Skip to main content
Top

Open Access 15-04-2024 | Biomarkers | Review

The emerging role of CARM1 in cancer

Authors: Zizhuo Xie, Yuan Tian, Xiaohan Guo, Na Xie

Published in: Cellular Oncology

Login to get access

Abstract

Coactivator-associated arginine methyltransferase 1 (CARM1), pivotal for catalyzing arginine methylation of histone and non-histone proteins, plays a crucial role in developing various cancers. CARM1 was initially recognized as a transcriptional coregulator by orchestrating chromatin remodeling, transcription regulation, mRNA splicing and stability. This diverse functionality contributes to the recruitment of transcription factors that foster malignancies. Going beyond its established involvement in transcriptional control, CARM1-mediated methylation influences a spectrum of biological processes, including the cell cycle, metabolism, autophagy, redox homeostasis, and inflammation. By manipulating these physiological functions, CARM1 becomes essential in critical processes such as tumorigenesis, metastasis, and therapeutic resistance. Consequently, it emerges as a viable target for therapeutic intervention and a possible biomarker for medication response in specific cancer types. This review provides a comprehensive exploration of the various physiological functions of CARM1 in the context of cancer. Furthermore, we discuss potential CARM1-targeting pharmaceutical interventions for cancer therapy.
Literature
1.
go back to reference Y. Chen et al., The role of histone methylation in the development of digestive cancers: a potential direction for cancer management. Signal. Transduct. Target. Ther. 5(1), 143 (2020)PubMedPubMedCentralCrossRef Y. Chen et al., The role of histone methylation in the development of digestive cancers: a potential direction for cancer management. Signal. Transduct. Target. Ther. 5(1), 143 (2020)PubMedPubMedCentralCrossRef
2.
go back to reference Q. Wu et al., Protein arginine methylation: from enigmatic functions to therapeutic targeting. Nat. Rev. Drug Discov. 20(7), 509–530 (2021)PubMedCrossRef Q. Wu et al., Protein arginine methylation: from enigmatic functions to therapeutic targeting. Nat. Rev. Drug Discov. 20(7), 509–530 (2021)PubMedCrossRef
3.
go back to reference W. Jin et al., Unraveling the complexity of histone-arginine methyltransferase CARM1 in cancer: from underlying mechanisms to targeted therapeutics. Biochim. Biophys. Acta Rev. Cancer. 1878(4), 188916 (2023)PubMedCrossRef W. Jin et al., Unraveling the complexity of histone-arginine methyltransferase CARM1 in cancer: from underlying mechanisms to targeted therapeutics. Biochim. Biophys. Acta Rev. Cancer. 1878(4), 188916 (2023)PubMedCrossRef
4.
go back to reference K. Wang et al., PHGDH arginine methylation by PRMT1 promotes serine synthesis and represents a therapeutic vulnerability in hepatocellular carcinoma. Nat. Commun. 14(1), 1011 (2023)PubMedPubMedCentralCrossRef K. Wang et al., PHGDH arginine methylation by PRMT1 promotes serine synthesis and represents a therapeutic vulnerability in hepatocellular carcinoma. Nat. Commun. 14(1), 1011 (2023)PubMedPubMedCentralCrossRef
5.
6.
go back to reference S.K. Tewary, Y.G. Zheng, M.C. Ho, Protein arginine methyltransferases: insights into the enzyme structure and mechanism at the atomic level. Cell. Mol. Life Sci. 76(15), 2917–2932 (2019)PubMedPubMedCentralCrossRef S.K. Tewary, Y.G. Zheng, M.C. Ho, Protein arginine methyltransferases: insights into the enzyme structure and mechanism at the atomic level. Cell. Mol. Life Sci. 76(15), 2917–2932 (2019)PubMedPubMedCentralCrossRef
7.
go back to reference N. Troffer-Charlier et al., Functional insights from structures of coactivator-associated arginine methyltransferase 1 domains. Embo j. 26(20), 4391–4401 (2007)PubMedPubMedCentralCrossRef N. Troffer-Charlier et al., Functional insights from structures of coactivator-associated arginine methyltransferase 1 domains. Embo j. 26(20), 4391–4401 (2007)PubMedPubMedCentralCrossRef
9.
go back to reference M.B. Davis et al., Expression and sub-cellular localization of an epigenetic regulator, co-activator arginine methyltransferase 1 (CARM1), is associated with specific breast cancer subtypes and ethnicity. Mol. Cancer. 12(1), 40 (2013)PubMedPubMedCentralCrossRef M.B. Davis et al., Expression and sub-cellular localization of an epigenetic regulator, co-activator arginine methyltransferase 1 (CARM1), is associated with specific breast cancer subtypes and ethnicity. Mol. Cancer. 12(1), 40 (2013)PubMedPubMedCentralCrossRef
10.
go back to reference D. Shlensky et al., Differential CARM1 isoform expression in subcellular compartments and among malignant and benign breast tumors. PLoS One. 10(6), e0128143 (2015)PubMedPubMedCentralCrossRef D. Shlensky et al., Differential CARM1 isoform expression in subcellular compartments and among malignant and benign breast tumors. PLoS One. 10(6), e0128143 (2015)PubMedPubMedCentralCrossRef
11.
go back to reference M. Zheng et al., ESRP1 regulates alternative splicing of CARM1 to sensitize small cell lung cancer cells to chemotherapy by inhibiting TGF-β/Smad signaling. Aging (Albany NY). 13(3), 3554–3572 (2021)PubMedCrossRef M. Zheng et al., ESRP1 regulates alternative splicing of CARM1 to sensitize small cell lung cancer cells to chemotherapy by inhibiting TGF-β/Smad signaling. Aging (Albany NY). 13(3), 3554–3572 (2021)PubMedCrossRef
12.
go back to reference N. Ohkura et al., Coactivator-associated arginine methyltransferase 1, CARM1, affects pre-mRNA splicing in an isoform-specific manner. J. Biol. Chem. 280(32), 28927–28935 (2005)PubMedCrossRef N. Ohkura et al., Coactivator-associated arginine methyltransferase 1, CARM1, affects pre-mRNA splicing in an isoform-specific manner. J. Biol. Chem. 280(32), 28927–28935 (2005)PubMedCrossRef
14.
go back to reference K. Higashimoto et al., Phosphorylation-mediated inactivation of coactivator-associated arginine methyltransferase 1. Proc. Natl. Acad. Sci. U S A 104(30), 12318–12323 (2007)PubMedPubMedCentralCrossRef K. Higashimoto et al., Phosphorylation-mediated inactivation of coactivator-associated arginine methyltransferase 1. Proc. Natl. Acad. Sci. U S A 104(30), 12318–12323 (2007)PubMedPubMedCentralCrossRef
15.
go back to reference S. Carascossa et al., CARM1 mediates the ligand-independent and tamoxifen-resistant activation of the estrogen receptor alpha by cAMP. Genes Dev. 24(7), 708–719 (2010)PubMedPubMedCentralCrossRef S. Carascossa et al., CARM1 mediates the ligand-independent and tamoxifen-resistant activation of the estrogen receptor alpha by cAMP. Genes Dev. 24(7), 708–719 (2010)PubMedPubMedCentralCrossRef
16.
go back to reference N.C. Chang et al., The Dystrophin Glycoprotein Complex regulates the epigenetic activation of muscle stem cell commitment. Cell. Stem Cell. 22(5), 755–768e6 (2018)PubMedPubMedCentralCrossRef N.C. Chang et al., The Dystrophin Glycoprotein Complex regulates the epigenetic activation of muscle stem cell commitment. Cell. Stem Cell. 22(5), 755–768e6 (2018)PubMedPubMedCentralCrossRef
17.
go back to reference S. Li et al., The overexpression of CARM1 promotes human Osteosarcoma Cell Proliferation through the pGSK3β/β-Catenin/cyclinD1 signaling pathway. Int. J. Biol. Sci. 13(8), 976–984 (2017)PubMedPubMedCentralCrossRef S. Li et al., The overexpression of CARM1 promotes human Osteosarcoma Cell Proliferation through the pGSK3β/β-Catenin/cyclinD1 signaling pathway. Int. J. Biol. Sci. 13(8), 976–984 (2017)PubMedPubMedCentralCrossRef
19.
go back to reference P. Kuhn et al., Automethylation of CARM1 allows coupling of transcription and mRNA splicing. Nucleic Acids Res. 39(7), 2717–2726 (2011)PubMedCrossRef P. Kuhn et al., Automethylation of CARM1 allows coupling of transcription and mRNA splicing. Nucleic Acids Res. 39(7), 2717–2726 (2011)PubMedCrossRef
20.
go back to reference W.D. Cheung et al., O-linked beta-N-acetylglucosaminyltransferase substrate specificity is regulated by myosin phosphatase targeting and other interacting proteins. J. Biol. Chem. 283(49), 33935–33941 (2008)PubMedPubMedCentralCrossRef W.D. Cheung et al., O-linked beta-N-acetylglucosaminyltransferase substrate specificity is regulated by myosin phosphatase targeting and other interacting proteins. J. Biol. Chem. 283(49), 33935–33941 (2008)PubMedPubMedCentralCrossRef
21.
go back to reference P. Charoensuksai et al., O-GlcNAcylation of co-activator-associated arginine methyltransferase 1 regulates its protein substrate specificity. Biochem. J. 466(3), 587–599 (2015)PubMedCrossRef P. Charoensuksai et al., O-GlcNAcylation of co-activator-associated arginine methyltransferase 1 regulates its protein substrate specificity. Biochem. J. 466(3), 587–599 (2015)PubMedCrossRef
23.
go back to reference M. Yang et al., Structural basis for CoREST-dependent demethylation of nucleosomes by the human LSD1 histone demethylase. Mol. Cell. 23(3), 377–387 (2006)PubMedCrossRef M. Yang et al., Structural basis for CoREST-dependent demethylation of nucleosomes by the human LSD1 histone demethylase. Mol. Cell. 23(3), 377–387 (2006)PubMedCrossRef
24.
go back to reference M.A. Bennesch et al., LSD1 engages a corepressor complex for the activation of the estrogen receptor α by estrogen and cAMP. Nucleic Acids Res. 44(18), 8655–8670 (2016)PubMedPubMedCentralCrossRef M.A. Bennesch et al., LSD1 engages a corepressor complex for the activation of the estrogen receptor α by estrogen and cAMP. Nucleic Acids Res. 44(18), 8655–8670 (2016)PubMedPubMedCentralCrossRef
25.
go back to reference J. Liu et al., Arginine methylation-dependent LSD1 stability promotes invasion and metastasis of breast cancer. EMBO Rep. 21(2), e48597 (2020)PubMedCrossRef J. Liu et al., Arginine methylation-dependent LSD1 stability promotes invasion and metastasis of breast cancer. EMBO Rep. 21(2), e48597 (2020)PubMedCrossRef
27.
go back to reference W.W. Gao et al., JMJD6 licenses ERα-Dependent enhancer and coding gene activation by modulating the recruitment of the CARM1/MED12 co-activator complex. Mol. Cell. 70(2), 340–357e8 (2018)PubMedPubMedCentralCrossRef W.W. Gao et al., JMJD6 licenses ERα-Dependent enhancer and coding gene activation by modulating the recruitment of the CARM1/MED12 co-activator complex. Mol. Cell. 70(2), 340–357e8 (2018)PubMedPubMedCentralCrossRef
28.
go back to reference S.T. Williams et al., Studies on the catalytic domains of multiple JmjC oxygenases using peptide substrates. Epigenetics. 9(12), 1596–1603 (2014)PubMedCrossRef S.T. Williams et al., Studies on the catalytic domains of multiple JmjC oxygenases using peptide substrates. Epigenetics. 9(12), 1596–1603 (2014)PubMedCrossRef
29.
go back to reference B.L. Peng et al., A hypermethylation strategy utilized by enhancer-bound CARM1 to promote estrogen receptor α-dependent transcriptional activation and breast carcinogenesis. Theranostics. 10(8), 3451–3473 (2020)PubMedPubMedCentralCrossRef B.L. Peng et al., A hypermethylation strategy utilized by enhancer-bound CARM1 to promote estrogen receptor α-dependent transcriptional activation and breast carcinogenesis. Theranostics. 10(8), 3451–3473 (2020)PubMedPubMedCentralCrossRef
30.
go back to reference H. Cheng et al., Overexpression of CARM1 in breast cancer is correlated with poorly characterized clinicopathologic parameters and molecular subtypes. Diagn. Pathol. 8, 129 (2013)PubMedPubMedCentralCrossRef H. Cheng et al., Overexpression of CARM1 in breast cancer is correlated with poorly characterized clinicopathologic parameters and molecular subtypes. Diagn. Pathol. 8, 129 (2013)PubMedPubMedCentralCrossRef
31.
go back to reference N. Nakayama et al., Cancer-related transcription regulator protein NAC1 forms a protein complex with CARM1 for ovarian cancer progression. Oncotarget. 9(47), 28408–28420 (2018)PubMedPubMedCentralCrossRef N. Nakayama et al., Cancer-related transcription regulator protein NAC1 forms a protein complex with CARM1 for ovarian cancer progression. Oncotarget. 9(47), 28408–28420 (2018)PubMedPubMedCentralCrossRef
32.
33.
go back to reference S. Leonard et al., Arginine methyltransferases are regulated by Epstein-Barr Virus in B cells and are differentially expressed in Hodgkin’s lymphoma. Pathogens. 1(1), 52–64 (2012)PubMedPubMedCentralCrossRef S. Leonard et al., Arginine methyltransferases are regulated by Epstein-Barr Virus in B cells and are differentially expressed in Hodgkin’s lymphoma. Pathogens. 1(1), 52–64 (2012)PubMedPubMedCentralCrossRef
34.
35.
go back to reference X.Y. Zhong et al., CARM1 methylates GAPDH to regulate glucose metabolism and is suppressed in Liver Cancer. Cell. Rep. 24(12), 3207–3223 (2018)PubMedCrossRef X.Y. Zhong et al., CARM1 methylates GAPDH to regulate glucose metabolism and is suppressed in Liver Cancer. Cell. Rep. 24(12), 3207–3223 (2018)PubMedCrossRef
36.
go back to reference Y.P. Wang et al., Arginine methylation of MDH1 by CARM1 inhibits glutamine metabolism and suppresses pancreatic Cancer. Mol. Cell. 64(4), 673–687 (2016)PubMedCrossRef Y.P. Wang et al., Arginine methylation of MDH1 by CARM1 inhibits glutamine metabolism and suppresses pancreatic Cancer. Mol. Cell. 64(4), 673–687 (2016)PubMedCrossRef
38.
go back to reference M. Zhang et al., Coactivator-associated arginine methyltransferase 1 promotes cell growth and is targeted by microRNA-195-5p in human colorectal cancer. Tumour Biol. 39(3), 1010428317694305 (2017)PubMedCrossRef M. Zhang et al., Coactivator-associated arginine methyltransferase 1 promotes cell growth and is targeted by microRNA-195-5p in human colorectal cancer. Tumour Biol. 39(3), 1010428317694305 (2017)PubMedCrossRef
39.
go back to reference H. Hong et al., Aberrant expression of CARM1, a transcriptional coactivator of androgen receptor, in the development of prostate carcinoma and androgen-independent status. Cancer. 101(1), 83–89 (2004)PubMedCrossRef H. Hong et al., Aberrant expression of CARM1, a transcriptional coactivator of androgen receptor, in the development of prostate carcinoma and androgen-independent status. Cancer. 101(1), 83–89 (2004)PubMedCrossRef
41.
go back to reference R. Elakoum et al., CARM1 and PRMT1 are dysregulated in lung cancer without hierarchical features. Biochimie. 97, 210–218 (2014)PubMedCrossRef R. Elakoum et al., CARM1 and PRMT1 are dysregulated in lung cancer without hierarchical features. Biochimie. 97, 210–218 (2014)PubMedCrossRef
42.
go back to reference K. Limm et al., Deregulation of protein methylation in melanoma. Eur. J. Cancer. 49(6), 1305–1313 (2013)PubMedCrossRef K. Limm et al., Deregulation of protein methylation in melanoma. Eur. J. Cancer. 49(6), 1305–1313 (2013)PubMedCrossRef
43.
go back to reference K.B. O’Brien et al., CARM1 is required for proper control of proliferation and differentiation of pulmonary epithelial cells. Development. 137(13), 2147–2156 (2010)PubMedPubMedCentralCrossRef K.B. O’Brien et al., CARM1 is required for proper control of proliferation and differentiation of pulmonary epithelial cells. Development. 137(13), 2147–2156 (2010)PubMedPubMedCentralCrossRef
44.
go back to reference J. Wu et al., A role for CARM1-mediated histone H3 arginine methylation in protecting histone acetylation by releasing corepressors from chromatin. PLoS One. 7(6), e34692 (2012)PubMedPubMedCentralCrossRef J. Wu et al., A role for CARM1-mediated histone H3 arginine methylation in protecting histone acetylation by releasing corepressors from chromatin. PLoS One. 7(6), e34692 (2012)PubMedPubMedCentralCrossRef
45.
go back to reference Y.H. Lee, M.T. Bedford, M.R. Stallcup, Regulated recruitment of tumor suppressor BRCA1 to the p21 gene by coactivator methylation. Genes Dev. 25(2), 176–188 (2011)PubMedPubMedCentralCrossRef Y.H. Lee, M.T. Bedford, M.R. Stallcup, Regulated recruitment of tumor suppressor BRCA1 to the p21 gene by coactivator methylation. Genes Dev. 25(2), 176–188 (2011)PubMedPubMedCentralCrossRef
46.
go back to reference S.B. Hu et al., Protein arginine methyltransferase CARM1 attenuates the paraspeckle-mediated nuclear retention of mRNAs containing IRAlus. Genes Dev. 29(6), 630–645 (2015)PubMedPubMedCentralCrossRef S.B. Hu et al., Protein arginine methyltransferase CARM1 attenuates the paraspeckle-mediated nuclear retention of mRNAs containing IRAlus. Genes Dev. 29(6), 630–645 (2015)PubMedPubMedCentralCrossRef
47.
go back to reference S.L. Jacques et al., CARM1 preferentially methylates H3R17 over H3R26 through a Random Kinetic mechanism. Biochemistry. 55(11), 1635–1644 (2016)PubMedCrossRef S.L. Jacques et al., CARM1 preferentially methylates H3R17 over H3R26 through a Random Kinetic mechanism. Biochemistry. 55(11), 1635–1644 (2016)PubMedCrossRef
48.
go back to reference D. Cheng et al., Genetic evidence for partial redundancy between the arginine methyltransferases CARM1 and PRMT6. J. Biol. Chem. 295(50), 17060–17070 (2020)PubMedPubMedCentralCrossRef D. Cheng et al., Genetic evidence for partial redundancy between the arginine methyltransferases CARM1 and PRMT6. J. Biol. Chem. 295(50), 17060–17070 (2020)PubMedPubMedCentralCrossRef
49.
go back to reference M. Nie et al., CARM1-mediated methylation of protein arginine methyltransferase 5 represses human γ-globin gene expression in erythroleukemia cells. J. Biol. Chem. 293(45), 17454–17463 (2018)PubMedPubMedCentralCrossRef M. Nie et al., CARM1-mediated methylation of protein arginine methyltransferase 5 represses human γ-globin gene expression in erythroleukemia cells. J. Biol. Chem. 293(45), 17454–17463 (2018)PubMedPubMedCentralCrossRef
50.
go back to reference J. Wu, W. Xu, Histone H3R17me2a mark recruits human RNA polymerase-associated factor 1 complex to activate transcription. Proc. Natl. Acad. Sci. U S A 109(15), 5675–5680 (2012)PubMedPubMedCentralCrossRef J. Wu, W. Xu, Histone H3R17me2a mark recruits human RNA polymerase-associated factor 1 complex to activate transcription. Proc. Natl. Acad. Sci. U S A 109(15), 5675–5680 (2012)PubMedPubMedCentralCrossRef
52.
go back to reference G. Yang et al., Base-editing-mediated R17H substitution in histone H3 reveals methylation-dependent regulation of Yap Signaling and early mouse embryo development. Cell. Rep. 26(2), 302–312e4 (2019)PubMedCrossRef G. Yang et al., Base-editing-mediated R17H substitution in histone H3 reveals methylation-dependent regulation of Yap Signaling and early mouse embryo development. Cell. Rep. 26(2), 302–312e4 (2019)PubMedCrossRef
53.
go back to reference E. Zika et al., Interplay among coactivator-associated arginine methyltransferase 1, CBP, and CIITA in IFN-gamma-inducible MHC-II gene expression. Proc. Natl. Acad. Sci. U S A 102(45), 16321–16326 (2005)PubMedPubMedCentralCrossRef E. Zika et al., Interplay among coactivator-associated arginine methyltransferase 1, CBP, and CIITA in IFN-gamma-inducible MHC-II gene expression. Proc. Natl. Acad. Sci. U S A 102(45), 16321–16326 (2005)PubMedPubMedCentralCrossRef
54.
go back to reference D. Chen et al., Regulation of transcription by a protein methyltransferase. Science. 284(5423), 2174–2177 (1999)PubMedCrossRef D. Chen et al., Regulation of transcription by a protein methyltransferase. Science. 284(5423), 2174–2177 (1999)PubMedCrossRef
56.
go back to reference D.G. Ceschin et al., Methylation specifies distinct estrogen-induced binding site repertoires of CBP to chromatin. Genes Dev. 25(11), 1132–1146 (2011)PubMedPubMedCentralCrossRef D.G. Ceschin et al., Methylation specifies distinct estrogen-induced binding site repertoires of CBP to chromatin. Genes Dev. 25(11), 1132–1146 (2011)PubMedPubMedCentralCrossRef
57.
go back to reference K.J. Veazey et al., CARM1 inhibition reduces histone acetyltransferase activity causing synthetic lethality in CREBBP/EP300-mutated lymphomas. Leukemia. 34(12), 3269–3285 (2020)PubMedPubMedCentralCrossRef K.J. Veazey et al., CARM1 inhibition reduces histone acetyltransferase activity causing synthetic lethality in CREBBP/EP300-mutated lymphomas. Leukemia. 34(12), 3269–3285 (2020)PubMedPubMedCentralCrossRef
58.
go back to reference Z. Liu et al., NFYC-37 promotes tumor growth by activating the mevalonate pathway in bladder cancer. Cell. Rep. 42(8), 112963 (2023)PubMedCrossRef Z. Liu et al., NFYC-37 promotes tumor growth by activating the mevalonate pathway in bladder cancer. Cell. Rep. 42(8), 112963 (2023)PubMedCrossRef
59.
go back to reference S. Frietze et al., CARM1 regulates estrogen-stimulated breast cancer growth through up-regulation of E2F1. Cancer Res. 68(1), 301–306 (2008)PubMedCrossRef S. Frietze et al., CARM1 regulates estrogen-stimulated breast cancer growth through up-regulation of E2F1. Cancer Res. 68(1), 301–306 (2008)PubMedCrossRef
60.
61.
go back to reference W. An, J. Kim, R.G. Roeder, Ordered cooperative functions of PRMT1, p300, and CARM1 in transcriptional activation by p53. Cell. 117(6), 735–748 (2004)PubMedCrossRef W. An, J. Kim, R.G. Roeder, Ordered cooperative functions of PRMT1, p300, and CARM1 in transcriptional activation by p53. Cell. 117(6), 735–748 (2004)PubMedCrossRef
62.
go back to reference I.M. Fingerman, S.D. Briggs, p53-mediated transcriptional activation: from test tube to cell Cell, 2004. 117(6): pp. 690-1 I.M. Fingerman, S.D. Briggs, p53-mediated transcriptional activation: from test tube to cell Cell, 2004. 117(6): pp. 690-1
63.
go back to reference K.Y. Kim et al., PRMT4-mediated arginine methylation negatively regulates retinoblastoma tumor suppressor protein and promotes E2F-1 dissociation. Mol. Cell. Biol. 35(1), 238–248 (2015)PubMedCrossRef K.Y. Kim et al., PRMT4-mediated arginine methylation negatively regulates retinoblastoma tumor suppressor protein and promotes E2F-1 dissociation. Mol. Cell. Biol. 35(1), 238–248 (2015)PubMedCrossRef
65.
go back to reference D. Cheng et al., The arginine methyltransferase CARM1 regulates the coupling of transcription and mRNA processing. Mol. Cell. 25(1), 71–83 (2007)PubMedCrossRef D. Cheng et al., The arginine methyltransferase CARM1 regulates the coupling of transcription and mRNA processing. Mol. Cell. 25(1), 71–83 (2007)PubMedCrossRef
66.
go back to reference F. Haque, T. Honjo, N.A. Begum, XLID syndrome gene Med12 promotes ig isotype switching through chromatin modification and enhancer RNA regulation. Sci. Adv. 8(47), eadd1466 (2022)PubMedPubMedCentralCrossRef F. Haque, T. Honjo, N.A. Begum, XLID syndrome gene Med12 promotes ig isotype switching through chromatin modification and enhancer RNA regulation. Sci. Adv. 8(47), eadd1466 (2022)PubMedPubMedCentralCrossRef
68.
69.
go back to reference L. Zhang et al., Arginine methylation of PPP1CA by CARM1 regulates glucose metabolism and affects osteogenic differentiation and osteoclastic differentiation. Clin. Transl Med. 13(9), e1369 (2023)PubMedPubMedCentralCrossRef L. Zhang et al., Arginine methylation of PPP1CA by CARM1 regulates glucose metabolism and affects osteogenic differentiation and osteoclastic differentiation. Clin. Transl Med. 13(9), e1369 (2023)PubMedPubMedCentralCrossRef
70.
71.
go back to reference Y. Liu et al., A C9orf72-CARM1 axis regulates lipid metabolism under glucose starvation-induced nutrient stress. Genes Dev. 32(21–22), 1380–1397 (2018)PubMedPubMedCentralCrossRef Y. Liu et al., A C9orf72-CARM1 axis regulates lipid metabolism under glucose starvation-induced nutrient stress. Genes Dev. 32(21–22), 1380–1397 (2018)PubMedPubMedCentralCrossRef
72.
go back to reference S.C. Wang et al., CARM1/PRMT4 is necessary for the glycogen gene expression programme in skeletal muscle cells. Biochem. J. 444(2), 323–331 (2012)PubMedCrossRef S.C. Wang et al., CARM1/PRMT4 is necessary for the glycogen gene expression programme in skeletal muscle cells. Biochem. J. 444(2), 323–331 (2012)PubMedCrossRef
73.
go back to reference Y. Wang et al., PRMT4 promotes ferroptosis to aggravate doxorubicin-induced cardiomyopathy via inhibition of the Nrf2/GPX4 pathway. Cell. Death Differ. 29(10), 1982–1995 (2022)PubMedPubMedCentralCrossRef Y. Wang et al., PRMT4 promotes ferroptosis to aggravate doxorubicin-induced cardiomyopathy via inhibition of the Nrf2/GPX4 pathway. Cell. Death Differ. 29(10), 1982–1995 (2022)PubMedPubMedCentralCrossRef
74.
go back to reference J. Guo et al., Arginine methylation of ribose-5-phosphate isomerase A senses glucose to promote human colorectal cancer cell survival. Sci. China Life Sci. 63(9), 1394–1405 (2020)PubMedCrossRef J. Guo et al., Arginine methylation of ribose-5-phosphate isomerase A senses glucose to promote human colorectal cancer cell survival. Sci. China Life Sci. 63(9), 1394–1405 (2020)PubMedCrossRef
76.
go back to reference Y. Liu, J. Wang, C9orf72-dependent lysosomal functions regulate epigenetic control of autophagy and lipid metabolism. Autophagy. 15(5), 913–914 (2019)PubMedPubMedCentralCrossRef Y. Liu, J. Wang, C9orf72-dependent lysosomal functions regulate epigenetic control of autophagy and lipid metabolism. Autophagy. 15(5), 913–914 (2019)PubMedPubMedCentralCrossRef
78.
go back to reference K. Zhou et al., TFE3, a potential therapeutic target for spinal cord Injury via augmenting autophagy flux and alleviating ER stress. Theranostics. 10(20), 9280–9302 (2020)PubMedPubMedCentralCrossRef K. Zhou et al., TFE3, a potential therapeutic target for spinal cord Injury via augmenting autophagy flux and alleviating ER stress. Theranostics. 10(20), 9280–9302 (2020)PubMedPubMedCentralCrossRef
79.
go back to reference S. Yang et al., CARM1 promotes gastric cancer progression by regulating TFE3 mediated autophagy enhancement through the cytoplasmic AMPK-mTOR and nuclear AMPK-CARM1-TFE3 signaling pathways. Cancer Cell. Int. 22(1), 102 (2022)PubMedPubMedCentralCrossRef S. Yang et al., CARM1 promotes gastric cancer progression by regulating TFE3 mediated autophagy enhancement through the cytoplasmic AMPK-mTOR and nuclear AMPK-CARM1-TFE3 signaling pathways. Cancer Cell. Int. 22(1), 102 (2022)PubMedPubMedCentralCrossRef
80.
go back to reference M. Covic et al., Arginine methyltransferase CARM1 is a promoter-specific regulator of NF-kappaB-dependent gene expression. Embo j. 24(1), 85–96 (2005)PubMedCrossRef M. Covic et al., Arginine methyltransferase CARM1 is a promoter-specific regulator of NF-kappaB-dependent gene expression. Embo j. 24(1), 85–96 (2005)PubMedCrossRef
81.
go back to reference S. Jayne, K.M. Rothgiesser, M.O. Hottiger, CARM1 but not its enzymatic activity is required for transcriptional coactivation of NF-kappaB-dependent gene expression. J. Mol. Biol. 394(3), 485–495 (2009)PubMedCrossRef S. Jayne, K.M. Rothgiesser, M.O. Hottiger, CARM1 but not its enzymatic activity is required for transcriptional coactivation of NF-kappaB-dependent gene expression. J. Mol. Biol. 394(3), 485–495 (2009)PubMedCrossRef
82.
83.
go back to reference K. Hein et al., Site-specific methylation of Notch1 controls the amplitude and duration of the Notch1 response. Sci. Signal. 8(369), ra30 (2015)PubMedCrossRef K. Hein et al., Site-specific methylation of Notch1 controls the amplitude and duration of the Notch1 response. Sci. Signal. 8(369), ra30 (2015)PubMedCrossRef
84.
go back to reference Q. Chen et al., LYL1 facilitates AETFC assembly and gene activation by recruiting CARM1 in t(8;21) AML. Proc. Natl. Acad. Sci. U S A 119(42), e2213718119 (2022)PubMedPubMedCentralCrossRef Q. Chen et al., LYL1 facilitates AETFC assembly and gene activation by recruiting CARM1 in t(8;21) AML. Proc. Natl. Acad. Sci. U S A 119(42), e2213718119 (2022)PubMedPubMedCentralCrossRef
85.
go back to reference S.M. Greenblatt et al., CARM1 is essential for myeloid leukemogenesis but dispensable for normal hematopoiesis. Cancer Cell. 33(6), 1111–1127e5 (2018)PubMedPubMedCentralCrossRef S.M. Greenblatt et al., CARM1 is essential for myeloid leukemogenesis but dispensable for normal hematopoiesis. Cancer Cell. 33(6), 1111–1127e5 (2018)PubMedPubMedCentralCrossRef
86.
go back to reference S. Majumder et al., Involvement of arginine methyltransferase CARM1 in androgen receptor function and prostate cancer cell viability. Prostate. 66(12), 1292–1301 (2006)PubMedCrossRef S. Majumder et al., Involvement of arginine methyltransferase CARM1 in androgen receptor function and prostate cancer cell viability. Prostate. 66(12), 1292–1301 (2006)PubMedCrossRef
88.
go back to reference D.I. Kim et al., High-glucose-induced CARM1 expression regulates apoptosis of human retinal pigment epithelial cells via histone 3 arginine 17 dimethylation: role in diabetic retinopathy. Arch. Biochem. Biophys. 560, 36–43 (2014)PubMedCrossRef D.I. Kim et al., High-glucose-induced CARM1 expression regulates apoptosis of human retinal pigment epithelial cells via histone 3 arginine 17 dimethylation: role in diabetic retinopathy. Arch. Biochem. Biophys. 560, 36–43 (2014)PubMedCrossRef
89.
go back to reference E.J. Kim et al., BAF155 methylation drives metastasis by hijacking super-enhancers and subverting anti-tumor immunity. Nucleic Acids Res. 49(21), 12211–12233 (2021)PubMedPubMedCentralCrossRef E.J. Kim et al., BAF155 methylation drives metastasis by hijacking super-enhancers and subverting anti-tumor immunity. Nucleic Acids Res. 49(21), 12211–12233 (2021)PubMedPubMedCentralCrossRef
91.
go back to reference C. Xu et al., CDCA4 suppresses epithelial-mesenchymal transtion (EMT) and metastasis in non-small cell lung cancer through modulating autophagy. Cancer Cell. Int. 21(1), 48 (2021)PubMedPubMedCentralCrossRef C. Xu et al., CDCA4 suppresses epithelial-mesenchymal transtion (EMT) and metastasis in non-small cell lung cancer through modulating autophagy. Cancer Cell. Int. 21(1), 48 (2021)PubMedPubMedCentralCrossRef
92.
go back to reference X.C. Cai et al., A chemical probe of CARM1 alters epigenetic plasticity against breast cancer cell invasion. Elife, 2019. 8 X.C. Cai et al., A chemical probe of CARM1 alters epigenetic plasticity against breast cancer cell invasion. Elife, 2019. 8
94.
go back to reference F. Shu et al., Epigenetic and post-translational modifications in autophagy: biological functions and therapeutic targets. Signal. Transduct. Target. Ther. 8(1), 32 (2023)PubMedPubMedCentralCrossRef F. Shu et al., Epigenetic and post-translational modifications in autophagy: biological functions and therapeutic targets. Signal. Transduct. Target. Ther. 8(1), 32 (2023)PubMedPubMedCentralCrossRef
95.
96.
go back to reference S. Bertozzi et al., TFEB, SIRT1, CARM1, Beclin-1 expression and PITX2 methylation in breast cancer chemoresistance: a retrospective study. BMC Cancer. 21(1), 1118 (2021)PubMedPubMedCentralCrossRef S. Bertozzi et al., TFEB, SIRT1, CARM1, Beclin-1 expression and PITX2 methylation in breast cancer chemoresistance: a retrospective study. BMC Cancer. 21(1), 1118 (2021)PubMedPubMedCentralCrossRef
97.
go back to reference S. Kumar et al., CARM1 inhibition enables immunotherapy of resistant tumors by Dual Action on Tumor Cells and T cells. Cancer Discov. 11(8), 2050–2071 (2021)PubMedPubMedCentralCrossRef S. Kumar et al., CARM1 inhibition enables immunotherapy of resistant tumors by Dual Action on Tumor Cells and T cells. Cancer Discov. 11(8), 2050–2071 (2021)PubMedPubMedCentralCrossRef
98.
go back to reference A.E. Drew et al., Identification of a CARM1 inhibitor with potent in Vitro and in vivo activity in preclinical models of multiple myeloma. Sci. Rep. 7(1), 17993 (2017)PubMedPubMedCentralCrossRef A.E. Drew et al., Identification of a CARM1 inhibitor with potent in Vitro and in vivo activity in preclinical models of multiple myeloma. Sci. Rep. 7(1), 17993 (2017)PubMedPubMedCentralCrossRef
99.
100.
go back to reference Z. Zhang et al., Structure-based Discovery of Potent CARM1 inhibitors for solid Tumor and Cancer Immunology Therapy. J. Med. Chem. 64(22), 16650–16674 (2021)PubMedCrossRef Z. Zhang et al., Structure-based Discovery of Potent CARM1 inhibitors for solid Tumor and Cancer Immunology Therapy. J. Med. Chem. 64(22), 16650–16674 (2021)PubMedCrossRef
101.
go back to reference T. Ran et al., Virtual screening with a structure-based Pharmacophore Model to identify small-molecule inhibitors of CARM1. J. Chem. Inf. Model. 59(1), 522–534 (2019)PubMedCrossRef T. Ran et al., Virtual screening with a structure-based Pharmacophore Model to identify small-molecule inhibitors of CARM1. J. Chem. Inf. Model. 59(1), 522–534 (2019)PubMedCrossRef
102.
go back to reference Z. Guo et al., Design and synthesis of Potent, selective inhibitors of protein arginine methyltransferase 4 against Acute myeloid leukemia. J. Med. Chem. 62(11), 5414–5433 (2019)PubMedCrossRef Z. Guo et al., Design and synthesis of Potent, selective inhibitors of protein arginine methyltransferase 4 against Acute myeloid leukemia. J. Med. Chem. 62(11), 5414–5433 (2019)PubMedCrossRef
103.
104.
go back to reference H. Xie et al., Development of Potent and Selective Coactivator-Associated Arginine methyltransferase 1 (CARM1) degraders. J. Med. Chem. 66(18), 13028–13042 (2023)PubMedCrossRef H. Xie et al., Development of Potent and Selective Coactivator-Associated Arginine methyltransferase 1 (CARM1) degraders. J. Med. Chem. 66(18), 13028–13042 (2023)PubMedCrossRef
105.
go back to reference J.I. Bang et al., The effect of cell penetrating peptide-conjugated coactivator-associated arginine methyltransferase 1 (CPP-CARM1) on the cloned mouse embryonic development. Sci. Rep. 8(1), 16721 (2018)PubMedPubMedCentralCrossRef J.I. Bang et al., The effect of cell penetrating peptide-conjugated coactivator-associated arginine methyltransferase 1 (CPP-CARM1) on the cloned mouse embryonic development. Sci. Rep. 8(1), 16721 (2018)PubMedPubMedCentralCrossRef
106.
go back to reference J. Jo et al., Regulation of differentiation potential of human mesenchymal stem cells by intracytoplasmic delivery of coactivator-associated arginine methyltransferase 1 protein using cell-penetrating peptide. Stem Cells. 30(8), 1703–1713 (2012)PubMedCrossRef J. Jo et al., Regulation of differentiation potential of human mesenchymal stem cells by intracytoplasmic delivery of coactivator-associated arginine methyltransferase 1 protein using cell-penetrating peptide. Stem Cells. 30(8), 1703–1713 (2012)PubMedCrossRef
107.
go back to reference S. Karakashev et al., EZH2 inhibition sensitizes CARM1-High, homologous recombination proficient ovarian cancers to PARP inhibition. Cancer Cell. 37(2), 157–167 (2020)..e6PubMedPubMedCentralCrossRef S. Karakashev et al., EZH2 inhibition sensitizes CARM1-High, homologous recombination proficient ovarian cancers to PARP inhibition. Cancer Cell. 37(2), 157–167 (2020)..e6PubMedPubMedCentralCrossRef
108.
go back to reference C.S. Lim, D.L. Alkon, Protein kinase C stimulates HuD-mediated mRNA stability and protein expression of neurotrophic factors and enhances dendritic maturation of hippocampal neurons in culture. Hippocampus. 22(12), 2303–2319 (2012)PubMedCrossRef C.S. Lim, D.L. Alkon, Protein kinase C stimulates HuD-mediated mRNA stability and protein expression of neurotrophic factors and enhances dendritic maturation of hippocampal neurons in culture. Hippocampus. 22(12), 2303–2319 (2012)PubMedCrossRef
109.
go back to reference X. Li et al., Oxidative stress destabilizes protein arginine methyltransferase 4 via glycogen synthase kinase 3β to impede lung epithelial cell migration. Am. J. Physiol. Cell. Physiol. 313(3), C285–c294 (2017)PubMedPubMedCentralCrossRef X. Li et al., Oxidative stress destabilizes protein arginine methyltransferase 4 via glycogen synthase kinase 3β to impede lung epithelial cell migration. Am. J. Physiol. Cell. Physiol. 313(3), C285–c294 (2017)PubMedPubMedCentralCrossRef
110.
go back to reference C. Li et al., Nuclear AMPK regulated CARM1 stabilization impacts autophagy in aged heart. Biochem. Biophys. Res. Commun. 486(2), 398–405 (2017)PubMedCrossRef C. Li et al., Nuclear AMPK regulated CARM1 stabilization impacts autophagy in aged heart. Biochem. Biophys. Res. Commun. 486(2), 398–405 (2017)PubMedCrossRef
111.
go back to reference Y. Zhang et al., Structural studies provide New insights into the role of lysine acetylation on substrate recognition by CARM1 and inform the design of potent peptidomimetic inhibitors. Chembiochem. 22(24), 3469–3476 (2021)PubMedPubMedCentralCrossRef Y. Zhang et al., Structural studies provide New insights into the role of lysine acetylation on substrate recognition by CARM1 and inform the design of potent peptidomimetic inhibitors. Chembiochem. 22(24), 3469–3476 (2021)PubMedPubMedCentralCrossRef
112.
go back to reference T.A. Klink et al., Development and validation of a generic fluorescent methyltransferase activity assay based on the transcreener AMP/GMP assay. J. Biomol. Screen. 17(1), 59–70 (2012)PubMedCrossRef T.A. Klink et al., Development and validation of a generic fluorescent methyltransferase activity assay based on the transcreener AMP/GMP assay. J. Biomol. Screen. 17(1), 59–70 (2012)PubMedCrossRef
114.
go back to reference Y. Ohta et al., Ratiometric assay of CARM1 activity using a FRET-based fluorescent probe. Bioorg. Med. Chem. Lett. 29(22), 126728 (2019)PubMedCrossRef Y. Ohta et al., Ratiometric assay of CARM1 activity using a FRET-based fluorescent probe. Bioorg. Med. Chem. Lett. 29(22), 126728 (2019)PubMedCrossRef
115.
go back to reference S. Suresh, S. Huard, T. Dubois, CARM1/PRMT4: making its Mark beyond its function as a transcriptional Coactivator. Trends Cell. Biol. 31(5), 402–417 (2021)PubMedCrossRef S. Suresh, S. Huard, T. Dubois, CARM1/PRMT4: making its Mark beyond its function as a transcriptional Coactivator. Trends Cell. Biol. 31(5), 402–417 (2021)PubMedCrossRef
116.
go back to reference H. Naeem et al., The activity and stability of the transcriptional coactivator p/CIP/SRC-3 are regulated by CARM1-dependent methylation. Mol. Cell. Biol. 27(1), 120–134 (2007)PubMedCrossRef H. Naeem et al., The activity and stability of the transcriptional coactivator p/CIP/SRC-3 are regulated by CARM1-dependent methylation. Mol. Cell. Biol. 27(1), 120–134 (2007)PubMedCrossRef
117.
go back to reference Q. Feng et al., Signaling within a coactivator complex: methylation of SRC-3/AIB1 is a molecular switch for complex disassembly. Mol. Cell. Biol. 26(21), 7846–7857 (2006)PubMedPubMedCentralCrossRef Q. Feng et al., Signaling within a coactivator complex: methylation of SRC-3/AIB1 is a molecular switch for complex disassembly. Mol. Cell. Biol. 26(21), 7846–7857 (2006)PubMedPubMedCentralCrossRef
118.
go back to reference W. Xu et al., A transcriptional switch mediated by cofactor methylation. Science. 294(5551), 2507–2511 (2001)PubMedCrossRef W. Xu et al., A transcriptional switch mediated by cofactor methylation. Science. 294(5551), 2507–2511 (2001)PubMedCrossRef
119.
120.
go back to reference B.T. Schurter et al., Methylation of histone H3 by coactivator-associated arginine methyltransferase 1. Biochemistry. 40(19), 5747–5756 (2001)PubMedCrossRef B.T. Schurter et al., Methylation of histone H3 by coactivator-associated arginine methyltransferase 1. Biochemistry. 40(19), 5747–5756 (2001)PubMedCrossRef
122.
go back to reference H. Ma et al., Hormone-dependent, CARM1-directed, arginine-specific methylation of histone H3 on a steroid-regulated promoter. Curr. Biol. 11(24), 1981–1985 (2001)PubMedCrossRef H. Ma et al., Hormone-dependent, CARM1-directed, arginine-specific methylation of histone H3 on a steroid-regulated promoter. Curr. Biol. 11(24), 1981–1985 (2001)PubMedCrossRef
124.
go back to reference Z. Zhang et al., Crosstalk between histone modifications indicates that inhibition of arginine methyltransferase CARM1 activity reverses HIV latency. Nucleic Acids Res. 45(16), 9348–9360 (2017)PubMedPubMedCentralCrossRef Z. Zhang et al., Crosstalk between histone modifications indicates that inhibition of arginine methyltransferase CARM1 activity reverses HIV latency. Nucleic Acids Res. 45(16), 9348–9360 (2017)PubMedPubMedCentralCrossRef
125.
go back to reference F. Casadio et al., H3R42me2a is a histone modification with positive transcriptional effects. Proc. Natl. Acad. Sci. U S A 110(37), 14894–14899 (2013)PubMedPubMedCentralCrossRef F. Casadio et al., H3R42me2a is a histone modification with positive transcriptional effects. Proc. Natl. Acad. Sci. U S A 110(37), 14894–14899 (2013)PubMedPubMedCentralCrossRef
126.
go back to reference W.W. Gao et al., Arginine methylation of HSP70 regulates retinoid acid-mediated RARβ2 gene activation. Proc. Natl. Acad. Sci. U S A 112(26), E3327–E3336 (2015)PubMedPubMedCentralCrossRef W.W. Gao et al., Arginine methylation of HSP70 regulates retinoid acid-mediated RARβ2 gene activation. Proc. Natl. Acad. Sci. U S A 112(26), E3327–E3336 (2015)PubMedPubMedCentralCrossRef
127.
go back to reference J. Bao et al., The arginine methyltransferase CARM1 represses p300•ACT•CREMτ activity and is required for spermiogenesis. Nucleic Acids Res. 46(9), 4327–4343 (2018)PubMedPubMedCentralCrossRef J. Bao et al., The arginine methyltransferase CARM1 represses p300•ACT•CREMτ activity and is required for spermiogenesis. Nucleic Acids Res. 46(9), 4327–4343 (2018)PubMedPubMedCentralCrossRef
128.
go back to reference Y.H. Lee et al., Regulation of coactivator complex assembly and function by protein arginine methylation and demethylimination. Proc. Natl. Acad. Sci. U S A 102(10), 3611–3616 (2005)PubMedPubMedCentralCrossRef Y.H. Lee et al., Regulation of coactivator complex assembly and function by protein arginine methylation and demethylimination. Proc. Natl. Acad. Sci. U S A 102(10), 3611–3616 (2005)PubMedPubMedCentralCrossRef
129.
go back to reference Y. Kawabe et al., Carm1 regulates Pax7 transcriptional activity through MLL1/2 recruitment during asymmetric satellite stem cell divisions. Cell. Stem Cell. 11(3), 333–345 (2012)PubMedPubMedCentralCrossRef Y. Kawabe et al., Carm1 regulates Pax7 transcriptional activity through MLL1/2 recruitment during asymmetric satellite stem cell divisions. Cell. Stem Cell. 11(3), 333–345 (2012)PubMedPubMedCentralCrossRef
130.
go back to reference F. Wang et al., Nup54-induced CARM1 nuclear importation promotes gastric cancer cell proliferation and tumorigenesis through transcriptional activation and methylation of Notch2. Oncogene. 41(2), 246–259 (2022)PubMedCrossRef F. Wang et al., Nup54-induced CARM1 nuclear importation promotes gastric cancer cell proliferation and tumorigenesis through transcriptional activation and methylation of Notch2. Oncogene. 41(2), 246–259 (2022)PubMedCrossRef
132.
133.
go back to reference D. Cheng, M.T. Bedford, Xenoestrogens regulate the activity of arginine methyltransferases. Chembiochem. 12(2), 323–329 (2011)PubMedCrossRef D. Cheng, M.T. Bedford, Xenoestrogens regulate the activity of arginine methyltransferases. Chembiochem. 12(2), 323–329 (2011)PubMedCrossRef
134.
go back to reference R.J. 3 Sims et al., The C-terminal domain of RNA polymerase II is modified by site-specific methylation. Science. 332(6025), 99–103 (2011) R.J. 3 Sims et al., The C-terminal domain of RNA polymerase II is modified by site-specific methylation. Science. 332(6025), 99–103 (2011)
135.
go back to reference H. Li et al., Lipopolysaccharide-induced methylation of HuR, an mRNA-stabilizing protein, by CARM1. Coactivator-associated arginine methyltransferase. J. Biol. Chem. 277(47), 44623–44630 (2002)PubMedCrossRef H. Li et al., Lipopolysaccharide-induced methylation of HuR, an mRNA-stabilizing protein, by CARM1. Coactivator-associated arginine methyltransferase. J. Biol. Chem. 277(47), 44623–44630 (2002)PubMedCrossRef
136.
go back to reference S.F. Battaglia-Hsu et al., Inherited disorders of cobalamin metabolism disrupt nucleocytoplasmic transport of mRNA through impaired methylation/phosphorylation of ELAVL1/HuR. Nucleic Acids Res. 46(15), 7844–7857 (2018)PubMedPubMedCentralCrossRef S.F. Battaglia-Hsu et al., Inherited disorders of cobalamin metabolism disrupt nucleocytoplasmic transport of mRNA through impaired methylation/phosphorylation of ELAVL1/HuR. Nucleic Acids Res. 46(15), 7844–7857 (2018)PubMedPubMedCentralCrossRef
137.
go back to reference V. Calvanese et al., Sirtuin 1 regulation of developmental genes during differentiation of stem cells. Proc. Natl. Acad. Sci. U S A 107(31), 13736–13741 (2010)PubMedPubMedCentralCrossRef V. Calvanese et al., Sirtuin 1 regulation of developmental genes during differentiation of stem cells. Proc. Natl. Acad. Sci. U S A 107(31), 13736–13741 (2010)PubMedPubMedCentralCrossRef
138.
go back to reference J. Kim et al., Loss of CARM1 results in hypomethylation of thymocyte cyclic AMP-regulated phosphoprotein and deregulated early T cell development. J. Biol. Chem. 279(24), 25339–25344 (2004)PubMedCrossRef J. Kim et al., Loss of CARM1 results in hypomethylation of thymocyte cyclic AMP-regulated phosphoprotein and deregulated early T cell development. J. Biol. Chem. 279(24), 25339–25344 (2004)PubMedCrossRef
Metadata
Title
The emerging role of CARM1 in cancer
Authors
Zizhuo Xie
Yuan Tian
Xiaohan Guo
Na Xie
Publication date
15-04-2024
Publisher
Springer Netherlands
Keyword
Biomarkers
Published in
Cellular Oncology
Print ISSN: 2211-3428
Electronic ISSN: 2211-3436
DOI
https://doi.org/10.1007/s13402-024-00943-9
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine