the interrelationship between chronic psychological stress and cellular immunity during the progression of cancer. The immune system possesses the specialized defense mechanisms where an extensive network of immune cells exists through their cytokine milieu, which in turn can get highly affected by psychological stress. Under stressful conditions, the body increases the production of glucocorticoids via hypothalamic pituitary adrenal (HPA) axis. Glucocorticoids (GCs) suppress the cell mediated immunity (CMI) by reducing the production of cytokines and other effector molecules through the inhibition of transcription factors responsible for cytokine gene expression, mediated by glucocorticoid receptor. GCs inhibit the activities of natural killer (NK) cells, cytotoxic T lymphocytes (CTL), T helper (Th) cells, natural killer T (NKT) cells, macrophages and dendritic cells which play a vital role in tumor suppression. Th1 cytokines which activate the NK cell, CTL and macrophages are also inhibited by GCs. GCs are able to alter the appearance of macrophages and dendritic cells, providing pro-tumor activities, and also able to inhibit the antigen presentation which causes dysfunction of the adaptive immune response against tumor. GCs have been shown to reduce the expression of perforin, granzymes, tumor necrosis factor (TNF)- α, interferon (IFN)- γ, Fas, TNF receptor activation induced ligand (TRAIL), and other effector molecules which have direct effects in tumor destruction. Additionally, glucocorticoids induce tolerogenic dendritic cells and stimulate the Treg cells to block the NK cell, CTL, NKT cell, and Th cell activity. Finally, it has been shown that chronic psychological stress exerts different immunomodulatory activities which facilitate the progression of cancer.
Literature
1.
go back to reference Almawi WY, Melemedjian OK. Molecular mechanisms of glucocorticoid antiproliferative effects: antagonism of transcription factor activity by glucocorticoid receptor. J Leukoc Biol. 2002;71:9–15.PubMed Almawi WY, Melemedjian OK. Molecular mechanisms of glucocorticoid antiproliferative effects: antagonism of transcription factor activity by glucocorticoid receptor. J Leukoc Biol. 2002;71:9–15.PubMed
2.
go back to reference Newton R. Molecular mechanisms of glucocorticoid action: what is important? Thorax. 2000;55:603–13.PubMedCrossRef Newton R. Molecular mechanisms of glucocorticoid action: what is important? Thorax. 2000;55:603–13.PubMedCrossRef
3.
go back to reference Refojo D, Liberman AC, Holsboer F, Arzt E. Transcription factor-mediated molecular mechanisms involved in the functional cross-talk between cytokines and glucocorticoids. Immunol Cell Biol. 2001;79:385–94.PubMedCrossRef Refojo D, Liberman AC, Holsboer F, Arzt E. Transcription factor-mediated molecular mechanisms involved in the functional cross-talk between cytokines and glucocorticoids. Immunol Cell Biol. 2001;79:385–94.PubMedCrossRef
4.
go back to reference Zorilla EP, Luborsky L, McKay JR. The relationship of depression and stressors to immunological assays: a meta-analytic review. Brain Behav Immun. 2001;15(3):199–226.CrossRef Zorilla EP, Luborsky L, McKay JR. The relationship of depression and stressors to immunological assays: a meta-analytic review. Brain Behav Immun. 2001;15(3):199–226.CrossRef
5.
go back to reference Kiecolt-Glaser JK, McGuire L, Robles TF, et al. Emotions, morbidity, and mortality: new perspectives from psychoneuroimmunology. Annu Rev Psychol. 2002;53:83–107.PubMedCrossRef Kiecolt-Glaser JK, McGuire L, Robles TF, et al. Emotions, morbidity, and mortality: new perspectives from psychoneuroimmunology. Annu Rev Psychol. 2002;53:83–107.PubMedCrossRef
6.
go back to reference Greenfeld K, Avraham R, Benish M, et al. Immune suppression while awaiting surgery and following it: dissociations between plasma cytokine levels, their induced production, and NK cell cytotoxicity. Brain Behav Immun. 2007;21(4):503–13.PubMedCrossRef Greenfeld K, Avraham R, Benish M, et al. Immune suppression while awaiting surgery and following it: dissociations between plasma cytokine levels, their induced production, and NK cell cytotoxicity. Brain Behav Immun. 2007;21(4):503–13.PubMedCrossRef
7.
go back to reference Saul AN, Oberyszyn TM, Daugherty C, et al. Chronic stress and susceptibility to skin cancer. J Natl Cancer Inst. 2005;97(23):1760–7.PubMedCrossRef Saul AN, Oberyszyn TM, Daugherty C, et al. Chronic stress and susceptibility to skin cancer. J Natl Cancer Inst. 2005;97(23):1760–7.PubMedCrossRef
8.
go back to reference Wang JC, Derynck MK, Nonaka DF, Khodabakhsh DB, Haqq C, Yamamoto KR. Chromatin immunoprecipitation (ChIP) scanning identifies primary glucocorticoid receptor target genes. Proc Natl Acad Sci U S A. 2004;101:15603–8.PubMedCrossRef Wang JC, Derynck MK, Nonaka DF, Khodabakhsh DB, Haqq C, Yamamoto KR. Chromatin immunoprecipitation (ChIP) scanning identifies primary glucocorticoid receptor target genes. Proc Natl Acad Sci U S A. 2004;101:15603–8.PubMedCrossRef
9.
10.
go back to reference Levy EM, Roberti MP, Mordoh J. Natural killer cells in human cancer: from biological functions to clinical applications. J Biomed Biotechnol. 2011;2011:676198.PubMedCrossRef Levy EM, Roberti MP, Mordoh J. Natural killer cells in human cancer: from biological functions to clinical applications. J Biomed Biotechnol. 2011;2011:676198.PubMedCrossRef
11.
go back to reference Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S. Functions of natural killer cells. Nat Immunol. 2008;9(5):503–10.PubMedCrossRef Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S. Functions of natural killer cells. Nat Immunol. 2008;9(5):503–10.PubMedCrossRef
12.
go back to reference Karre K, Ljunggren HG, Piontek G, Kiessling R. Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defense strategy. Nature. 1986;319(6055):675–8.PubMedCrossRef Karre K, Ljunggren HG, Piontek G, Kiessling R. Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defense strategy. Nature. 1986;319(6055):675–8.PubMedCrossRef
13.
go back to reference Ferlazzo G, Thomas D, Lin SL, Goodman K, Morandi B, Muller WA, Moretta A, Munz C. The abundant NK cells in human secondary lymphoid tissues require activation to express killer cell Ig-like receptors and become cytolytic. J. Immunol. 2004;172:1455–62.PubMed Ferlazzo G, Thomas D, Lin SL, Goodman K, Morandi B, Muller WA, Moretta A, Munz C. The abundant NK cells in human secondary lymphoid tissues require activation to express killer cell Ig-like receptors and become cytolytic. J. Immunol. 2004;172:1455–62.PubMed
14.
go back to reference Diefenbach A, Jensen ER, Jamieson AM, Raulet DH. Rae1 and H60 ligands of the NKG2D receptor stimulate tumor immunity. Nature. 2001;413(6852):165–71.PubMedCrossRef Diefenbach A, Jensen ER, Jamieson AM, Raulet DH. Rae1 and H60 ligands of the NKG2D receptor stimulate tumor immunity. Nature. 2001;413(6852):165–71.PubMedCrossRef
15.
go back to reference Cerwenka A, Baron JL, Lanier LL. Ectopic expression of retinoic acid early inducible-1 gene (RAE-1) permits natural killer cell-mediated rejection of a MHC class I-bearing tumor in vivo. Proc Natl Acad Sci U S A. 2001;98(20):11521–6.PubMedCrossRef Cerwenka A, Baron JL, Lanier LL. Ectopic expression of retinoic acid early inducible-1 gene (RAE-1) permits natural killer cell-mediated rejection of a MHC class I-bearing tumor in vivo. Proc Natl Acad Sci U S A. 2001;98(20):11521–6.PubMedCrossRef
16.
go back to reference Zamai L, Ponti C, Mirandola P, et al. NK cells and cancer. J Immunol. 2007;178:4011–6.PubMed Zamai L, Ponti C, Mirandola P, et al. NK cells and cancer. J Immunol. 2007;178:4011–6.PubMed
17.
go back to reference Kelly JM, Darcy PK, Markby JL, et al. Induction of tumor-specific T cell memory by NK cell-mediated tumor rejection. Nat Immunol. 2002;3(1):83–90.PubMedCrossRef Kelly JM, Darcy PK, Markby JL, et al. Induction of tumor-specific T cell memory by NK cell-mediated tumor rejection. Nat Immunol. 2002;3(1):83–90.PubMedCrossRef
18.
go back to reference Bottino C, Moretta L, Pende D, Vitale M, Moretta A. Learning how to discriminate between friends and enemies, a lesson from natural killer cells. Mol. Immunol. 2004;41:569–75.PubMedCrossRef Bottino C, Moretta L, Pende D, Vitale M, Moretta A. Learning how to discriminate between friends and enemies, a lesson from natural killer cells. Mol. Immunol. 2004;41:569–75.PubMedCrossRef
19.
go back to reference Moretta L, Bottino C, Pende D, Vitale M, Mingari MC, Moretta A. Different checkpoints in human NK-cell activation. Trends Immunol. 2004;25:670–6.PubMedCrossRef Moretta L, Bottino C, Pende D, Vitale M, Mingari MC, Moretta A. Different checkpoints in human NK-cell activation. Trends Immunol. 2004;25:670–6.PubMedCrossRef
21.
go back to reference Sivori S, Carlomagno S, Moretta L,Moretta A. Comparison of different CpG oligodeoxynucleotide classes for their capability to stimulate human NK cells. Eur. J. Immunol. 2006;36:961–7.PubMedCrossRef Sivori S, Carlomagno S, Moretta L,Moretta A. Comparison of different CpG oligodeoxynucleotide classes for their capability to stimulate human NK cells. Eur. J. Immunol. 2006;36:961–7.PubMedCrossRef
22.
go back to reference Moretta L, Ferlazzo G,Bottino C, Vitale M, Pende D, Zingari MC, Moretta A. Effector and regulatory events during natural killer-dendritic cell interactions. Immunol. 2006;214:219–228.CrossRef Moretta L, Ferlazzo G,Bottino C, Vitale M, Pende D, Zingari MC, Moretta A. Effector and regulatory events during natural killer-dendritic cell interactions. Immunol. 2006;214:219–228.CrossRef
23.
go back to reference Pende D, Bottino C, Castriconi R, et al. PVR (CD155) and Nectin-2 (CD112) as ligands of the human DNAM-1 (CD226) activating receptor: involvement in tumor cell lysis. Mol. Immunol. 2005;42:463–9.PubMedCrossRef Pende D, Bottino C, Castriconi R, et al. PVR (CD155) and Nectin-2 (CD112) as ligands of the human DNAM-1 (CD226) activating receptor: involvement in tumor cell lysis. Mol. Immunol. 2005;42:463–9.PubMedCrossRef
24.
go back to reference Smyth MJ, Hayakawa Y, et al. New aspects of natural-killer-cell surveillance and therapy of cancer. Nat Rev Cancer. 2002;2:850–61.PubMedCrossRef Smyth MJ, Hayakawa Y, et al. New aspects of natural-killer-cell surveillance and therapy of cancer. Nat Rev Cancer. 2002;2:850–61.PubMedCrossRef
25.
go back to reference Trinchieri G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol. 2003;3:133–46.PubMedCrossRef Trinchieri G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol. 2003;3:133–46.PubMedCrossRef
26.
go back to reference Hamerman JA, Ogasawara K, Lanier LL. NK cells in innate immunity. Curr Opin Immunol. 2005;17:29–35.PubMedCrossRef Hamerman JA, Ogasawara K, Lanier LL. NK cells in innate immunity. Curr Opin Immunol. 2005;17:29–35.PubMedCrossRef
27.
go back to reference Ferlazzo G, Munz C. NK cell compartments and their activation by dendritic cells. J Immunol. 2004;172:1333–9.PubMed Ferlazzo G, Munz C. NK cell compartments and their activation by dendritic cells. J Immunol. 2004;172:1333–9.PubMed
28.
go back to reference Cooper MA, Fehniger TA, Fuchs A, Colonna M, Caligiuri MA. NK cell and DC interactions. Trends Immunol. 2004;25:47–52.PubMedCrossRef Cooper MA, Fehniger TA, Fuchs A, Colonna M, Caligiuri MA. NK cell and DC interactions. Trends Immunol. 2004;25:47–52.PubMedCrossRef
29.
go back to reference Brady J, Hayakawa Y, Smyth MJ, Nutt SL. IL-21 induces the functional maturation of murine NK cells. J Immunol. 2004;172:2048–58.PubMed Brady J, Hayakawa Y, Smyth MJ, Nutt SL. IL-21 induces the functional maturation of murine NK cells. J Immunol. 2004;172:2048–58.PubMed
31.
go back to reference Lauwerys BR, Garot N, Renauld JC, Houssiau FA. Cytokine production and killer activity of NK/T-NK cells derived with IL-2, IL-15, or the combination of IL-12 and IL-18. J Immunol. 2000;165:1847–53.PubMed Lauwerys BR, Garot N, Renauld JC, Houssiau FA. Cytokine production and killer activity of NK/T-NK cells derived with IL-2, IL-15, or the combination of IL-12 and IL-18. J Immunol. 2000;165:1847–53.PubMed
32.
go back to reference Golab J. Interleukin 18-interferon inducing factor a novel player in tumor immunotherapy? Cytokine. 2000;12:332–8.PubMedCrossRef Golab J. Interleukin 18-interferon inducing factor a novel player in tumor immunotherapy? Cytokine. 2000;12:332–8.PubMedCrossRef
33.
go back to reference Zamai L, Ahmad M, Bennett IM, Azzoni L, Alnemri ES, Perussia B. Natural killer (NK) cell-mediated cytotoxicity: differential use of TRAIL and Fas ligand by immature and mature primary human NK cells. J Exp Med. 1998;188:2375–80.PubMedCrossRef Zamai L, Ahmad M, Bennett IM, Azzoni L, Alnemri ES, Perussia B. Natural killer (NK) cell-mediated cytotoxicity: differential use of TRAIL and Fas ligand by immature and mature primary human NK cells. J Exp Med. 1998;188:2375–80.PubMedCrossRef
34.
go back to reference Mirandola P, Ponti C, Gobbi G, Sponzilli I, et al. Activated human NK and CD8 T cells express both TNF-related apoptosis-inducing ligand (TRAIL) and TRAIL receptors but are resistant to TRAIL-mediated cytotoxicity. Blood. 2004;104:2418–24.PubMedCrossRef Mirandola P, Ponti C, Gobbi G, Sponzilli I, et al. Activated human NK and CD8 T cells express both TNF-related apoptosis-inducing ligand (TRAIL) and TRAIL receptors but are resistant to TRAIL-mediated cytotoxicity. Blood. 2004;104:2418–24.PubMedCrossRef
35.
go back to reference Sinkovics JG, Horvath JC. Human natural killer cells: a comprehensive review. Int J Oncol. 2005;27:5–47.PubMed Sinkovics JG, Horvath JC. Human natural killer cells: a comprehensive review. Int J Oncol. 2005;27:5–47.PubMed
36.
go back to reference Smyth MJ, Teng MW, Swann J, Kyparissoudis K, Godfrey DI, Hayakawa Y. CD4CD25 T regulatory cells suppress NK cell-mediated immunotherapy of cancer. J Immunol. 2006;176:1582–7.PubMed Smyth MJ, Teng MW, Swann J, Kyparissoudis K, Godfrey DI, Hayakawa Y. CD4CD25 T regulatory cells suppress NK cell-mediated immunotherapy of cancer. J Immunol. 2006;176:1582–7.PubMed
37.
go back to reference Chawla-Sarkar M, Lindner DJ, Liu YF, Williams BR, Sen GC, Silverman RH, Borden EC. Apoptosis and interferons: role of interferon- stimulated genes as mediators of apoptosis. Apoptosis. 2003;8:237–49.PubMedCrossRef Chawla-Sarkar M, Lindner DJ, Liu YF, Williams BR, Sen GC, Silverman RH, Borden EC. Apoptosis and interferons: role of interferon- stimulated genes as mediators of apoptosis. Apoptosis. 2003;8:237–49.PubMedCrossRef
38.
go back to reference Smyth MJ, Takeda K, Hayakawa Y, Peschon JJ, Van Den Brink MR, Yagita H. Nature’s TRAIL on a path to cancer immunotherapy. Immunity. 2003;18:1–6.PubMedCrossRef Smyth MJ, Takeda K, Hayakawa Y, Peschon JJ, Van Den Brink MR, Yagita H. Nature’s TRAIL on a path to cancer immunotherapy. Immunity. 2003;18:1–6.PubMedCrossRef
39.
go back to reference Palucka AK, Ueno H, Fay JW, Banchereau J. Taming cancer by inducing immunity via dendritic cells. Immunol Rev. 2007;220:129–50.PubMedCrossRef Palucka AK, Ueno H, Fay JW, Banchereau J. Taming cancer by inducing immunity via dendritic cells. Immunol Rev. 2007;220:129–50.PubMedCrossRef
40.
go back to reference Steinman RM. Lasker Basic Medical Research Award. Dendritic cells: versatile controllers of the immune system. Nat Med. 2007;13:1155–9.PubMedCrossRef Steinman RM. Lasker Basic Medical Research Award. Dendritic cells: versatile controllers of the immune system. Nat Med. 2007;13:1155–9.PubMedCrossRef
41.
go back to reference Hashimoto SI, Suzuki T, Nagai S, Yamashita T, Toyoda N, Matsushima K. Identification of genes specifically expressed in human activated and mature dendritic cells through serial analysis of gene expression. Blood. 2000;96:2206–14.PubMed Hashimoto SI, Suzuki T, Nagai S, Yamashita T, Toyoda N, Matsushima K. Identification of genes specifically expressed in human activated and mature dendritic cells through serial analysis of gene expression. Blood. 2000;96:2206–14.PubMed
42.
go back to reference Sandel MH, Dadabayev AR, Menon AG, et al. Prognostic value of tumor-infiltrating dendritic cells in colorectal cancer: role of maturation status and intratumoral localization. Clin Cancer Res. 2005;11:2576–82.PubMedCrossRef Sandel MH, Dadabayev AR, Menon AG, et al. Prognostic value of tumor-infiltrating dendritic cells in colorectal cancer: role of maturation status and intratumoral localization. Clin Cancer Res. 2005;11:2576–82.PubMedCrossRef
43.
go back to reference Caux C, Vanbervliet B, Massacrier C, et al. Regulation of dendritic cell recruitment by chemokines. Transplantation. 2002;73:S7–11.PubMedCrossRef Caux C, Vanbervliet B, Massacrier C, et al. Regulation of dendritic cell recruitment by chemokines. Transplantation. 2002;73:S7–11.PubMedCrossRef
44.
go back to reference Clark GJ, Angel N, Kato M, Lopez J A, MacDonald K, Vuckovic S, Hart DN. The role of dendritic cells in the innate immune system. Microbes Infect. 2000;2:257–72.PubMedCrossRef Clark GJ, Angel N, Kato M, Lopez J A, MacDonald K, Vuckovic S, Hart DN. The role of dendritic cells in the innate immune system. Microbes Infect. 2000;2:257–72.PubMedCrossRef
45.
go back to reference Manna PP, Mohanakumar T. Human dendritic cell mediated cytotoxicity against breast carcinoma cells in vitro. J Leukoc Biol. 2002;72:312–20.PubMed Manna PP, Mohanakumar T. Human dendritic cell mediated cytotoxicity against breast carcinoma cells in vitro. J Leukoc Biol. 2002;72:312–20.PubMed
46.
go back to reference Huang J, Tatsumi T, Pizzoferrato E, Vujanovic N, Storkus WJ. Nitric oxide sensitizes tumor cells to dendritic cell-mediated apoptosis, uptake, and cross-presentation. Cancer Res. 2005;65:8461–70.PubMedCrossRef Huang J, Tatsumi T, Pizzoferrato E, Vujanovic N, Storkus WJ. Nitric oxide sensitizes tumor cells to dendritic cell-mediated apoptosis, uptake, and cross-presentation. Cancer Res. 2005;65:8461–70.PubMedCrossRef
47.
go back to reference Nicolas A, Cathelin D, Larmonier N, Fraszczak J, Puig PE, Bouchot A, Bateman A, Solary E, Bonnotte B. Dendritic cells trigger tumor cell death by a nitric oxide dependent mechanism. J Immunol. 2007;179:812–8.PubMed Nicolas A, Cathelin D, Larmonier N, Fraszczak J, Puig PE, Bouchot A, Bateman A, Solary E, Bonnotte B. Dendritic cells trigger tumor cell death by a nitric oxide dependent mechanism. J Immunol. 2007;179:812–8.PubMed
48.
go back to reference Del Vecchio M, Bajetta E, Canova S, Lotze MT, Wesa A, Parmiani G, Anichini A. Interleukin-12: biological properties and clinical application. Clin Cancer Res. 2007;13:4677–85.PubMedCrossRef Del Vecchio M, Bajetta E, Canova S, Lotze MT, Wesa A, Parmiani G, Anichini A. Interleukin-12: biological properties and clinical application. Clin Cancer Res. 2007;13:4677–85.PubMedCrossRef
49.
go back to reference Curtsinger JM, Lins DC, Mescher MF. Signal 3 determines tolerance versus full activation of naive CD8 T cells: dissociating proliferation and development of effector function. J Exp Med. 2003;197:1141–51.PubMedCrossRef Curtsinger JM, Lins DC, Mescher MF. Signal 3 determines tolerance versus full activation of naive CD8 T cells: dissociating proliferation and development of effector function. J Exp Med. 2003;197:1141–51.PubMedCrossRef
50.
go back to reference Wesa A, Kalinski P, Kirkwood JM, Tatsumi T, Storkus WJ. Polarized type 1 dendritic cells (DC1) producing high levels of IL-12 family members rescue patient TH1- type antimelanoma CD4 + T cell responses in vitro. J Immunother. 30:75–82, 2007.PubMedCrossRef Wesa A, Kalinski P, Kirkwood JM, Tatsumi T, Storkus WJ. Polarized type 1 dendritic cells (DC1) producing high levels of IL-12 family members rescue patient TH1- type antimelanoma CD4 + T cell responses in vitro. J Immunother. 30:75–82, 2007.PubMedCrossRef
51.
go back to reference Tourkova IL, Shurin GV, Chatta GS, Perez L, Finke J, Whiteside TL, Ferrone S, Shurin MR. Restoration by IL-15 of MHC class I antigen processing machinery in human dendritic cells inhibited by tumor-derived gangliosides. J Immunol. 2005;175:3045–52.PubMed Tourkova IL, Shurin GV, Chatta GS, Perez L, Finke J, Whiteside TL, Ferrone S, Shurin MR. Restoration by IL-15 of MHC class I antigen processing machinery in human dendritic cells inhibited by tumor-derived gangliosides. J Immunol. 2005;175:3045–52.PubMed
52.
go back to reference Gerner MY, Casey KA, Mescher MF. Defective MHC class II presentation by dendritic cells limits CD4 T cell help for antitumor CD8 T cell responses. J Immunol. 2008;181:155–64.PubMed Gerner MY, Casey KA, Mescher MF. Defective MHC class II presentation by dendritic cells limits CD4 T cell help for antitumor CD8 T cell responses. J Immunol. 2008;181:155–64.PubMed
53.
go back to reference Shurin MR, Gabrilovich DI. Regulation of dendritic cell system by tumor. Cancer Res Ther Control. 2001;11:65–78. Shurin MR, Gabrilovich DI. Regulation of dendritic cell system by tumor. Cancer Res Ther Control. 2001;11:65–78.
54.
go back to reference Lan YY, Wang Z, Raimondi G, Wu W, Colvin BL, de Creus A, Thomson AW. ‘‘Alternatively activated’’ dendritic cells preferentially secrete IL-10, expand Foxp3 +CD4 + T cells, and induce long-term organ allograft survival in combination with CTLA4-Ig. J Immunol. 2006;177:5868–77.PubMed Lan YY, Wang Z, Raimondi G, Wu W, Colvin BL, de Creus A, Thomson AW. ‘‘Alternatively activated’’ dendritic cells preferentially secrete IL-10, expand Foxp3 +CD4 + T cells, and induce long-term organ allograft survival in combination with CTLA4-Ig. J Immunol. 2006;177:5868–77.PubMed
55.
go back to reference Shurin MR, Chatta G. Immunobiology of dendritic cells in cancer. In: Mechanisms of therapeutic reversal of immune suppression in cancer. Gabrilovich DI, Hurtwiz A (eds). 2008. pp. 101–30. Shurin MR, Chatta G. Immunobiology of dendritic cells in cancer. In: Mechanisms of therapeutic reversal of immune suppression in cancer. Gabrilovich DI, Hurtwiz A (eds). 2008. pp. 101–30.
56.
go back to reference Shurin GV, Yurkovetsky ZR, Shurin MR. Tumor-induced dendritic cell dysfunction. In: Ochoa AC, editor. Mechanisms of tumor escape from the immune response. New York: Taylor & Francis; 2003. pp. 112–38. Shurin GV, Yurkovetsky ZR, Shurin MR. Tumor-induced dendritic cell dysfunction. In: Ochoa AC, editor. Mechanisms of tumor escape from the immune response. New York: Taylor & Francis; 2003. pp. 112–38.
57.
go back to reference Bellone G, Carbone A, Smirne C, et al. Cooperative induction of a tolerogenic dendritic cell phenotype by cytokines secreted by pancreatic carcinoma cells. J Immunol. 2006;177:3448–60.PubMed Bellone G, Carbone A, Smirne C, et al. Cooperative induction of a tolerogenic dendritic cell phenotype by cytokines secreted by pancreatic carcinoma cells. J Immunol. 2006;177:3448–60.PubMed
58.
go back to reference Capobianco A, Rovere-Querini P, Rugarli C, Manfredi AA. Melanoma cells interfere with the interaction of dendritic cells with NK/LAK cells. Int J Cancer. 2006;119:2861–9.PubMedCrossRef Capobianco A, Rovere-Querini P, Rugarli C, Manfredi AA. Melanoma cells interfere with the interaction of dendritic cells with NK/LAK cells. Int J Cancer. 2006;119:2861–9.PubMedCrossRef
59.
go back to reference Gratchev A, Kzhyshkowska J, Kannookadan S, Ochsenreiter M, et al. Activation of a TGF-β specific multistep gene expression program in mature macrophages requires glucocorticoid-mediated surface expression of TGF-β receptor II. J Immunol. 2008;180:6553–65.PubMed Gratchev A, Kzhyshkowska J, Kannookadan S, Ochsenreiter M, et al. Activation of a TGF-β specific multistep gene expression program in mature macrophages requires glucocorticoid-mediated surface expression of TGF-β receptor II. J Immunol. 2008;180:6553–65.PubMed
60.
go back to reference Sher A, Pearce E, Kaye P. Shaping the immune response to parasites: role of dendritic cells. Curr Opin Immunol. 2003;15:421–9.PubMedCrossRef Sher A, Pearce E, Kaye P. Shaping the immune response to parasites: role of dendritic cells. Curr Opin Immunol. 2003;15:421–9.PubMedCrossRef
61.
go back to reference Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004;25:677–86.PubMedCrossRef Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004;25:677–86.PubMedCrossRef
62.
go back to reference Pixley FJ, Stanley ER. CSF-1 regulation of the wandering macrophage: complexity in action. Trends Cell Biol. 2004;14:628–38.PubMedCrossRef Pixley FJ, Stanley ER. CSF-1 regulation of the wandering macrophage: complexity in action. Trends Cell Biol. 2004;14:628–38.PubMedCrossRef
63.
go back to reference Murray PJ, Wynn TA. Obstacles and opportunities for understanding macrophage polarization. J Leukoc Biol. 2011;89(4):pp. 557–63.PubMedCrossRef Murray PJ, Wynn TA. Obstacles and opportunities for understanding macrophage polarization. J Leukoc Biol. 2011;89(4):pp. 557–63.PubMedCrossRef
65.
66.
67.
go back to reference Martinez FO, Helming L, Gordon S. Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol. 2009;27:451–83.PubMedCrossRef Martinez FO, Helming L, Gordon S. Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol. 2009;27:451–83.PubMedCrossRef
68.
go back to reference Verreck FA, de Boer T, Langenberg DM, et al. Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco) bacteria. Proc Natl Acad Sci U S A. 2004;101:4560–5.PubMedCrossRef Verreck FA, de Boer T, Langenberg DM, et al. Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco) bacteria. Proc Natl Acad Sci U S A. 2004;101:4560–5.PubMedCrossRef
69.
go back to reference Fairweather D, Cihakova D. Alternatively activated macrophages in infection and autoimmunity. J Autoimmun. 2009;33(3–4):222–30.PubMedCrossRef Fairweather D, Cihakova D. Alternatively activated macrophages in infection and autoimmunity. J Autoimmun. 2009;33(3–4):222–30.PubMedCrossRef
70.
go back to reference Sindrilaru A, Peters T, Wieschalka S, et al. An unrestrained proinflammatory M1 macrophage population induced by iron impairs wound healing in humans and mice. J Clin Invest. 2011;121(3):985–97.PubMedCrossRef Sindrilaru A, Peters T, Wieschalka S, et al. An unrestrained proinflammatory M1 macrophage population induced by iron impairs wound healing in humans and mice. J Clin Invest. 2011;121(3):985–97.PubMedCrossRef
71.
go back to reference Hussein MR. Tumor-associated macrophages and melanoma tumorigenesis: integrating the complexity. Int J Exp Pathol. 2006;87:163–76.PubMedCrossRef Hussein MR. Tumor-associated macrophages and melanoma tumorigenesis: integrating the complexity. Int J Exp Pathol. 2006;87:163–76.PubMedCrossRef
72.
go back to reference Martinez FO, Helming L, Gordon S. Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol. 2009;27:451–83.PubMedCrossRef Martinez FO, Helming L, Gordon S. Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol. 2009;27:451–83.PubMedCrossRef
73.
go back to reference Gratchev A, Kzhyshkowska J, Utikal J, Goerdt S. Interleukin-4 and dexamethasone counterregulate extracellular matrix remodelling and phagocytosis in type-2 macrophages. Scand J Immunol. 2005;61:10–17.PubMedCrossRef Gratchev A, Kzhyshkowska J, Utikal J, Goerdt S. Interleukin-4 and dexamethasone counterregulate extracellular matrix remodelling and phagocytosis in type-2 macrophages. Scand J Immunol. 2005;61:10–17.PubMedCrossRef
74.
go back to reference Solinas G, Germano G, Mantovani A, Allavena P. Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J Leukoc Biol. 2009;86(5):1065–73.PubMedCrossRef Solinas G, Germano G, Mantovani A, Allavena P. Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J Leukoc Biol. 2009;86(5):1065–73.PubMedCrossRef
75.
go back to reference Sica A, Schioppab T, Mantovania T, Allavenaa P. Tumor-associated macrophages are a distinct M2 polarized population promoting tumor progression: potential targets of anti-cancer therapy. Eur J Cancer. 2006;42:717–27.PubMedCrossRef Sica A, Schioppab T, Mantovania T, Allavenaa P. Tumor-associated macrophages are a distinct M2 polarized population promoting tumor progression: potential targets of anti-cancer therapy. Eur J Cancer. 2006;42:717–27.PubMedCrossRef
76.
go back to reference Pollard JW. Tumor-educated macrophages promote tumor progression and metastasis. Nat Rev Cancer. 2004;4:71–8.PubMedCrossRef Pollard JW. Tumor-educated macrophages promote tumor progression and metastasis. Nat Rev Cancer. 2004;4:71–8.PubMedCrossRef
77.
go back to reference Cruse JM, Lewis RE. The immune system victorious: selective preservation of self. Immunol Res. 1993;12(2):101–14. Cruse JM, Lewis RE. The immune system victorious: selective preservation of self. Immunol Res. 1993;12(2):101–14.
78.
go back to reference Mosmann TR, Sad S. The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol Today. 1996;17(3):138–46.PubMedCrossRef Mosmann TR, Sad S. The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol Today. 1996;17(3):138–46.PubMedCrossRef
79.
go back to reference Fearon DT, Locksley RM. The instructive role of innate immunity in the acquired immune response. Science. 1996;272(5258):50–3.PubMedCrossRef Fearon DT, Locksley RM. The instructive role of innate immunity in the acquired immune response. Science. 1996;272(5258):50–3.PubMedCrossRef
80.
go back to reference Trinchieri G. Interleukin-12: a proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity. Annu Rev Immunol. 1995;13:251–76.PubMedCrossRef Trinchieri G. Interleukin-12: a proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity. Annu Rev Immunol. 1995;13:251–76.PubMedCrossRef
81.
82.
go back to reference Pollard JW. Tumor-educated macrophages promote tumor progression and metastasis. Nat Rev Cancer. 2004;4(1):71–8.PubMedCrossRef Pollard JW. Tumor-educated macrophages promote tumor progression and metastasis. Nat Rev Cancer. 2004;4(1):71–8.PubMedCrossRef
83.
go back to reference Aspord C, Pedroza-Gonzalez A, Gallegos M, Tindle S, Burton EC, Su D, et al. Breast cancer instructs dendritic cells to prime interleukin 13-secreting CD4 + T cells that facilitate tumor development. J Exp Med. 2007;204(5):1037–47.PubMedCrossRef Aspord C, Pedroza-Gonzalez A, Gallegos M, Tindle S, Burton EC, Su D, et al. Breast cancer instructs dendritic cells to prime interleukin 13-secreting CD4 + T cells that facilitate tumor development. J Exp Med. 2007;204(5):1037–47.PubMedCrossRef
84.
go back to reference DeNardo DG, Baretto JB, Andreu P, Vasquez L, Kolhatkar N, Tawfik D, et al. CD4 +  T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell. 2009;16(2):91–102.PubMedCrossRef DeNardo DG, Baretto JB, Andreu P, Vasquez L, Kolhatkar N, Tawfik D, et al. CD4 +  T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell. 2009;16(2):91–102.PubMedCrossRef
87.
go back to reference Godfrey DI, MacDonald HR, Kronenberg M, Smyth MJ, Van Kaer L. NKT cells: what’s in a name? Nat Rev Immunol. 2004;4:231–7.PubMedCrossRef Godfrey DI, MacDonald HR, Kronenberg M, Smyth MJ, Van Kaer L. NKT cells: what’s in a name? Nat Rev Immunol. 2004;4:231–7.PubMedCrossRef
88.
go back to reference Kronenberg M. Toward an understanding of NKT cell biology: progress and paradoxes. Annu Rev Immunol. 2005;23:877–900.PubMedCrossRef Kronenberg M. Toward an understanding of NKT cell biology: progress and paradoxes. Annu Rev Immunol. 2005;23:877–900.PubMedCrossRef
89.
go back to reference Taniguchi M, Harada M, Kojo S, Nakayama T, Wakao H. The regulatory role of V14 NKT cells in innate and acquired immune response. Annu Rev Immunol. 2003;21:483–513.PubMedCrossRef Taniguchi M, Harada M, Kojo S, Nakayama T, Wakao H. The regulatory role of V14 NKT cells in innate and acquired immune response. Annu Rev Immunol. 2003;21:483–513.PubMedCrossRef
90.
go back to reference Godfrey DI, Kronenberg M. Going both ways: immune regulation via CD1d-dependent NKT cells. J Clin Invest. 2004;114:1379–88.PubMed Godfrey DI, Kronenberg M. Going both ways: immune regulation via CD1d-dependent NKT cells. J Clin Invest. 2004;114:1379–88.PubMed
91.
go back to reference Terabe M, Berzofsky JA. The role of NKT cells in tumor immunity. Adv Cancer Res. 2008;101:277–348.PubMedCrossRef Terabe M, Berzofsky JA. The role of NKT cells in tumor immunity. Adv Cancer Res. 2008;101:277–348.PubMedCrossRef
92.
go back to reference Crowe NY, Smyth MJ, Godfrey DI. A critical role for natural killer T cells in immunosurveillance of methylcholanthrene-induced sarcomas. J Exp Med. 2002;196:119–27.PubMedCrossRef Crowe NY, Smyth MJ, Godfrey DI. A critical role for natural killer T cells in immunosurveillance of methylcholanthrene-induced sarcomas. J Exp Med. 2002;196:119–27.PubMedCrossRef
93.
go back to reference Kitamura HK, Iwakabe T, Yahata S, Nishimura A, Ohta Y, Ohmi M, Sato K, Takeda K. Okumura L, Van Kaer, et al. The natural killer T (NKT) cell ligand galactosylceramide demonstrates its immunopotentiating effect by inducing interleukin (IL)-12 production by dendritic cells and IL-12 receptor expression on NKT cells. J Exp Med. 1999;189:1121–8.PubMedCrossRef Kitamura HK, Iwakabe T, Yahata S, Nishimura A, Ohta Y, Ohmi M, Sato K, Takeda K. Okumura L, Van Kaer, et al. The natural killer T (NKT) cell ligand galactosylceramide demonstrates its immunopotentiating effect by inducing interleukin (IL)-12 production by dendritic cells and IL-12 receptor expression on NKT cells. J Exp Med. 1999;189:1121–8.PubMedCrossRef
94.
95.
go back to reference Yamaguchi T, Sakaguchi S. Regulatory T cells in immune surveillance and treatment of cancer. Semin Cancer Biol. 2006;16:115.PubMedCrossRef Yamaguchi T, Sakaguchi S. Regulatory T cells in immune surveillance and treatment of cancer. Semin Cancer Biol. 2006;16:115.PubMedCrossRef
96.
go back to reference Sakaguchi S, Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T. Regulatory T cells: how do they suppress immune responses. Int Immunol. 2009;21;1105–6.PubMedCrossRef Sakaguchi S, Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T. Regulatory T cells: how do they suppress immune responses. Int Immunol. 2009;21;1105–6.PubMedCrossRef
98.
go back to reference Woo EY, Chu CS, Goletz TJ, et al. Regulatory CD4( + ) CD25( + ) T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res. 2001;61:4766–72.PubMed Woo EY, Chu CS, Goletz TJ, et al. Regulatory CD4( + ) CD25( + ) T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res. 2001;61:4766–72.PubMed
99.
go back to reference Colombo MP, Piconese S. Regulatory T cell inhibition versus depletion: the right choice in cancer immunotherapy. Nat Rev Cancer. 2007;7:880–7.PubMedCrossRef Colombo MP, Piconese S. Regulatory T cell inhibition versus depletion: the right choice in cancer immunotherapy. Nat Rev Cancer. 2007;7:880–7.PubMedCrossRef
100.
go back to reference Woo EY, Yeh H, Chu CS, et al. Cutting edge: regulatory T cells from lung cancer patients directly inhibit autologous T cell proliferation. J Immunol. 2002;168:4272–6.PubMed Woo EY, Yeh H, Chu CS, et al. Cutting edge: regulatory T cells from lung cancer patients directly inhibit autologous T cell proliferation. J Immunol. 2002;168:4272–6.PubMed
101.
go back to reference Shevach EM. CD4 + CD25 + suppressor T cells: more questions than answers. Nat Rev Immunol. 2002;2:389–400.PubMed Shevach EM. CD4 + CD25 + suppressor T cells: more questions than answers. Nat Rev Immunol. 2002;2:389–400.PubMed
102.
go back to reference Sakaguchi S. Naturally arising CD4 + regulatory T cells for immunologic self tolerance and negative control of immune responses. Annu Rev Immunol. 2004;22:531–62.PubMedCrossRef Sakaguchi S. Naturally arising CD4 + regulatory T cells for immunologic self tolerance and negative control of immune responses. Annu Rev Immunol. 2004;22:531–62.PubMedCrossRef
103.
go back to reference Krukowskia K, Eddya J, Kosika KL, Konleya T, Janusekb LW, Mathewsa HL. Glucocorticoid dysregulation of natural killer cell function through epigenetic modification. Brain Behav Immun. 2011;25(2):239–49.CrossRef Krukowskia K, Eddya J, Kosika KL, Konleya T, Janusekb LW, Mathewsa HL. Glucocorticoid dysregulation of natural killer cell function through epigenetic modification. Brain Behav Immun. 2011;25(2):239–49.CrossRef
104.
go back to reference Byrnes MD, Antoni MH, Goodkin K, et al. Stressful events, pessimism, natural killer cell cytotoxicity, and cytotoxic/suppressor T cells in HIV +  black women at risk for cervical cancer. Psychosom Med. 1998;60:714–22.PubMed Byrnes MD, Antoni MH, Goodkin K, et al. Stressful events, pessimism, natural killer cell cytotoxicity, and cytotoxic/suppressor T cells in HIV +  black women at risk for cervical cancer. Psychosom Med. 1998;60:714–22.PubMed
105.
go back to reference Irwin M, Daniels M, Risch C, et al. Plasma cortisol and natural killer cell activity during bereavement. Biol Psychiatry. 1988;24:173–78.PubMedCrossRef Irwin M, Daniels M, Risch C, et al. Plasma cortisol and natural killer cell activity during bereavement. Biol Psychiatry. 1988;24:173–78.PubMedCrossRef
106.
go back to reference Lutgendorf SK, Sood AK, Anderson B, McGinn S, Maiseri H, Dao M, et al. Social support, psychological distress, and natural killer cell activity in ovarian cancer. J Clin Oncol. 2005;23:7105–13.PubMedCrossRef Lutgendorf SK, Sood AK, Anderson B, McGinn S, Maiseri H, Dao M, et al. Social support, psychological distress, and natural killer cell activity in ovarian cancer. J Clin Oncol. 2005;23:7105–13.PubMedCrossRef
107.
go back to reference Segerstrom SC, Miller GE. Psychological stress and the human immune system: a meta-analytic study of 30 years of inquiry. Psychol Bull. 2004;130:601–30.PubMedCrossRef Segerstrom SC, Miller GE. Psychological stress and the human immune system: a meta-analytic study of 30 years of inquiry. Psychol Bull. 2004;130:601–30.PubMedCrossRef
108.
go back to reference Dragoş D, Tănăsescu MD. The effect of stress on the defense systems. J Med Life. 2010;3:10–18.PubMed Dragoş D, Tănăsescu MD. The effect of stress on the defense systems. J Med Life. 2010;3:10–18.PubMed
109.
go back to reference Ito K, Barnes PJ, Adcock IM. Glucocorticoid receptor recruitment of histone deacetylase 2 inhibits interleukin-1beta-induced histone H4 acetylation on lysines 8 and 12. Mol Cell Biol. 2000;20:6891–903.PubMedCrossRef Ito K, Barnes PJ, Adcock IM. Glucocorticoid receptor recruitment of histone deacetylase 2 inhibits interleukin-1beta-induced histone H4 acetylation on lysines 8 and 12. Mol Cell Biol. 2000;20:6891–903.PubMedCrossRef
110.
go back to reference Lim HY, Muller N, Herold MJ, et al. Glucocorticoids exert opposing effects on macrophage function dependent on their concentration. Immunology. 2007;122:47–53.PubMedCrossRef Lim HY, Muller N, Herold MJ, et al. Glucocorticoids exert opposing effects on macrophage function dependent on their concentration. Immunology. 2007;122:47–53.PubMedCrossRef
111.
go back to reference Schmidt M, Pauels HG, et al. Glucocorticoids induce apoptosis in human monocytes: potential role of IL-1β. J Immunol. 1999;163:3484–90.PubMed Schmidt M, Pauels HG, et al. Glucocorticoids induce apoptosis in human monocytes: potential role of IL-1β. J Immunol. 1999;163:3484–90.PubMed
112.
go back to reference Tuckermann JP, Kleiman A, Moriggl R, Spanbroek R, Neumann A, Illing A, Clausen BE, et al. Macrophages and neutrophils are the targets for immune suppression by glucocorticoids in contact allergy. J Clin Invest. 2007;117(5):1381–90.PubMedCrossRef Tuckermann JP, Kleiman A, Moriggl R, Spanbroek R, Neumann A, Illing A, Clausen BE, et al. Macrophages and neutrophils are the targets for immune suppression by glucocorticoids in contact allergy. J Clin Invest. 2007;117(5):1381–90.PubMedCrossRef
113.
go back to reference Truckenmiller ME, Bonneau RH, Norbury CC. Stress presents a problem for dendritic cells: corticosterone and the fate of MHC class I antigen processing and presentation. Brain Behav Immun. 2006;20:210–18.PubMedCrossRef Truckenmiller ME, Bonneau RH, Norbury CC. Stress presents a problem for dendritic cells: corticosterone and the fate of MHC class I antigen processing and presentation. Brain Behav Immun. 2006;20:210–18.PubMedCrossRef
114.
go back to reference Moser M, De Smedt T, Sornasse T,Tielemans F, Chentoufi AA, Muraille E, Van Mechelen M, Urbain J, Leo O. Glucocorticoids down-regulate dendritic cell function in vitro and in vivo. Eur. J. Immunol. 1995;25(10):2818–24.PubMedCrossRef Moser M, De Smedt T, Sornasse T,Tielemans F, Chentoufi AA, Muraille E, Van Mechelen M, Urbain J, Leo O. Glucocorticoids down-regulate dendritic cell function in vitro and in vivo. Eur. J. Immunol. 1995;25(10):2818–24.PubMedCrossRef
115.
go back to reference Dhabhar FS, Satoskar AR, Bluethmann H, David JR, McEwen BS. Stress-induced enhancement of skin immune function: a role for gamma interferon. Proc Natl Acad Sci U S A. 2000;97:2846–51.PubMedCrossRef Dhabhar FS, Satoskar AR, Bluethmann H, David JR, McEwen BS. Stress-induced enhancement of skin immune function: a role for gamma interferon. Proc Natl Acad Sci U S A. 2000;97:2846–51.PubMedCrossRef
116.
go back to reference Elftman MD, Norbury CC, Bonneau RH, Truckenmiller ME. Corticosterone impairs dendritic cell maturation and function. Immunology. 2007;122:279–90.PubMedCrossRef Elftman MD, Norbury CC, Bonneau RH, Truckenmiller ME. Corticosterone impairs dendritic cell maturation and function. Immunology. 2007;122:279–90.PubMedCrossRef
117.
go back to reference Truckenmiller ME, Princiotta MF, Norbury CC, Bonneau RH. Corticosterone impairsMHCclass I antigen presentation by dendritic cells via reduction of peptide generation. J Neuroimmunol. 2005;160:48–60.PubMedCrossRef Truckenmiller ME, Princiotta MF, Norbury CC, Bonneau RH. Corticosterone impairsMHCclass I antigen presentation by dendritic cells via reduction of peptide generation. J Neuroimmunol. 2005;160:48–60.PubMedCrossRef
118.
go back to reference Matyszak MK, Citterio S, Rescigno M, Ricciardi-Castagnoli P. Differential effects of corticosteroids during different stages of dendritic cell maturation. Eur J Immunol. 2000;30(4):1233–42.PubMedCrossRef Matyszak MK, Citterio S, Rescigno M, Ricciardi-Castagnoli P. Differential effects of corticosteroids during different stages of dendritic cell maturation. Eur J Immunol. 2000;30(4):1233–42.PubMedCrossRef
119.
go back to reference Rutella S, Danese S, Leone G. Tolerogenic dendritic cells: cytokine modulation comes of age. Blood. 2006;108(5):1435–40.PubMedCrossRef Rutella S, Danese S, Leone G. Tolerogenic dendritic cells: cytokine modulation comes of age. Blood. 2006;108(5):1435–40.PubMedCrossRef
120.
go back to reference Chamorro v, Garcia-Vallejo JJ, Unger WWJ, et al. TLR Triggering on tolerogenic dendritic cells results in TLR2 up-regulation and a reduced proinflammatory immune program. J Immunol. 2009;183(5):2984–94.PubMedCrossRef Chamorro v, Garcia-Vallejo JJ, Unger WWJ, et al. TLR Triggering on tolerogenic dendritic cells results in TLR2 up-regulation and a reduced proinflammatory immune program. J Immunol. 2009;183(5):2984–94.PubMedCrossRef
121.
go back to reference Ramirez F, Fowell DJ, Puklavec M, Simmonds S, Mason D. Glucocorticoids promote a TH2 cytokine response by CD4 +  T cells in vitro. J Immunol. 1996;156(7):2406–12.PubMed Ramirez F, Fowell DJ, Puklavec M, Simmonds S, Mason D. Glucocorticoids promote a TH2 cytokine response by CD4 +  T cells in vitro. J Immunol. 1996;156(7):2406–12.PubMed
122.
go back to reference Franchimont D, Galon J, Gadina M, et al. Inhibition of Th1 immune response by glucocorticoids: dexamethasone selectively inhibits IL-12-induced Stat4 phosphorylation in T lymphocytes. J Immunol. 2000;164(4):1768–74.PubMed Franchimont D, Galon J, Gadina M, et al. Inhibition of Th1 immune response by glucocorticoids: dexamethasone selectively inhibits IL-12-induced Stat4 phosphorylation in T lymphocytes. J Immunol. 2000;164(4):1768–74.PubMed
123.
go back to reference Saul AN et al. Chronic stress and susceptibility to skin cancer. J. Natl Cancer Inst. 2005;97:1760–7.PubMedCrossRef Saul AN et al. Chronic stress and susceptibility to skin cancer. J. Natl Cancer Inst. 2005;97:1760–7.PubMedCrossRef
124.
go back to reference Hamdi H, Godot V, Maillot MC, et al. Induction of antigen-specific regulatory T lymphocytes by human dendritic cells expressing the glucocorticoid-induced leucine zipper. Blood. 2007;110:211–9.PubMedCrossRef Hamdi H, Godot V, Maillot MC, et al. Induction of antigen-specific regulatory T lymphocytes by human dendritic cells expressing the glucocorticoid-induced leucine zipper. Blood. 2007;110:211–9.PubMedCrossRef
125.
go back to reference Chen X, Oppenheim JJ, Winkler-Pickett RT, Ortaldo JR, Howard OM. Glucocorticoid amplifies IL-2-dependent expansion of functional FoxP3( + )CD4( + )CD25( + ) T regulatory cells in vivo and enhances their capacity to suppress EAE. Eur J Immunol. 2006;36:2139.PubMedCrossRef Chen X, Oppenheim JJ, Winkler-Pickett RT, Ortaldo JR, Howard OM. Glucocorticoid amplifies IL-2-dependent expansion of functional FoxP3( + )CD4( + )CD25( + ) T regulatory cells in vivo and enhances their capacity to suppress EAE. Eur J Immunol. 2006;36:2139.PubMedCrossRef
126.
go back to reference Chen CC, David AS, Nunnerley H, et al. Adverse life events and breast cancer: case-control study. BMJ. 1995;311:1527–30.PubMedCrossRef Chen CC, David AS, Nunnerley H, et al. Adverse life events and breast cancer: case-control study. BMJ. 1995;311:1527–30.PubMedCrossRef
127.
go back to reference Duijts SF, Zeegers MP, Borne BV. The association between stressful life events and breast cancer risk: a metaanalysis. Int J Cancer. 2003;107:1023–29.PubMedCrossRef Duijts SF, Zeegers MP, Borne BV. The association between stressful life events and breast cancer risk: a metaanalysis. Int J Cancer. 2003;107:1023–29.PubMedCrossRef
128.
go back to reference Geyer S. Life events prior to manifestation of breast cancer: a limited prospective study covering eight years before diagnosis. J Psychosom Res. 1991;35:355–63.PubMedCrossRef Geyer S. Life events prior to manifestation of breast cancer: a limited prospective study covering eight years before diagnosis. J Psychosom Res. 1991;35:355–63.PubMedCrossRef
129.
go back to reference Lillberg K, Verkasalo PK, Kaprio J, et al. Stressful life events and risk of breast cancer in 10,808 women: a cohort study. Am J Epidemiol. 2003;157:415–23.PubMedCrossRef Lillberg K, Verkasalo PK, Kaprio J, et al. Stressful life events and risk of breast cancer in 10,808 women: a cohort study. Am J Epidemiol. 2003;157:415–23.PubMedCrossRef
130.
go back to reference Giraldi T, Rodani MG, Cartei G, et al. Psychosocial factors and breast cancer: a 6-year Italian follow-up study. Psychother Psychosom. 1997;66:229–36.PubMedCrossRef Giraldi T, Rodani MG, Cartei G, et al. Psychosocial factors and breast cancer: a 6-year Italian follow-up study. Psychother Psychosom. 1997;66:229–36.PubMedCrossRef
131.
go back to reference Penninx BW, Guralnik JM, Pahor M, et al. Chronically depressed mood and cancer risk in older persons. J Natl Cancer Inst. 1998;90:1888–93.PubMedCrossRef Penninx BW, Guralnik JM, Pahor M, et al. Chronically depressed mood and cancer risk in older persons. J Natl Cancer Inst. 1998;90:1888–93.PubMedCrossRef
132.
go back to reference Price MA, Tennant CC, Smith RC, et al. The role of psychosocial factors in the development of breast carcinoma: Part I. The cancer prone personality. Cancer. 2001;91:679–85.PubMedCrossRef Price MA, Tennant CC, Smith RC, et al. The role of psychosocial factors in the development of breast carcinoma: Part I. The cancer prone personality. Cancer. 2001;91:679–85.PubMedCrossRef
Metadata
Title
Biomolecular basis of the role of chronic psychological stress hormone ‘‘glucocorticoid’’ in alteration of cellular immunity during cancer
Authors
Md. Rubayet Ahsan
Abdullah Mahmud-Al-Rafat
Mahbub-E. Sobhani
Md. Abdul Wadud Molla
Publication date
01-06-2013
Publisher
Springer Vienna
Published in
memo - Magazine of European Medical Oncology / Issue 2/2013
Print ISSN: 1865-5041
Electronic ISSN: 1865-5076
DOI
https://doi.org/10.1007/s12254-013-0075-y

Other articles of this Issue 2/2013

memo - Magazine of European Medical Oncology 2/2013 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine