Skip to main content
Top
Published in: Journal of Neurology 5/2024

Open Access 14-03-2024 | Biomarkers | Review

Multiple system atrophy: an update and emerging directions of biomarkers and clinical trials

Authors: Min Liu, Zhiyao Wang, Huifang Shang

Published in: Journal of Neurology | Issue 5/2024

Login to get access

Abstract

Multiple system atrophy is a rare, debilitating, adult-onset neurodegenerative disorder that manifests clinically as a diverse combination of parkinsonism, cerebellar ataxia, and autonomic dysfunction. It is pathologically characterized by oligodendroglial cytoplasmic inclusions containing abnormally aggregated α-synuclein. According to the updated Movement Disorder Society diagnostic criteria for multiple system atrophy, the diagnosis of clinically established multiple system atrophy requires the manifestation of autonomic dysfunction in combination with poorly levo-dopa responsive parkinsonism and/or cerebellar syndrome. Although symptomatic management of multiple system atrophy can substantially improve quality of life, therapeutic benefits are often limited, ephemeral, and they fail to modify the disease progression and eradicate underlying causes. Consequently, effective breakthrough treatments that target the causes of disease are needed. Numerous preclinical and clinical studies are currently focusing on a set of hallmarks of neurodegenerative diseases to slow or halt the progression of multiple system atrophy: pathological protein aggregation, synaptic dysfunction, aberrant proteostasis, neuronal inflammation, and neuronal cell death. Meanwhile, specific biomarkers and measurements with higher specificity and sensitivity are being developed for the diagnosis of multiple system atrophy, particularly for early detection of the disease. More intriguingly, a growing number of new disease-modifying candidates, which can be used to design multi-targeted, personalized treatment in patients, are being investigated, notwithstanding the failure of most previous attempts.
Literature
1.
go back to reference Fanciulli A, Wenning GK (2015) Multiple-system atrophy. N Engl J Med 372(3):249–263PubMed Fanciulli A, Wenning GK (2015) Multiple-system atrophy. N Engl J Med 372(3):249–263PubMed
2.
go back to reference Ahmed Z et al (2012) The neuropathology, pathophysiology and genetics of multiple system atrophy. Neuropathol Appl Neurobiol 38(1):4–24PubMed Ahmed Z et al (2012) The neuropathology, pathophysiology and genetics of multiple system atrophy. Neuropathol Appl Neurobiol 38(1):4–24PubMed
3.
go back to reference Papp MI, Kahn JE, Lantos PL (1989) Glial cytoplasmic inclusions in the CNS of patients with multiple system atrophy (striatonigral degeneration, olivopontocerebellar atrophy and Shy-Drager syndrome). J Neurol Sci 94(1–3):79–100PubMed Papp MI, Kahn JE, Lantos PL (1989) Glial cytoplasmic inclusions in the CNS of patients with multiple system atrophy (striatonigral degeneration, olivopontocerebellar atrophy and Shy-Drager syndrome). J Neurol Sci 94(1–3):79–100PubMed
4.
go back to reference Jellinger KA (2018) Multiple system atrophy: an oligodendroglioneural synucleinopathy1. J Alzheimers Dis 62(3):1141–1179PubMedPubMedCentral Jellinger KA (2018) Multiple system atrophy: an oligodendroglioneural synucleinopathy1. J Alzheimers Dis 62(3):1141–1179PubMedPubMedCentral
5.
go back to reference Spillantini MG et al (1998) Filamentous alpha-synuclein inclusions link multiple system atrophy with Parkinson’s disease and dementia with Lewy bodies. Neurosci Lett 251(3):205–208PubMed Spillantini MG et al (1998) Filamentous alpha-synuclein inclusions link multiple system atrophy with Parkinson’s disease and dementia with Lewy bodies. Neurosci Lett 251(3):205–208PubMed
6.
go back to reference Lin DJ, Hermann KL, Schmahmann JD (2016) The diagnosis and natural history of multiple system atrophy. Cerebellar Type Cerebellum 15(6):663–679PubMed Lin DJ, Hermann KL, Schmahmann JD (2016) The diagnosis and natural history of multiple system atrophy. Cerebellar Type Cerebellum 15(6):663–679PubMed
7.
go back to reference Wenning GK et al (2013) The natural history of multiple system atrophy: a prospective European cohort study. Lancet Neurol 12(3):264–274PubMedPubMedCentral Wenning GK et al (2013) The natural history of multiple system atrophy: a prospective European cohort study. Lancet Neurol 12(3):264–274PubMedPubMedCentral
8.
go back to reference Low PA et al (2015) Natural history of multiple system atrophy in the USA: a prospective cohort study. Lancet Neurol 14(7):710–719PubMedPubMedCentral Low PA et al (2015) Natural history of multiple system atrophy in the USA: a prospective cohort study. Lancet Neurol 14(7):710–719PubMedPubMedCentral
9.
go back to reference Zhang L et al (2023) Prediction of early-wheelchair dependence in multiple system atrophy based on machine learning algorithm: a prospective cohort study. Clin Park Relat Disord 8:100183PubMedPubMedCentral Zhang L et al (2023) Prediction of early-wheelchair dependence in multiple system atrophy based on machine learning algorithm: a prospective cohort study. Clin Park Relat Disord 8:100183PubMedPubMedCentral
10.
go back to reference Wenning GK et al (2022) The movement disorder society criteria for the diagnosis of multiple system atrophy. Mov Disord 37(6):1131–1148PubMedPubMedCentral Wenning GK et al (2022) The movement disorder society criteria for the diagnosis of multiple system atrophy. Mov Disord 37(6):1131–1148PubMedPubMedCentral
11.
go back to reference Zhang L et al (2023) Diagnostic utility of movement disorder society criteria for multiple system atrophy. Front Aging Neurosci 15:1200563PubMedPubMedCentral Zhang L et al (2023) Diagnostic utility of movement disorder society criteria for multiple system atrophy. Front Aging Neurosci 15:1200563PubMedPubMedCentral
12.
go back to reference Bjornsdottir A et al (2013) Incidence and prevalence of multiple system atrophy: a nationwide study in Iceland. J Neurol Neurosurg Psychiatry 84(2):136–140PubMed Bjornsdottir A et al (2013) Incidence and prevalence of multiple system atrophy: a nationwide study in Iceland. J Neurol Neurosurg Psychiatry 84(2):136–140PubMed
13.
go back to reference Bower JH et al (1997) Incidence of progressive supranuclear palsy and multiple system atrophy in Olmsted County, Minnesota, 1976 to 1990. Neurology 49(5):1284–1288PubMed Bower JH et al (1997) Incidence of progressive supranuclear palsy and multiple system atrophy in Olmsted County, Minnesota, 1976 to 1990. Neurology 49(5):1284–1288PubMed
14.
go back to reference Linder J, Stenlund H, Forsgren L (2010) Incidence of Parkinson’s disease and parkinsonism in northern Sweden: a population-based study. Mov Disord 25(3):341–348PubMed Linder J, Stenlund H, Forsgren L (2010) Incidence of Parkinson’s disease and parkinsonism in northern Sweden: a population-based study. Mov Disord 25(3):341–348PubMed
15.
go back to reference Winter Y et al (2010) Incidence of Parkinson’s disease and atypical parkinsonism: Russian population-based study. Mov Disord 25(3):349–356PubMed Winter Y et al (2010) Incidence of Parkinson’s disease and atypical parkinsonism: Russian population-based study. Mov Disord 25(3):349–356PubMed
16.
go back to reference Schrag A, Ben-Shlomo Y, Quinn NP (1999) Prevalence of progressive supranuclear palsy and multiple system atrophy: a cross-sectional study. Lancet 354(9192):1771–1775PubMed Schrag A, Ben-Shlomo Y, Quinn NP (1999) Prevalence of progressive supranuclear palsy and multiple system atrophy: a cross-sectional study. Lancet 354(9192):1771–1775PubMed
17.
go back to reference Chrysostome V et al (2004) Epidemiology of multiple system atrophy: a prevalence and pilot risk factor study in Aquitaine. France Neuroepidemiology 23(4):201–208PubMed Chrysostome V et al (2004) Epidemiology of multiple system atrophy: a prevalence and pilot risk factor study in Aquitaine. France Neuroepidemiology 23(4):201–208PubMed
18.
go back to reference Watanabe H et al (2002) Progression and prognosis in multiple system atrophy: an analysis of 230 Japanese patients. Brain 125(Pt 5):1070–1083PubMed Watanabe H et al (2002) Progression and prognosis in multiple system atrophy: an analysis of 230 Japanese patients. Brain 125(Pt 5):1070–1083PubMed
19.
go back to reference Gatto E et al (2014) Pan-American Consortium of Multiple System Atrophy (PANMSA) A Pan-American multicentre cohort study of multiple system atrophy. J Parkinsons Dis 4(4):693–698PubMed Gatto E et al (2014) Pan-American Consortium of Multiple System Atrophy (PANMSA) A Pan-American multicentre cohort study of multiple system atrophy. J Parkinsons Dis 4(4):693–698PubMed
20.
go back to reference Hara K et al (2007) Multiplex families with multiple system atrophy. Arch Neurol 64(4):545–551PubMed Hara K et al (2007) Multiplex families with multiple system atrophy. Arch Neurol 64(4):545–551PubMed
21.
go back to reference Wullner U et al (2009) Definite multiple system atrophy in a German family. J Neurol Neurosurg Psychiatry 80(4):449–450PubMed Wullner U et al (2009) Definite multiple system atrophy in a German family. J Neurol Neurosurg Psychiatry 80(4):449–450PubMed
22.
go back to reference Scholz SW et al (2009) SNCA variants are associated with increased risk for multiple system atrophy. Ann Neurol 65(5):610–614PubMedPubMedCentral Scholz SW et al (2009) SNCA variants are associated with increased risk for multiple system atrophy. Ann Neurol 65(5):610–614PubMedPubMedCentral
23.
go back to reference Al-Chalabi A et al (2009) Genetic variants of the alpha-synuclein gene SNCA are associated with multiple system atrophy. PLoS ONE 4(9):e7114PubMedPubMedCentral Al-Chalabi A et al (2009) Genetic variants of the alpha-synuclein gene SNCA are associated with multiple system atrophy. PLoS ONE 4(9):e7114PubMedPubMedCentral
24.
go back to reference Ozawa T et al (1999) No mutation in the entire coding region of the alpha-synuclein gene in pathologically confirmed cases of multiple system atrophy. Neurosci Lett 270(2):110–112PubMed Ozawa T et al (1999) No mutation in the entire coding region of the alpha-synuclein gene in pathologically confirmed cases of multiple system atrophy. Neurosci Lett 270(2):110–112PubMed
25.
go back to reference Multiple-System Atrophy Research C (2013) Mutations in COQ2 in familial and sporadic multiple-system atrophy. N Engl J Med 369(3):233–244 Multiple-System Atrophy Research C (2013) Mutations in COQ2 in familial and sporadic multiple-system atrophy. N Engl J Med 369(3):233–244
26.
27.
go back to reference Mitsui J, Tsuji S (2014) Mutant COQ2 in multiple-system atrophy. N Engl J Med 371(1):82–83PubMed Mitsui J, Tsuji S (2014) Mutant COQ2 in multiple-system atrophy. N Engl J Med 371(1):82–83PubMed
28.
go back to reference Zhao Q et al (2016) Association of the COQ2 V393A variant with risk of multiple system atrophy in East Asians: a case-control study and meta-analysis of the literature. Neurol Sci 37(3):423–430PubMed Zhao Q et al (2016) Association of the COQ2 V393A variant with risk of multiple system atrophy in East Asians: a case-control study and meta-analysis of the literature. Neurol Sci 37(3):423–430PubMed
29.
go back to reference Porto KJ et al (2021) COQ2 V393A confers high risk susceptibility for multiple system atrophy in East Asian population. J Neurol Sci 429:117623PubMed Porto KJ et al (2021) COQ2 V393A confers high risk susceptibility for multiple system atrophy in East Asian population. J Neurol Sci 429:117623PubMed
30.
go back to reference Chen YP et al (2015) (2015) Mutation scanning of the COQ2 gene in ethnic Chinese patients with multiple-system atrophy. Neurobiol Aging 36(2):1222 e7–11PubMed Chen YP et al (2015) (2015) Mutation scanning of the COQ2 gene in ethnic Chinese patients with multiple-system atrophy. Neurobiol Aging 36(2):1222 e7–11PubMed
31.
go back to reference Wen XD et al (2015) Mutation analysis of COQ2 in Chinese patients with cerebellar subtype of multiple system atrophy. CNS Neurosci Ther 21(8):626–630PubMedPubMedCentral Wen XD et al (2015) Mutation analysis of COQ2 in Chinese patients with cerebellar subtype of multiple system atrophy. CNS Neurosci Ther 21(8):626–630PubMedPubMedCentral
32.
go back to reference Goldman JS et al (2014) Multiple system atrophy and amyotrophic lateral sclerosis in a family with hexanucleotide repeat expansions in C9orf72. JAMA Neurol 71(6):771–774PubMedPubMedCentral Goldman JS et al (2014) Multiple system atrophy and amyotrophic lateral sclerosis in a family with hexanucleotide repeat expansions in C9orf72. JAMA Neurol 71(6):771–774PubMedPubMedCentral
33.
go back to reference Chen X et al (2016) C9ORF72 repeat expansions in Chinese patients with Parkinson’s disease and multiple system atrophy. J Neural Transm (Vienna) 123(11):1341–1345PubMed Chen X et al (2016) C9ORF72 repeat expansions in Chinese patients with Parkinson’s disease and multiple system atrophy. J Neural Transm (Vienna) 123(11):1341–1345PubMed
34.
go back to reference Sidransky E et al (2009) Multicenter analysis of glucocerebrosidase mutations in Parkinson’s disease. N Engl J Med 361(17):1651–1661PubMedPubMedCentral Sidransky E et al (2009) Multicenter analysis of glucocerebrosidase mutations in Parkinson’s disease. N Engl J Med 361(17):1651–1661PubMedPubMedCentral
35.
go back to reference Zhao F et al (2016) Mutations of glucocerebrosidase gene and susceptibility to Parkinson’s disease: an updated meta-analysis in a European population. Neuroscience 320:239–246PubMed Zhao F et al (2016) Mutations of glucocerebrosidase gene and susceptibility to Parkinson’s disease: an updated meta-analysis in a European population. Neuroscience 320:239–246PubMed
36.
go back to reference Mitsui J et al (2015) Variants associated with Gaucher disease in multiple system atrophy. Ann Clin Transl Neurol 2(4):417–426PubMedPubMedCentral Mitsui J et al (2015) Variants associated with Gaucher disease in multiple system atrophy. Ann Clin Transl Neurol 2(4):417–426PubMedPubMedCentral
37.
go back to reference Sun QY et al (2013) Genetic association study of glucocerebrosidase gene L444P mutation in essential tremor and multiple system atrophy in mainland China. J Clin Neurosci 20(2):217–219PubMed Sun QY et al (2013) Genetic association study of glucocerebrosidase gene L444P mutation in essential tremor and multiple system atrophy in mainland China. J Clin Neurosci 20(2):217–219PubMed
38.
39.
go back to reference Yuan X et al (2015) An association analysis of the R1628P and G2385R polymorphisms of the LRRK2 gene in multiple system atrophy in a Chinese population. Parkinsonism Relat Disord 21(2):147–149PubMed Yuan X et al (2015) An association analysis of the R1628P and G2385R polymorphisms of the LRRK2 gene in multiple system atrophy in a Chinese population. Parkinsonism Relat Disord 21(2):147–149PubMed
40.
go back to reference Hasegawa K et al (2009) Familial parkinsonism: study of original Sagamihara PARK8 (I2020T) kindred with variable clinicopathologic outcomes. Parkinsonism Relat Disord 15(4):300–306PubMed Hasegawa K et al (2009) Familial parkinsonism: study of original Sagamihara PARK8 (I2020T) kindred with variable clinicopathologic outcomes. Parkinsonism Relat Disord 15(4):300–306PubMed
41.
go back to reference Gu X et al (2018) Analysis of GWAS-linked variants in multiple system atrophy. Neurobiol Aging 67:201 e1-201 e4PubMed Gu X et al (2018) Analysis of GWAS-linked variants in multiple system atrophy. Neurobiol Aging 67:201 e1-201 e4PubMed
42.
go back to reference Jellinger KA (2014) Neuropathology of multiple system atrophy: new thoughts about pathogenesis. Mov Disord 29(14):1720–1741PubMed Jellinger KA (2014) Neuropathology of multiple system atrophy: new thoughts about pathogenesis. Mov Disord 29(14):1720–1741PubMed
43.
go back to reference Jellinger KA (2003) Neuropathological spectrum of synucleinopathies. Mov Disord 18(Suppl 6):S2-12PubMed Jellinger KA (2003) Neuropathological spectrum of synucleinopathies. Mov Disord 18(Suppl 6):S2-12PubMed
44.
go back to reference Tu PH et al (1998) Glial cytoplasmic inclusions in white matter oligodendrocytes of multiple system atrophy brains contain insoluble alpha-synuclein. Ann Neurol 44(3):415–422PubMed Tu PH et al (1998) Glial cytoplasmic inclusions in white matter oligodendrocytes of multiple system atrophy brains contain insoluble alpha-synuclein. Ann Neurol 44(3):415–422PubMed
45.
go back to reference Ozawa T et al (2001) Analysis of the expression level of alpha-synuclein mRNA using postmortem brain samples from pathologically confirmed cases of multiple system atrophy. Acta Neuropathol 102(2):188–190PubMed Ozawa T et al (2001) Analysis of the expression level of alpha-synuclein mRNA using postmortem brain samples from pathologically confirmed cases of multiple system atrophy. Acta Neuropathol 102(2):188–190PubMed
46.
go back to reference Miller DW et al (2005) Absence of alpha-synuclein mRNA expression in normal and multiple system atrophy oligodendroglia. J Neural Transm (Vienna) 112(12):1613–1624PubMed Miller DW et al (2005) Absence of alpha-synuclein mRNA expression in normal and multiple system atrophy oligodendroglia. J Neural Transm (Vienna) 112(12):1613–1624PubMed
47.
go back to reference Jin H et al (2008) Analyses of copy number and mRNA expression level of the alpha-synuclein gene in multiple system atrophy. J Med Dent Sci 55(1):145–153PubMed Jin H et al (2008) Analyses of copy number and mRNA expression level of the alpha-synuclein gene in multiple system atrophy. J Med Dent Sci 55(1):145–153PubMed
48.
go back to reference Valera E, Masliah E (2018) The neuropathology of multiple system atrophy and its therapeutic implications. Auton Neurosci 211:1–6PubMed Valera E, Masliah E (2018) The neuropathology of multiple system atrophy and its therapeutic implications. Auton Neurosci 211:1–6PubMed
49.
go back to reference Reddy K, Dieriks BV (2022) Multiple system atrophy: alpha-Synuclein strains at the neuron-oligodendrocyte crossroad. Mol Neurodegener 17(1):77PubMedPubMedCentral Reddy K, Dieriks BV (2022) Multiple system atrophy: alpha-Synuclein strains at the neuron-oligodendrocyte crossroad. Mol Neurodegener 17(1):77PubMedPubMedCentral
50.
go back to reference Ahmed Z et al (2013) Identification and quantification of oligodendrocyte precursor cells in multiple system atrophy, progressive supranuclear palsy and Parkinson’s disease. Brain Pathol 23(3):263–273PubMed Ahmed Z et al (2013) Identification and quantification of oligodendrocyte precursor cells in multiple system atrophy, progressive supranuclear palsy and Parkinson’s disease. Brain Pathol 23(3):263–273PubMed
51.
go back to reference Stefanova N, Wenning GK (2023) Multiple system atrophy: at the crossroads of cellular, molecular and genetic mechanisms. Nat Rev Neurosci 24(6):334–346PubMed Stefanova N, Wenning GK (2023) Multiple system atrophy: at the crossroads of cellular, molecular and genetic mechanisms. Nat Rev Neurosci 24(6):334–346PubMed
52.
go back to reference Mavroeidi P et al (2022) Exosomes in alpha-synucleinopathies: propagators of pathology or potential candidates for nanotherapeutics? Biomolecules 12(7):957PubMedPubMedCentral Mavroeidi P et al (2022) Exosomes in alpha-synucleinopathies: propagators of pathology or potential candidates for nanotherapeutics? Biomolecules 12(7):957PubMedPubMedCentral
53.
go back to reference Kovacs GG et al (2007) The brain-specific protein TPPP/p25 in pathological protein deposits of neurodegenerative diseases. Acta Neuropathol 113(2):153–161PubMed Kovacs GG et al (2007) The brain-specific protein TPPP/p25 in pathological protein deposits of neurodegenerative diseases. Acta Neuropathol 113(2):153–161PubMed
54.
go back to reference Song YJ et al (2007) p25alpha relocalizes in oligodendroglia from myelin to cytoplasmic inclusions in multiple system atrophy. Am J Pathol 171(4):1291–1303PubMedPubMedCentral Song YJ et al (2007) p25alpha relocalizes in oligodendroglia from myelin to cytoplasmic inclusions in multiple system atrophy. Am J Pathol 171(4):1291–1303PubMedPubMedCentral
55.
go back to reference Ota K et al (2014) Relocation of p25alpha/tubulin polymerization promoting protein from the nucleus to the perinuclear cytoplasm in the oligodendroglia of sporadic and COQ2 mutant multiple system atrophy. Acta Neuropathol Commun 2:136PubMedPubMedCentral Ota K et al (2014) Relocation of p25alpha/tubulin polymerization promoting protein from the nucleus to the perinuclear cytoplasm in the oligodendroglia of sporadic and COQ2 mutant multiple system atrophy. Acta Neuropathol Commun 2:136PubMedPubMedCentral
56.
go back to reference Pukass K, Richter-Landsberg C (2015) Inhibition of UCH-L1 in oligodendroglial cells results in microtubule stabilization and prevents alpha-synuclein aggregate formation by activating the autophagic pathway: implications for multiple system atrophy. Front Cell Neurosci 9:163PubMedPubMedCentral Pukass K, Richter-Landsberg C (2015) Inhibition of UCH-L1 in oligodendroglial cells results in microtubule stabilization and prevents alpha-synuclein aggregate formation by activating the autophagic pathway: implications for multiple system atrophy. Front Cell Neurosci 9:163PubMedPubMedCentral
57.
go back to reference Sugiura K et al (1995) Distribution of neuronal cytoplasmic inclusions in multiple system atrophy. Nagoya J Med Sci 58(3–4):117–126PubMed Sugiura K et al (1995) Distribution of neuronal cytoplasmic inclusions in multiple system atrophy. Nagoya J Med Sci 58(3–4):117–126PubMed
58.
go back to reference Vieira BD et al (2015) Neuroinflammation in multiple system atrophy: response to and cause of alpha-synuclein aggregation. Front Cell Neurosci 9:437PubMedPubMedCentral Vieira BD et al (2015) Neuroinflammation in multiple system atrophy: response to and cause of alpha-synuclein aggregation. Front Cell Neurosci 9:437PubMedPubMedCentral
59.
go back to reference McFarland NR (2016) Diagnostic approach to atypical Parkinsonian syndromes. Continuum (Minneap Minn) 22(4):1117–1142PubMed McFarland NR (2016) Diagnostic approach to atypical Parkinsonian syndromes. Continuum (Minneap Minn) 22(4):1117–1142PubMed
60.
go back to reference Jiang Q et al (2023) Orthostatic hypotension in multiple system atrophy: related factors and disease prognosis. J Parkinsons Dis 13(8):1313–1320PubMedPubMedCentral Jiang Q et al (2023) Orthostatic hypotension in multiple system atrophy: related factors and disease prognosis. J Parkinsons Dis 13(8):1313–1320PubMedPubMedCentral
61.
go back to reference Sakakibara R et al (2000) Urinary dysfunction and orthostatic hypotension in multiple system atrophy: which is the more common and earlier manifestation? J Neurol Neurosurg Psychiatry 68(1):65–69PubMedPubMedCentral Sakakibara R et al (2000) Urinary dysfunction and orthostatic hypotension in multiple system atrophy: which is the more common and earlier manifestation? J Neurol Neurosurg Psychiatry 68(1):65–69PubMedPubMedCentral
62.
go back to reference Ito T et al (2006) Incomplete emptying and urinary retention in multiple-system atrophy: when does it occur and how do we manage it? Mov Disord 21(6):816–823PubMed Ito T et al (2006) Incomplete emptying and urinary retention in multiple-system atrophy: when does it occur and how do we manage it? Mov Disord 21(6):816–823PubMed
63.
go back to reference Kalra DK, Raina A, Sohal S (2020) Neurogenic orthostatic hypotension: state of the art and therapeutic strategies. Clin Med Insights Cardiol 14:1179546820953415PubMedPubMedCentral Kalra DK, Raina A, Sohal S (2020) Neurogenic orthostatic hypotension: state of the art and therapeutic strategies. Clin Med Insights Cardiol 14:1179546820953415PubMedPubMedCentral
64.
go back to reference Claassen DO et al (2018) Characterization of the symptoms of neurogenic orthostatic hypotension and their impact from a survey of patients and caregivers. BMC Neurol 18(1):125PubMedPubMedCentral Claassen DO et al (2018) Characterization of the symptoms of neurogenic orthostatic hypotension and their impact from a survey of patients and caregivers. BMC Neurol 18(1):125PubMedPubMedCentral
65.
go back to reference Burns MR, McFarland NR (2020) Current management and emerging therapies in multiple system atrophy. Neurotherapeutics 17(4):1582–1602PubMedPubMedCentral Burns MR, McFarland NR (2020) Current management and emerging therapies in multiple system atrophy. Neurotherapeutics 17(4):1582–1602PubMedPubMedCentral
66.
go back to reference Eschlböck S et al (2020) Cognition in multiple system atrophy: a single-center cohort study. Ann Clin Transl Neurol 7(2):219–228PubMedPubMedCentral Eschlböck S et al (2020) Cognition in multiple system atrophy: a single-center cohort study. Ann Clin Transl Neurol 7(2):219–228PubMedPubMedCentral
67.
go back to reference Stankovic I et al (2014) Cognitive impairment in multiple system atrophy: a position statement by the Neuropsychology Task Force of the MDS Multiple System Atrophy (MODIMSA) study group. Mov Disord 29(7):857–867PubMedPubMedCentral Stankovic I et al (2014) Cognitive impairment in multiple system atrophy: a position statement by the Neuropsychology Task Force of the MDS Multiple System Atrophy (MODIMSA) study group. Mov Disord 29(7):857–867PubMedPubMedCentral
68.
go back to reference Benrud-Larson LM et al (2005) Depressive symptoms and life satisfaction in patients with multiple system atrophy. Mov Disord 20(8):951–957PubMed Benrud-Larson LM et al (2005) Depressive symptoms and life satisfaction in patients with multiple system atrophy. Mov Disord 20(8):951–957PubMed
69.
go back to reference Zhang LY et al (2018) Depression and anxiety in multiple system atrophy. Acta Neurol Scand 137(1):33–37PubMed Zhang LY et al (2018) Depression and anxiety in multiple system atrophy. Acta Neurol Scand 137(1):33–37PubMed
70.
go back to reference Zhang L et al (2023) Longitudinal evolution of sleep disturbances in early multiple system atrophy: a 2-year prospective cohort study. BMC Med 21(1):454PubMedPubMedCentral Zhang L et al (2023) Longitudinal evolution of sleep disturbances in early multiple system atrophy: a 2-year prospective cohort study. BMC Med 21(1):454PubMedPubMedCentral
71.
go back to reference Lin JY et al (2020) Sleep-related symptoms in multiple system atrophy: determinants and impact on disease severity. Chin Med J (Engl) 134(6):690–698PubMed Lin JY et al (2020) Sleep-related symptoms in multiple system atrophy: determinants and impact on disease severity. Chin Med J (Engl) 134(6):690–698PubMed
72.
go back to reference Palma JA et al (2015) Prevalence of REM sleep behavior disorder in multiple system atrophy: a multicenter study and meta-analysis. Clin Auton Res 25(1):69–75PubMedPubMedCentral Palma JA et al (2015) Prevalence of REM sleep behavior disorder in multiple system atrophy: a multicenter study and meta-analysis. Clin Auton Res 25(1):69–75PubMedPubMedCentral
73.
go back to reference Claassen DO et al (2010) REM sleep behavior disorder preceding other aspects of synucleinopathies by up to half a century. Neurology 75(6):494–499PubMedPubMedCentral Claassen DO et al (2010) REM sleep behavior disorder preceding other aspects of synucleinopathies by up to half a century. Neurology 75(6):494–499PubMedPubMedCentral
74.
go back to reference Cortelli P et al (2019) Stridor in multiple system atrophy: Consensus statement on diagnosis, prognosis, and treatment. Neurology 93(14):630–639PubMedPubMedCentral Cortelli P et al (2019) Stridor in multiple system atrophy: Consensus statement on diagnosis, prognosis, and treatment. Neurology 93(14):630–639PubMedPubMedCentral
75.
go back to reference Gilman S et al (1998) Consensus statement on the diagnosis of multiple system atrophy. J Auton Nerv Syst 74(2–3):189–192PubMed Gilman S et al (1998) Consensus statement on the diagnosis of multiple system atrophy. J Auton Nerv Syst 74(2–3):189–192PubMed
76.
go back to reference Gilman S et al (2008) Second consensus statement on the diagnosis of multiple system atrophy. Neurology 71(9):670–676PubMedPubMedCentral Gilman S et al (2008) Second consensus statement on the diagnosis of multiple system atrophy. Neurology 71(9):670–676PubMedPubMedCentral
77.
go back to reference Osaki Y et al (2009) A validation exercise on the new consensus criteria for multiple system atrophy. Mov Disord 24(15):2272–2276PubMed Osaki Y et al (2009) A validation exercise on the new consensus criteria for multiple system atrophy. Mov Disord 24(15):2272–2276PubMed
78.
go back to reference Stankovic I et al (2019) A critique of the second consensus criteria for multiple system atrophy. Mov Disord 34(7):975–984PubMedPubMedCentral Stankovic I et al (2019) A critique of the second consensus criteria for multiple system atrophy. Mov Disord 34(7):975–984PubMedPubMedCentral
79.
go back to reference Virameteekul S et al (2023) Pathological validation of the MDS criteria for the diagnosis of multiple system atrophy. Mov Disord 38:444–452PubMed Virameteekul S et al (2023) Pathological validation of the MDS criteria for the diagnosis of multiple system atrophy. Mov Disord 38:444–452PubMed
80.
go back to reference Trojanowski, J.Q., T. Revesz, and M.S.A. Neuropathology Working Group on (2007) Proposed neuropathological criteria for the post mortem diagnosis of multiple system atrophy. Neuropathol Appl Neurobiol 33(6):615–620 Trojanowski, J.Q., T. Revesz, and M.S.A. Neuropathology Working Group on (2007) Proposed neuropathological criteria for the post mortem diagnosis of multiple system atrophy. Neuropathol Appl Neurobiol 33(6):615–620
81.
go back to reference Thijs RD et al (2021) Recommendations for tilt table testing and other provocative cardiovascular autonomic tests in conditions that may cause transient loss of consciousness : consensus statement of the European Federation of Autonomic Societies (EFAS) endorsed by the American Autonomic Society (AAS) and the European Academy of Neurology (EAN). Clin Auton Res 31(3):369–384PubMedPubMedCentral Thijs RD et al (2021) Recommendations for tilt table testing and other provocative cardiovascular autonomic tests in conditions that may cause transient loss of consciousness : consensus statement of the European Federation of Autonomic Societies (EFAS) endorsed by the American Autonomic Society (AAS) and the European Academy of Neurology (EAN). Clin Auton Res 31(3):369–384PubMedPubMedCentral
82.
go back to reference Rascol O, Schelosky L (2009) 123I-metaiodobenzylguanidine scintigraphy in Parkinson’s disease and related disorders. Mov Disord 24(Suppl 2):S732–S741PubMed Rascol O, Schelosky L (2009) 123I-metaiodobenzylguanidine scintigraphy in Parkinson’s disease and related disorders. Mov Disord 24(Suppl 2):S732–S741PubMed
83.
go back to reference Kaufmann H et al (2017) Natural history of pure autonomic failure: A United States prospective cohort. Ann Neurol 81(2):287–297PubMedPubMedCentral Kaufmann H et al (2017) Natural history of pure autonomic failure: A United States prospective cohort. Ann Neurol 81(2):287–297PubMedPubMedCentral
84.
go back to reference Singer W et al (2017) Pure autonomic failure: predictors of conversion to clinical CNS involvement. Neurology 88(12):1129–1136PubMedPubMedCentral Singer W et al (2017) Pure autonomic failure: predictors of conversion to clinical CNS involvement. Neurology 88(12):1129–1136PubMedPubMedCentral
86.
go back to reference Fanciulli A et al (2019) Urinary retention discriminates multiple system atrophy from Parkinson’s disease. Mov Disord 34(12):1926–1928PubMed Fanciulli A et al (2019) Urinary retention discriminates multiple system atrophy from Parkinson’s disease. Mov Disord 34(12):1926–1928PubMed
87.
go back to reference Chelban V et al (2019) An update on advances in magnetic resonance imaging of multiple system atrophy. J Neurol 266(4):1036–1045PubMed Chelban V et al (2019) An update on advances in magnetic resonance imaging of multiple system atrophy. J Neurol 266(4):1036–1045PubMed
88.
go back to reference Tha KK et al (2012) Hyperintense putaminal rim at 1.5 T: prevalence in normal subjects and distinguishing features from multiple system atrophy. BMC Neurol 12:39PubMedPubMedCentral Tha KK et al (2012) Hyperintense putaminal rim at 1.5 T: prevalence in normal subjects and distinguishing features from multiple system atrophy. BMC Neurol 12:39PubMedPubMedCentral
89.
go back to reference Juh R et al (2004) Different metabolic patterns analysis of Parkinsonism on the 18F-FDG PET. Eur J Radiol 51(3):223–233PubMed Juh R et al (2004) Different metabolic patterns analysis of Parkinsonism on the 18F-FDG PET. Eur J Radiol 51(3):223–233PubMed
90.
go back to reference Roshanbin S et al (2022) In vivo imaging of alpha-synuclein with antibody-based PET. Neuropharmacology 208:108985PubMed Roshanbin S et al (2022) In vivo imaging of alpha-synuclein with antibody-based PET. Neuropharmacology 208:108985PubMed
91.
go back to reference Korat S et al (2021) Alpha-synuclein PET tracer development-an overview about current efforts. Pharmaceuticals (Basel) 14(9):847PubMed Korat S et al (2021) Alpha-synuclein PET tracer development-an overview about current efforts. Pharmaceuticals (Basel) 14(9):847PubMed
92.
go back to reference Jellinger KA (2017) Potential clinical utility of multiple system atrophy biomarkers. Expert Rev Neurother 17(12):1189–1208PubMed Jellinger KA (2017) Potential clinical utility of multiple system atrophy biomarkers. Expert Rev Neurother 17(12):1189–1208PubMed
93.
go back to reference Wan L et al (2023) Multidimensional biomarkers for multiple system atrophy: an update and future directions. Transl Neurodegener 12(1):38PubMedPubMedCentral Wan L et al (2023) Multidimensional biomarkers for multiple system atrophy: an update and future directions. Transl Neurodegener 12(1):38PubMedPubMedCentral
94.
go back to reference Goolla M et al (2023) Diagnosing multiple system atrophy: current clinical guidance and emerging molecular biomarkers. Front Neurol 14:1210220PubMedPubMedCentral Goolla M et al (2023) Diagnosing multiple system atrophy: current clinical guidance and emerging molecular biomarkers. Front Neurol 14:1210220PubMedPubMedCentral
95.
go back to reference Cong S et al (2021) Diagnostic utility of fluid biomarkers in multiple system atrophy: a systematic review and meta-analysis. J Neurol 268(8):2703–2712PubMed Cong S et al (2021) Diagnostic utility of fluid biomarkers in multiple system atrophy: a systematic review and meta-analysis. J Neurol 268(8):2703–2712PubMed
96.
go back to reference Li XY et al (2020) Phosphorylated alpha-synuclein in red blood cells as a potential diagnostic biomarker for multiple system atrophy: a pilot study. Parkinsons Dis 2020:8740419PubMedPubMedCentral Li XY et al (2020) Phosphorylated alpha-synuclein in red blood cells as a potential diagnostic biomarker for multiple system atrophy: a pilot study. Parkinsons Dis 2020:8740419PubMedPubMedCentral
97.
go back to reference Kim JY et al (2019) Alpha-synuclein in skin nerve fibers as a biomarker for alpha-synucleinopathies. J Clin Neurol 15(2):135–142PubMedPubMedCentral Kim JY et al (2019) Alpha-synuclein in skin nerve fibers as a biomarker for alpha-synucleinopathies. J Clin Neurol 15(2):135–142PubMedPubMedCentral
98.
go back to reference Shahnawaz M et al (2017) Development of a biochemical diagnosis of Parkinson disease by detection of alpha-synuclein misfolded aggregates in cerebrospinal fluid. JAMA Neurol 74(2):163–172PubMed Shahnawaz M et al (2017) Development of a biochemical diagnosis of Parkinson disease by detection of alpha-synuclein misfolded aggregates in cerebrospinal fluid. JAMA Neurol 74(2):163–172PubMed
99.
go back to reference Shahnawaz M et al (2020) Discriminating alpha-synuclein strains in Parkinson’s disease and multiple system atrophy. Nature 578(7794):273–277PubMedPubMedCentral Shahnawaz M et al (2020) Discriminating alpha-synuclein strains in Parkinson’s disease and multiple system atrophy. Nature 578(7794):273–277PubMedPubMedCentral
100.
go back to reference Rossi M et al (2020) Ultrasensitive RT-QuIC assay with high sensitivity and specificity for Lewy body-associated synucleinopathies. Acta Neuropathol 140(1):49–62PubMedPubMedCentral Rossi M et al (2020) Ultrasensitive RT-QuIC assay with high sensitivity and specificity for Lewy body-associated synucleinopathies. Acta Neuropathol 140(1):49–62PubMedPubMedCentral
101.
go back to reference Wang Z et al (2020) Skin alpha-synuclein aggregation seeding activity as a novel biomarker for Parkinson disease. JAMA Neurol 78(1):1–11PubMedPubMedCentral Wang Z et al (2020) Skin alpha-synuclein aggregation seeding activity as a novel biomarker for Parkinson disease. JAMA Neurol 78(1):1–11PubMedPubMedCentral
102.
go back to reference Martinez-Valbuena I et al (2022) Combining Skin alpha-synuclein real-time quaking-induced conversion and circulating neurofilament light chain to distinguish multiple system atrophy and Parkinson’s disease. Mov Disord 37(3):648–650PubMed Martinez-Valbuena I et al (2022) Combining Skin alpha-synuclein real-time quaking-induced conversion and circulating neurofilament light chain to distinguish multiple system atrophy and Parkinson’s disease. Mov Disord 37(3):648–650PubMed
103.
go back to reference De Luca CMG et al (2019) Efficient RT-QuIC seeding activity for alpha-synuclein in olfactory mucosa samples of patients with Parkinson’s disease and multiple system atrophy. Transl Neurodegener 8:24PubMedPubMedCentral De Luca CMG et al (2019) Efficient RT-QuIC seeding activity for alpha-synuclein in olfactory mucosa samples of patients with Parkinson’s disease and multiple system atrophy. Transl Neurodegener 8:24PubMedPubMedCentral
104.
go back to reference Manne S et al (2020) Alpha-synuclein real-time quaking-induced conversion in the submandibular glands of Parkinson’s disease patients. Mov Disord 35(2):268–278PubMed Manne S et al (2020) Alpha-synuclein real-time quaking-induced conversion in the submandibular glands of Parkinson’s disease patients. Mov Disord 35(2):268–278PubMed
105.
go back to reference Donadio V et al (2023) Phosphorylated alpha-synuclein in skin Schwann cells: a new biomarker for multiple system atrophy. Brain 146(3):1065–1074PubMed Donadio V et al (2023) Phosphorylated alpha-synuclein in skin Schwann cells: a new biomarker for multiple system atrophy. Brain 146(3):1065–1074PubMed
106.
go back to reference Zhang L et al (2022) Neurofilament light chain predicts disease severity and progression in multiple system atrophy. Mov Disord 37(2):421–426PubMed Zhang L et al (2022) Neurofilament light chain predicts disease severity and progression in multiple system atrophy. Mov Disord 37(2):421–426PubMed
107.
go back to reference Doyle LM, Wang MZ (2019) Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells 8(7):727PubMedPubMedCentral Doyle LM, Wang MZ (2019) Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells 8(7):727PubMedPubMedCentral
108.
go back to reference Yu Z et al (2020) Reduced oligodendrocyte exosome secretion in multiple system atrophy involves SNARE dysfunction. Brain 143(6):1780–1797PubMedPubMedCentral Yu Z et al (2020) Reduced oligodendrocyte exosome secretion in multiple system atrophy involves SNARE dysfunction. Brain 143(6):1780–1797PubMedPubMedCentral
109.
go back to reference Dutta S et al (2021) alpha-Synuclein in blood exosomes immunoprecipitated using neuronal and oligodendroglial markers distinguishes Parkinson’s disease from multiple system atrophy. Acta Neuropathol 142(3):495–511PubMedPubMedCentral Dutta S et al (2021) alpha-Synuclein in blood exosomes immunoprecipitated using neuronal and oligodendroglial markers distinguishes Parkinson’s disease from multiple system atrophy. Acta Neuropathol 142(3):495–511PubMedPubMedCentral
110.
go back to reference Koga S et al (2020) Cerebrovascular pathology and misdiagnosis of multiple system atrophy: an autopsy study. Parkinsonism Relat Disord 75:34–40PubMedPubMedCentral Koga S et al (2020) Cerebrovascular pathology and misdiagnosis of multiple system atrophy: an autopsy study. Parkinsonism Relat Disord 75:34–40PubMedPubMedCentral
111.
go back to reference Jellinger KA, Seppi K, Wenning GK (2005) Grading of neuropathology in multiple system atrophy: proposal for a novel scale. Mov Disord 20(Suppl 12):S29-36PubMed Jellinger KA, Seppi K, Wenning GK (2005) Grading of neuropathology in multiple system atrophy: proposal for a novel scale. Mov Disord 20(Suppl 12):S29-36PubMed
112.
go back to reference Ozawa T et al (2004) The spectrum of pathological involvement of the striatonigral and olivopontocerebellar systems in multiple system atrophy: clinicopathological correlations. Brain 127(Pt 12):2657–2671PubMed Ozawa T et al (2004) The spectrum of pathological involvement of the striatonigral and olivopontocerebellar systems in multiple system atrophy: clinicopathological correlations. Brain 127(Pt 12):2657–2671PubMed
113.
go back to reference Palma JA, Kaufmann H (2018) Treatment of autonomic dysfunction in Parkinson disease and other synucleinopathies. Mov Disord 33(3):372–390PubMedPubMedCentral Palma JA, Kaufmann H (2018) Treatment of autonomic dysfunction in Parkinson disease and other synucleinopathies. Mov Disord 33(3):372–390PubMedPubMedCentral
114.
115.
go back to reference Poewe W et al (2022) Multiple system atrophy. Nat Rev Dis Primers 8(1):56PubMed Poewe W et al (2022) Multiple system atrophy. Nat Rev Dis Primers 8(1):56PubMed
116.
go back to reference Sidoroff V et al (2022) Disease-modifying therapies for multiple system atrophy: where are we in 2022? J Parkinsons Dis 12(5):1369–1387PubMedPubMedCentral Sidoroff V et al (2022) Disease-modifying therapies for multiple system atrophy: where are we in 2022? J Parkinsons Dis 12(5):1369–1387PubMedPubMedCentral
117.
go back to reference Mandler M et al (2015) Active immunization against alpha-synuclein ameliorates the degenerative pathology and prevents demyelination in a model of multiple system atrophy. Mol Neurodegener 10:10PubMedPubMedCentral Mandler M et al (2015) Active immunization against alpha-synuclein ameliorates the degenerative pathology and prevents demyelination in a model of multiple system atrophy. Mol Neurodegener 10:10PubMedPubMedCentral
118.
go back to reference Volc D et al (2020) Safety and immunogenicity of the alpha-synuclein active immunotherapeutic PD01A in patients with Parkinson’s disease: a randomised, single-blinded, phase 1 trial. Lancet Neurol 19(7):591–600PubMed Volc D et al (2020) Safety and immunogenicity of the alpha-synuclein active immunotherapeutic PD01A in patients with Parkinson’s disease: a randomised, single-blinded, phase 1 trial. Lancet Neurol 19(7):591–600PubMed
119.
go back to reference Meissner WG et al (2020) A Phase 1 randomized trial of specific active alpha-synuclein immunotherapies PD01A and PD03A in multiple system atrophy. Mov Disord 35(11):1957–1965PubMedPubMedCentral Meissner WG et al (2020) A Phase 1 randomized trial of specific active alpha-synuclein immunotherapies PD01A and PD03A in multiple system atrophy. Mov Disord 35(11):1957–1965PubMedPubMedCentral
120.
go back to reference Schenk DB et al (2017) First-in-human assessment of PRX002, an anti-alpha-synuclein monoclonal antibody, in healthy volunteers. Mov Disord 32(2):211–218PubMed Schenk DB et al (2017) First-in-human assessment of PRX002, an anti-alpha-synuclein monoclonal antibody, in healthy volunteers. Mov Disord 32(2):211–218PubMed
121.
go back to reference Jankovic J et al (2018) Safety and tolerability of multiple ascending doses of PRX002/RG7935, an anti-alpha-synuclein monoclonal antibody, in patients with Parkinson disease: a randomized clinical trial. JAMA Neurol 75(10):1206–1214PubMedPubMedCentral Jankovic J et al (2018) Safety and tolerability of multiple ascending doses of PRX002/RG7935, an anti-alpha-synuclein monoclonal antibody, in patients with Parkinson disease: a randomized clinical trial. JAMA Neurol 75(10):1206–1214PubMedPubMedCentral
122.
go back to reference Pagano G et al (2022) Trial of Prasinezumab in early-stage Parkinson’s disease. N Engl J Med 387(5):421–432PubMed Pagano G et al (2022) Trial of Prasinezumab in early-stage Parkinson’s disease. N Engl J Med 387(5):421–432PubMed
123.
go back to reference Lang AE et al (2022) Trial of cinpanemab in early Parkinson’s disease. N Engl J Med 387(5):408–420PubMed Lang AE et al (2022) Trial of cinpanemab in early Parkinson’s disease. N Engl J Med 387(5):408–420PubMed
124.
126.
go back to reference Cole TA et al (2021) Alpha-Synuclein antisense oligonucleotides as a disease-modifying therapy for Parkinson’s disease. JCI Insight 6(5):e135633PubMedPubMedCentral Cole TA et al (2021) Alpha-Synuclein antisense oligonucleotides as a disease-modifying therapy for Parkinson’s disease. JCI Insight 6(5):e135633PubMedPubMedCentral
127.
go back to reference Morato Torres CA et al (2020) The role of alpha-synuclein and other Parkinson’s genes in neurodevelopmental and neurodegenerative disorders. Int J Mol Sci 21(16):5724PubMedPubMedCentral Morato Torres CA et al (2020) The role of alpha-synuclein and other Parkinson’s genes in neurodevelopmental and neurodegenerative disorders. Int J Mol Sci 21(16):5724PubMedPubMedCentral
128.
go back to reference Abeliovich A et al (2000) Mice lacking alpha-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron 25(1):239–252PubMed Abeliovich A et al (2000) Mice lacking alpha-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron 25(1):239–252PubMed
129.
go back to reference Ninkina N et al (2020) Alterations in the nigrostriatal system following conditional inactivation of alpha-synuclein in neurons of adult and aging mice. Neurobiol Aging 91:76–87PubMedPubMedCentral Ninkina N et al (2020) Alterations in the nigrostriatal system following conditional inactivation of alpha-synuclein in neurons of adult and aging mice. Neurobiol Aging 91:76–87PubMedPubMedCentral
130.
go back to reference Ehrnhoefer DE et al (2008) EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers. Nat Struct Mol Biol 15(6):558–566PubMed Ehrnhoefer DE et al (2008) EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers. Nat Struct Mol Biol 15(6):558–566PubMed
131.
go back to reference Bieschke J et al (2010) EGCG remodels mature alpha-synuclein and amyloid-beta fibrils and reduces cellular toxicity. Proc Natl Acad Sci U S A 107(17):7710–7715PubMedPubMedCentral Bieschke J et al (2010) EGCG remodels mature alpha-synuclein and amyloid-beta fibrils and reduces cellular toxicity. Proc Natl Acad Sci U S A 107(17):7710–7715PubMedPubMedCentral
132.
go back to reference Lorenzen N et al (2014) How epigallocatechin gallate can inhibit alpha-synuclein oligomer toxicity in vitro. J Biol Chem 289(31):21299–21310PubMedPubMedCentral Lorenzen N et al (2014) How epigallocatechin gallate can inhibit alpha-synuclein oligomer toxicity in vitro. J Biol Chem 289(31):21299–21310PubMedPubMedCentral
133.
go back to reference Chen M et al (2015) Tea polyphenols alleviate motor impairments, dopaminergic neuronal injury, and cerebral alpha-synuclein aggregation in MPTP-intoxicated Parkinsonian monkeys. Neuroscience 286:383–392PubMed Chen M et al (2015) Tea polyphenols alleviate motor impairments, dopaminergic neuronal injury, and cerebral alpha-synuclein aggregation in MPTP-intoxicated Parkinsonian monkeys. Neuroscience 286:383–392PubMed
134.
go back to reference Levin J et al (2019) Safety and efficacy of epigallocatechin gallate in multiple system atrophy (PROMESA): a randomised, double-blind, placebo-controlled trial. Lancet Neurol 18(8):724–735PubMed Levin J et al (2019) Safety and efficacy of epigallocatechin gallate in multiple system atrophy (PROMESA): a randomised, double-blind, placebo-controlled trial. Lancet Neurol 18(8):724–735PubMed
135.
go back to reference Wrasidlo W et al (2016) A de novo compound targeting alpha-synuclein improves deficits in models of Parkinson’s disease. Brain 139(Pt 12):3217–3236PubMedPubMedCentral Wrasidlo W et al (2016) A de novo compound targeting alpha-synuclein improves deficits in models of Parkinson’s disease. Brain 139(Pt 12):3217–3236PubMedPubMedCentral
136.
go back to reference Price DL et al (2018) The small molecule alpha-synuclein misfolding inhibitor, NPT200-11, produces multiple benefits in an animal model of Parkinson’s disease. Sci Rep 8(1):16165PubMedPubMedCentral Price DL et al (2018) The small molecule alpha-synuclein misfolding inhibitor, NPT200-11, produces multiple benefits in an animal model of Parkinson’s disease. Sci Rep 8(1):16165PubMedPubMedCentral
137.
go back to reference Wagner J et al (2013) Anle138b: a novel oligomer modulator for disease-modifying therapy of neurodegenerative diseases such as prion and Parkinson’s disease. Acta Neuropathol 125(6):795–813PubMedPubMedCentral Wagner J et al (2013) Anle138b: a novel oligomer modulator for disease-modifying therapy of neurodegenerative diseases such as prion and Parkinson’s disease. Acta Neuropathol 125(6):795–813PubMedPubMedCentral
138.
go back to reference Heras-Garvin A et al (2019) Anle138b modulates alpha-synuclein oligomerization and prevents motor decline and neurodegeneration in a mouse model of multiple system atrophy. Mov Disord 34(2):255–263PubMed Heras-Garvin A et al (2019) Anle138b modulates alpha-synuclein oligomerization and prevents motor decline and neurodegeneration in a mouse model of multiple system atrophy. Mov Disord 34(2):255–263PubMed
139.
go back to reference Lemos M et al (2020) Targeting alpha-synuclein by PD03 AFFITOPE(R) and Anle138b rescues neurodegenerative pathology in a model of multiple system atrophy: clinical relevance. Transl Neurodegener 9(1):38PubMedPubMedCentral Lemos M et al (2020) Targeting alpha-synuclein by PD03 AFFITOPE(R) and Anle138b rescues neurodegenerative pathology in a model of multiple system atrophy: clinical relevance. Transl Neurodegener 9(1):38PubMedPubMedCentral
140.
go back to reference Dexter DT et al (1991) Alterations in the levels of iron, ferritin and other trace metals in Parkinson’s disease and other neurodegenerative diseases affecting the basal ganglia. Brain 114(Pt 4):1953–1975PubMed Dexter DT et al (1991) Alterations in the levels of iron, ferritin and other trace metals in Parkinson’s disease and other neurodegenerative diseases affecting the basal ganglia. Brain 114(Pt 4):1953–1975PubMed
141.
go back to reference Kaindlstorfer C et al (2018) The relevance of iron in the pathogenesis of multiple system atrophy: a viewpoint. J Alzheimers Dis 61(4):1253–1273PubMedPubMedCentral Kaindlstorfer C et al (2018) The relevance of iron in the pathogenesis of multiple system atrophy: a viewpoint. J Alzheimers Dis 61(4):1253–1273PubMedPubMedCentral
142.
go back to reference Febbraro F et al (2012) Alpha-synuclein expression is modulated at the translational level by iron. NeuroReport 23(9):576–580PubMed Febbraro F et al (2012) Alpha-synuclein expression is modulated at the translational level by iron. NeuroReport 23(9):576–580PubMed
143.
go back to reference Follmer C et al (2015) Oligomerization and membrane-binding properties of covalent adducts formed by the interaction of alpha-synuclein with the toxic dopamine metabolite 3,4-dihydroxyphenylacetaldehyde (DOPAL). J Biol Chem 290(46):27660–27679PubMedPubMedCentral Follmer C et al (2015) Oligomerization and membrane-binding properties of covalent adducts formed by the interaction of alpha-synuclein with the toxic dopamine metabolite 3,4-dihydroxyphenylacetaldehyde (DOPAL). J Biol Chem 290(46):27660–27679PubMedPubMedCentral
144.
go back to reference Finkelstein DI et al (2017) The novel compound PBT434 prevents iron mediated neurodegeneration and alpha-synuclein toxicity in multiple models of Parkinson’s disease. Acta Neuropathol Commun 5(1):53PubMedPubMedCentral Finkelstein DI et al (2017) The novel compound PBT434 prevents iron mediated neurodegeneration and alpha-synuclein toxicity in multiple models of Parkinson’s disease. Acta Neuropathol Commun 5(1):53PubMedPubMedCentral
145.
go back to reference Finkelstein DI et al (2022) The compound ATH434 prevents alpha-synuclein toxicity in a murine model of multiple system atrophy. J Parkinsons Dis 12(1):105–115PubMedPubMedCentral Finkelstein DI et al (2022) The compound ATH434 prevents alpha-synuclein toxicity in a murine model of multiple system atrophy. J Parkinsons Dis 12(1):105–115PubMedPubMedCentral
146.
go back to reference David Stamler MB, Wong C, Offman E (2020) A phase 1 study of pbt434, a novel small molecule inhibitor of α-synuclein aggregation, in adult and older adult volunteers (4871). Neurology, 9 4 David Stamler MB, Wong C, Offman E (2020) A phase 1 study of pbt434, a novel small molecule inhibitor of α-synuclein aggregation, in adult and older adult volunteers (4871). Neurology, 9 4
148.
go back to reference Taylor JP, Hardy J, Fischbeck KH (2002) Toxic proteins in neurodegenerative disease. Science 296(5575):1991–1995PubMed Taylor JP, Hardy J, Fischbeck KH (2002) Toxic proteins in neurodegenerative disease. Science 296(5575):1991–1995PubMed
149.
go back to reference Ciechanover A, Brundin P (2003) The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg. Neuron 40(2):427–446PubMed Ciechanover A, Brundin P (2003) The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg. Neuron 40(2):427–446PubMed
150.
go back to reference Menzies FM, Fleming A, Rubinsztein DC (2015) Compromised autophagy and neurodegenerative diseases. Nat Rev Neurosci 16(6):345–357PubMed Menzies FM, Fleming A, Rubinsztein DC (2015) Compromised autophagy and neurodegenerative diseases. Nat Rev Neurosci 16(6):345–357PubMed
151.
go back to reference Ndayisaba A, Wenning GK (2020) Inhibition of the mammalian target or rapamycin (mTOR): a potential therapeutic strategy for multiple system atrophy. Clin Auton Res 30(1):7–8PubMed Ndayisaba A, Wenning GK (2020) Inhibition of the mammalian target or rapamycin (mTOR): a potential therapeutic strategy for multiple system atrophy. Clin Auton Res 30(1):7–8PubMed
152.
go back to reference Bove J, Martinez-Vicente M, Vila M (2011) Fighting neurodegeneration with rapamycin: mechanistic insights. Nat Rev Neurosci 12(8):437–452PubMed Bove J, Martinez-Vicente M, Vila M (2011) Fighting neurodegeneration with rapamycin: mechanistic insights. Nat Rev Neurosci 12(8):437–452PubMed
153.
go back to reference Fouka M et al (2020) In search of effective treatments targeting alpha-synuclein toxicity in synucleinopathies: pros and cons. Front Cell Dev Biol 8:559791PubMedPubMedCentral Fouka M et al (2020) In search of effective treatments targeting alpha-synuclein toxicity in synucleinopathies: pros and cons. Front Cell Dev Biol 8:559791PubMedPubMedCentral
154.
go back to reference Lopez-Cuina M, Guerin P, Bezard E, Meissner W, Fernagut P-O (2018) Rapamycin for treating MSA: a preclinical proof of concept study. Int Parkinson Movement Disord Soc Lopez-Cuina M, Guerin P, Bezard E, Meissner W, Fernagut P-O (2018) Rapamycin for treating MSA: a preclinical proof of concept study. Int Parkinson Movement Disord Soc
155.
go back to reference Li J et al (2004) Rifampicin inhibits alpha-synuclein fibrillation and disaggregates fibrils. Chem Biol 11(11):1513–1521PubMed Li J et al (2004) Rifampicin inhibits alpha-synuclein fibrillation and disaggregates fibrils. Chem Biol 11(11):1513–1521PubMed
156.
go back to reference Ubhi K et al (2008) Rifampicin reduces alpha-synuclein in a transgenic mouse model of multiple system atrophy. NeuroReport 19(13):1271–1276PubMedPubMedCentral Ubhi K et al (2008) Rifampicin reduces alpha-synuclein in a transgenic mouse model of multiple system atrophy. NeuroReport 19(13):1271–1276PubMedPubMedCentral
157.
go back to reference Hou L et al (2015) Lithium protects dopaminergic cells from rotenone toxicity via autophagy enhancement. BMC Neurosci 16:82PubMedPubMedCentral Hou L et al (2015) Lithium protects dopaminergic cells from rotenone toxicity via autophagy enhancement. BMC Neurosci 16:82PubMedPubMedCentral
158.
go back to reference Li XZ et al (2013) Therapeutic effects of valproate combined with lithium carbonate on MPTP-induced parkinsonism in mice: possible mediation through enhanced autophagy. Int J Neurosci 123(2):73–79PubMed Li XZ et al (2013) Therapeutic effects of valproate combined with lithium carbonate on MPTP-induced parkinsonism in mice: possible mediation through enhanced autophagy. Int J Neurosci 123(2):73–79PubMed
159.
go back to reference Sacca F et al (2013) A randomized clinical trial of lithium in multiple system atrophy. J Neurol 260(2):458–461PubMed Sacca F et al (2013) A randomized clinical trial of lithium in multiple system atrophy. J Neurol 260(2):458–461PubMed
160.
go back to reference Bennett MC et al (1999) Degradation of alpha-synuclein by proteasome. J Biol Chem 274(48):33855–33858PubMed Bennett MC et al (1999) Degradation of alpha-synuclein by proteasome. J Biol Chem 274(48):33855–33858PubMed
161.
go back to reference Qu J et al (2020) Specific knockdown of alpha-synuclein by peptide-directed proteasome degradation rescued its associated neurotoxicity. Cell Chem Biol 27(6):763PubMed Qu J et al (2020) Specific knockdown of alpha-synuclein by peptide-directed proteasome degradation rescued its associated neurotoxicity. Cell Chem Biol 27(6):763PubMed
162.
go back to reference Hoffmann A et al (2019) Oligodendroglial alpha-synucleinopathy-driven neuroinflammation in multiple system atrophy. Brain Pathol 29(3):380–396PubMedPubMedCentral Hoffmann A et al (2019) Oligodendroglial alpha-synucleinopathy-driven neuroinflammation in multiple system atrophy. Brain Pathol 29(3):380–396PubMedPubMedCentral
163.
go back to reference Ishizawa K et al (2004) Microglial activation parallels system degeneration in multiple system atrophy. J Neuropathol Exp Neurol 63(1):43–52PubMed Ishizawa K et al (2004) Microglial activation parallels system degeneration in multiple system atrophy. J Neuropathol Exp Neurol 63(1):43–52PubMed
164.
go back to reference Yenari MA et al (2006) Microglia potentiate damage to blood-brain barrier constituents: improvement by minocycline in vivo and in vitro. Stroke 37(4):1087–1093PubMed Yenari MA et al (2006) Microglia potentiate damage to blood-brain barrier constituents: improvement by minocycline in vivo and in vitro. Stroke 37(4):1087–1093PubMed
165.
go back to reference Ryu JK et al (2004) Minocycline inhibits neuronal death and glial activation induced by beta-amyloid peptide in rat hippocampus. Glia 48(1):85–90PubMed Ryu JK et al (2004) Minocycline inhibits neuronal death and glial activation induced by beta-amyloid peptide in rat hippocampus. Glia 48(1):85–90PubMed
166.
167.
go back to reference Kim HS, Suh YH (2009) Minocycline and neurodegenerative diseases. Behav Brain Res 196(2):168–179PubMed Kim HS, Suh YH (2009) Minocycline and neurodegenerative diseases. Behav Brain Res 196(2):168–179PubMed
168.
go back to reference Yong VW et al (2004) The promise of minocycline in neurology. Lancet Neurol 3(12):744–751PubMed Yong VW et al (2004) The promise of minocycline in neurology. Lancet Neurol 3(12):744–751PubMed
169.
go back to reference Stefanova N et al (2004) Failure of neuronal protection by inhibition of glial activation in a rat model of striatonigral degeneration. J Neurosci Res 78(1):87–91PubMed Stefanova N et al (2004) Failure of neuronal protection by inhibition of glial activation in a rat model of striatonigral degeneration. J Neurosci Res 78(1):87–91PubMed
170.
go back to reference Yang L et al (2003) Minocycline enhances MPTP toxicity to dopaminergic neurons. J Neurosci Res 74(2):278–285PubMed Yang L et al (2003) Minocycline enhances MPTP toxicity to dopaminergic neurons. J Neurosci Res 74(2):278–285PubMed
171.
go back to reference Dodel R et al (2010) Minocycline 1-year therapy in multiple-system-atrophy: effect on clinical symptoms and [(11)C] (R)-PK11195 PET (MEMSA-trial). Mov Disord 25(1):97–107PubMed Dodel R et al (2010) Minocycline 1-year therapy in multiple-system-atrophy: effect on clinical symptoms and [(11)C] (R)-PK11195 PET (MEMSA-trial). Mov Disord 25(1):97–107PubMed
172.
go back to reference Langerveld AJ et al (2007) Gene expression changes in postmortem tissue from the rostral pons of multiple system atrophy patients. Mov Disord 22(6):766–777PubMed Langerveld AJ et al (2007) Gene expression changes in postmortem tissue from the rostral pons of multiple system atrophy patients. Mov Disord 22(6):766–777PubMed
173.
174.
go back to reference Green PS et al (2004) Neuronal expression of myeloperoxidase is increased in Alzheimer’s disease. J Neurochem 90(3):724–733PubMed Green PS et al (2004) Neuronal expression of myeloperoxidase is increased in Alzheimer’s disease. J Neurochem 90(3):724–733PubMed
175.
go back to reference Choi DK et al (2005) Ablation of the inflammatory enzyme myeloperoxidase mitigates features of Parkinson’s disease in mice. J Neurosci 25(28):6594–6600PubMedPubMedCentral Choi DK et al (2005) Ablation of the inflammatory enzyme myeloperoxidase mitigates features of Parkinson’s disease in mice. J Neurosci 25(28):6594–6600PubMedPubMedCentral
176.
go back to reference Gray E et al (2008) Elevated activity and microglial expression of myeloperoxidase in demyelinated cerebral cortex in multiple sclerosis. Brain Pathol 18(1):86–95PubMed Gray E et al (2008) Elevated activity and microglial expression of myeloperoxidase in demyelinated cerebral cortex in multiple sclerosis. Brain Pathol 18(1):86–95PubMed
177.
go back to reference Stefanova N et al (2012) Myeloperoxidase inhibition ameliorates multiple system atrophy-like degeneration in a transgenic mouse model. Neurotox Res 21(4):393–404PubMed Stefanova N et al (2012) Myeloperoxidase inhibition ameliorates multiple system atrophy-like degeneration in a transgenic mouse model. Neurotox Res 21(4):393–404PubMed
178.
go back to reference Kaindlstorfer C et al (2015) Failure of neuroprotection despite microglial suppression by delayed-start myeloperoxidase inhibition in a model of advanced multiple system atrophy: clinical implications. Neurotox Res 28(3):185–194PubMedPubMedCentral Kaindlstorfer C et al (2015) Failure of neuroprotection despite microglial suppression by delayed-start myeloperoxidase inhibition in a model of advanced multiple system atrophy: clinical implications. Neurotox Res 28(3):185–194PubMedPubMedCentral
179.
go back to reference Tong X et al (2018) Population pharmacokinetic modeling with enterohepatic circulation for AZD3241 in healthy subjects and patients with multiple system atrophy. J Clin Pharmacol 58(11):1452–1460PubMed Tong X et al (2018) Population pharmacokinetic modeling with enterohepatic circulation for AZD3241 in healthy subjects and patients with multiple system atrophy. J Clin Pharmacol 58(11):1452–1460PubMed
180.
go back to reference Jucaite A et al (2015) Effect of the myeloperoxidase inhibitor AZD3241 on microglia: a PET study in Parkinson’s disease. Brain 138(Pt 9):2687–2700PubMed Jucaite A et al (2015) Effect of the myeloperoxidase inhibitor AZD3241 on microglia: a PET study in Parkinson’s disease. Brain 138(Pt 9):2687–2700PubMed
181.
go back to reference Fujimura Y et al (2010) Biodistribution and radiation dosimetry in humans of a new PET ligand, (18)F-PBR06, to image translocator protein (18 kDa). J Nucl Med 51(1):145–149PubMed Fujimura Y et al (2010) Biodistribution and radiation dosimetry in humans of a new PET ligand, (18)F-PBR06, to image translocator protein (18 kDa). J Nucl Med 51(1):145–149PubMed
182.
go back to reference Cheah BC et al (2010) Riluzole, neuroprotection and amyotrophic lateral sclerosis. Curr Med Chem 17(18):1942–2199PubMed Cheah BC et al (2010) Riluzole, neuroprotection and amyotrophic lateral sclerosis. Curr Med Chem 17(18):1942–2199PubMed
183.
go back to reference Scherfler C et al (2005) Riluzole improves motor deficits and attenuates loss of striatal neurons in a sequential double lesion rat model of striatonigral degeneration (parkinson variant of multiple system atrophy). J Neural Transm (Vienna) 112(8):1025–1033PubMed Scherfler C et al (2005) Riluzole improves motor deficits and attenuates loss of striatal neurons in a sequential double lesion rat model of striatonigral degeneration (parkinson variant of multiple system atrophy). J Neural Transm (Vienna) 112(8):1025–1033PubMed
184.
go back to reference Seppi K et al (2006) Placebo-controlled trial of riluzole in multiple system atrophy. Eur J Neurol 13(10):1146–1148PubMed Seppi K et al (2006) Placebo-controlled trial of riluzole in multiple system atrophy. Eur J Neurol 13(10):1146–1148PubMed
185.
go back to reference Bensimon G et al (2009) Riluzole treatment, survival and diagnostic criteria in Parkinson plus disorders: the NNIPPS study. Brain 132(Pt 1):156–171PubMed Bensimon G et al (2009) Riluzole treatment, survival and diagnostic criteria in Parkinson plus disorders: the NNIPPS study. Brain 132(Pt 1):156–171PubMed
186.
go back to reference Sanchez-Perez A et al (2005) Modulation of NMDA receptors in the cerebellum II. Signaling pathways and physiological modulators regulating NMDA receptor function. Cerebellum 4(3):162–170PubMed Sanchez-Perez A et al (2005) Modulation of NMDA receptors in the cerebellum II. Signaling pathways and physiological modulators regulating NMDA receptor function. Cerebellum 4(3):162–170PubMed
187.
188.
go back to reference Sul JW et al (2013) Accumulation of the parkin substrate, FAF1, plays a key role in the dopaminergic neurodegeneration. Hum Mol Genet 22(8):1558–1573PubMed Sul JW et al (2013) Accumulation of the parkin substrate, FAF1, plays a key role in the dopaminergic neurodegeneration. Hum Mol Genet 22(8):1558–1573PubMed
189.
go back to reference Kim BS et al (2021) Fas-associated factor 1 induces the accumulation of alpha-synuclein through autophagic suppression in dopaminergic neurons. FASEB J 35(4):e21363PubMed Kim BS et al (2021) Fas-associated factor 1 induces the accumulation of alpha-synuclein through autophagic suppression in dopaminergic neurons. FASEB J 35(4):e21363PubMed
190.
go back to reference Park HS et al (2020) Neurorestorative effects of a novel fas-associated factor 1 inhibitor in the MPTP model: an [(18)F]FE-PE2I positron emission tomography analysis study. Front Pharmacol 11:953PubMedPubMedCentral Park HS et al (2020) Neurorestorative effects of a novel fas-associated factor 1 inhibitor in the MPTP model: an [(18)F]FE-PE2I positron emission tomography analysis study. Front Pharmacol 11:953PubMedPubMedCentral
191.
go back to reference Kim BS et al (2022) Pharmacological intervention targeting FAF1 restores autophagic flux for alpha-synuclein degradation in the brain of a parkinson’s disease mouse model. ACS Chem Neurosci 13(6):806–817PubMed Kim BS et al (2022) Pharmacological intervention targeting FAF1 restores autophagic flux for alpha-synuclein degradation in the brain of a parkinson’s disease mouse model. ACS Chem Neurosci 13(6):806–817PubMed
192.
go back to reference Shin W et al (2019) A first-in-human study to investigate the safety, tolerability, pharmacokinetics, and pharmacodynamics of KM-819 (FAS-associated factor 1 inhibitor), a drug for Parkinson’s disease, in healthy volunteers. Drug Des Devel Ther 13:1011–1022PubMedPubMedCentral Shin W et al (2019) A first-in-human study to investigate the safety, tolerability, pharmacokinetics, and pharmacodynamics of KM-819 (FAS-associated factor 1 inhibitor), a drug for Parkinson’s disease, in healthy volunteers. Drug Des Devel Ther 13:1011–1022PubMedPubMedCentral
194.
go back to reference Sharon R et al (2003) The formation of highly soluble oligomers of alpha-synuclein is regulated by fatty acids and enhanced in Parkinson’s disease. Neuron 37(4):583–595PubMed Sharon R et al (2003) The formation of highly soluble oligomers of alpha-synuclein is regulated by fatty acids and enhanced in Parkinson’s disease. Neuron 37(4):583–595PubMed
195.
go back to reference Fanning S et al (2019) Lipidomic analysis of alpha-synuclein neurotoxicity identifies stearoyl coa desaturase as a target for parkinson treatment. Mol Cell 73(5):1001-1014 e8PubMed Fanning S et al (2019) Lipidomic analysis of alpha-synuclein neurotoxicity identifies stearoyl coa desaturase as a target for parkinson treatment. Mol Cell 73(5):1001-1014 e8PubMed
196.
go back to reference Terry-Kantor E et al (2020) Rapid alpha-synuclein toxicity in a neural cell model and its rescue by a stearoyl-CoA desaturase inhibitor. Int J Mol Sci 21(15):5193PubMedPubMedCentral Terry-Kantor E et al (2020) Rapid alpha-synuclein toxicity in a neural cell model and its rescue by a stearoyl-CoA desaturase inhibitor. Int J Mol Sci 21(15):5193PubMedPubMedCentral
197.
go back to reference Vincent BM et al (2018) Inhibiting stearoyl-CoA desaturase ameliorates alpha-synuclein cytotoxicity. Cell Rep 25(10):2742–2754PubMed Vincent BM et al (2018) Inhibiting stearoyl-CoA desaturase ameliorates alpha-synuclein cytotoxicity. Cell Rep 25(10):2742–2754PubMed
198.
199.
go back to reference Monzio Compagnoni G et al (2018) Mitochondrial dysregulation and impaired autophagy in iPSC-derived dopaminergic neurons of multiple system atrophy. Stem Cell Reports 11(5):1185–1198PubMedPubMedCentral Monzio Compagnoni G et al (2018) Mitochondrial dysregulation and impaired autophagy in iPSC-derived dopaminergic neurons of multiple system atrophy. Stem Cell Reports 11(5):1185–1198PubMedPubMedCentral
200.
go back to reference Nakamoto FK et al (2018) The pathogenesis linked to coenzyme Q10 insufficiency in iPSC-derived neurons from patients with multiple-system atrophy. Sci Rep 8(1):14215PubMedPubMedCentral Nakamoto FK et al (2018) The pathogenesis linked to coenzyme Q10 insufficiency in iPSC-derived neurons from patients with multiple-system atrophy. Sci Rep 8(1):14215PubMedPubMedCentral
201.
go back to reference Mitsui J et al (2017) Three-year follow-up of high-dose ubiquinol supplementation in a case of familial multiple system atrophy with compound heterozygous COQ2 mutations. Cerebellum 16(3):664–672PubMedPubMedCentral Mitsui J et al (2017) Three-year follow-up of high-dose ubiquinol supplementation in a case of familial multiple system atrophy with compound heterozygous COQ2 mutations. Cerebellum 16(3):664–672PubMedPubMedCentral
202.
go back to reference Mitsui J et al (2023) High-dose ubiquinol supplementation in multiple-system atrophy: a multicentre, randomised, double-blinded, placebo-controlled phase 2 trial. EClinicalMedicine 59:101920PubMedPubMedCentral Mitsui J et al (2023) High-dose ubiquinol supplementation in multiple-system atrophy: a multicentre, randomised, double-blinded, placebo-controlled phase 2 trial. EClinicalMedicine 59:101920PubMedPubMedCentral
203.
go back to reference Ajo R et al (2003) Growth hormone action on proliferation and differentiation of cerebral cortical cells from fetal rat. Endocrinology 144(3):1086–1097PubMed Ajo R et al (2003) Growth hormone action on proliferation and differentiation of cerebral cortical cells from fetal rat. Endocrinology 144(3):1086–1097PubMed
204.
go back to reference Holmberg B et al (2007) Safety and tolerability of growth hormone therapy in multiple system atrophy: a double-blind, placebo-controlled study. Mov Disord 22(8):1138–1144PubMed Holmberg B et al (2007) Safety and tolerability of growth hormone therapy in multiple system atrophy: a double-blind, placebo-controlled study. Mov Disord 22(8):1138–1144PubMed
205.
go back to reference Lecht S et al (2007) Rasagiline—a novel MAO B inhibitor in Parkinson’s disease therapy. Ther Clin Risk Manag 3(3):467–474PubMedPubMedCentral Lecht S et al (2007) Rasagiline—a novel MAO B inhibitor in Parkinson’s disease therapy. Ther Clin Risk Manag 3(3):467–474PubMedPubMedCentral
206.
go back to reference Olanow CW et al (2009) A double-blind, delayed-start trial of rasagiline in Parkinson’s disease. N Engl J Med 361(13):1268–1278PubMed Olanow CW et al (2009) A double-blind, delayed-start trial of rasagiline in Parkinson’s disease. N Engl J Med 361(13):1268–1278PubMed
207.
go back to reference Stefanova N, Poewe W, Wenning GK (2008) Rasagiline is neuroprotective in a transgenic model of multiple system atrophy. Exp Neurol 210(2):421–427PubMed Stefanova N, Poewe W, Wenning GK (2008) Rasagiline is neuroprotective in a transgenic model of multiple system atrophy. Exp Neurol 210(2):421–427PubMed
208.
go back to reference Poewe W et al (2015) Efficacy of rasagiline in patients with the parkinsonian variant of multiple system atrophy: a randomised, placebo-controlled trial. Lancet Neurol 14(2):145–152PubMed Poewe W et al (2015) Efficacy of rasagiline in patients with the parkinsonian variant of multiple system atrophy: a randomised, placebo-controlled trial. Lancet Neurol 14(2):145–152PubMed
209.
go back to reference Ubhi K et al (2012) Fluoxetine ameliorates behavioral and neuropathological deficits in a transgenic model mouse of alpha-synucleinopathy. Exp Neurol 234(2):405–416PubMedPubMedCentral Ubhi K et al (2012) Fluoxetine ameliorates behavioral and neuropathological deficits in a transgenic model mouse of alpha-synucleinopathy. Exp Neurol 234(2):405–416PubMedPubMedCentral
210.
go back to reference Zhang F et al (2012) Fluoxetine protects neurons against microglial activation-mediated neurotoxicity. Parkinsonism Relat Disord 18 Supp 1((01)):S213–S217 Zhang F et al (2012) Fluoxetine protects neurons against microglial activation-mediated neurotoxicity. Parkinsonism Relat Disord 18 Supp 1((01)):S213–S217
211.
go back to reference Rascol O et al (2021) Fluoxetine for the symptomatic treatment of multiple system atrophy: the MSA-FLUO Trial. Mov Disord 36(7):1704–1711PubMed Rascol O et al (2021) Fluoxetine for the symptomatic treatment of multiple system atrophy: the MSA-FLUO Trial. Mov Disord 36(7):1704–1711PubMed
212.
go back to reference Shemesh E et al (2012) Effect of intranasal insulin on cognitive function: a systematic review. J Clin Endocrinol Metab 97(2):366–376PubMed Shemesh E et al (2012) Effect of intranasal insulin on cognitive function: a systematic review. J Clin Endocrinol Metab 97(2):366–376PubMed
213.
go back to reference Bassil F et al (2014) Insulin, IGF-1 and GLP-1 signaling in neurodegenerative disorders: targets for disease modification? Prog Neurobiol 118:1–18PubMed Bassil F et al (2014) Insulin, IGF-1 and GLP-1 signaling in neurodegenerative disorders: targets for disease modification? Prog Neurobiol 118:1–18PubMed
214.
go back to reference Pellecchia MT et al (2010) Multiple system atrophy is associated with changes in peripheral insulin-like growth factor system. Mov Disord 25(15):2621–2626PubMed Pellecchia MT et al (2010) Multiple system atrophy is associated with changes in peripheral insulin-like growth factor system. Mov Disord 25(15):2621–2626PubMed
215.
go back to reference Numao A et al (2014) Clinical correlates of serum insulin-like growth factor-1 in patients with Parkinson’s disease, multiple system atrophy and progressive supranuclear palsy. Parkinsonism Relat Disord 20(2):212–216PubMed Numao A et al (2014) Clinical correlates of serum insulin-like growth factor-1 in patients with Parkinson’s disease, multiple system atrophy and progressive supranuclear palsy. Parkinsonism Relat Disord 20(2):212–216PubMed
216.
217.
go back to reference Novak P, Maldonado DAP, Novak V (2019) Safety and preliminary efficacy of intranasal insulin for cognitive impairment in Parkinson disease and multiple system atrophy: a double-blinded placebo-controlled pilot study. PLoS ONE 14(4):0214364 Novak P, Maldonado DAP, Novak V (2019) Safety and preliminary efficacy of intranasal insulin for cognitive impairment in Parkinson disease and multiple system atrophy: a double-blinded placebo-controlled pilot study. PLoS ONE 14(4):0214364
218.
go back to reference Lyapina E et al (2022) Structural basis for receptor selectivity and inverse agonism in S1P(5) receptors. Nat Commun 13(1):4736PubMedPubMedCentral Lyapina E et al (2022) Structural basis for receptor selectivity and inverse agonism in S1P(5) receptors. Nat Commun 13(1):4736PubMedPubMedCentral
219.
go back to reference Caplan AI, Dennis JE (2006) Mesenchymal stem cells as trophic mediators. J Cell Biochem 98(5):1076–1084PubMed Caplan AI, Dennis JE (2006) Mesenchymal stem cells as trophic mediators. J Cell Biochem 98(5):1076–1084PubMed
220.
go back to reference Urrutia DN et al (2019) Comparative study of the neural differentiation capacity of mesenchymal stromal cells from different tissue sources: an approach for their use in neural regeneration therapies. PLoS ONE 14(3):e0213032PubMedPubMedCentral Urrutia DN et al (2019) Comparative study of the neural differentiation capacity of mesenchymal stromal cells from different tissue sources: an approach for their use in neural regeneration therapies. PLoS ONE 14(3):e0213032PubMedPubMedCentral
221.
go back to reference Lo Furno D, Mannino G, Giuffrida R (2018) Functional role of mesenchymal stem cells in the treatment of chronic neurodegenerative diseases. J Cell Physiol 233(5):3982–3999PubMed Lo Furno D, Mannino G, Giuffrida R (2018) Functional role of mesenchymal stem cells in the treatment of chronic neurodegenerative diseases. J Cell Physiol 233(5):3982–3999PubMed
222.
go back to reference Staff NP, Jones DT, Singer W (2019) Mesenchymal stromal cell therapies for neurodegenerative diseases. Mayo Clin Proc 94(5):892–905PubMed Staff NP, Jones DT, Singer W (2019) Mesenchymal stromal cell therapies for neurodegenerative diseases. Mayo Clin Proc 94(5):892–905PubMed
223.
go back to reference Park HJ et al (2011) Neuroprotective effect of human mesenchymal stem cells in an animal model of double toxin-induced multiple system atrophy parkinsonism. Cell Transplant 20(6):827–835PubMed Park HJ et al (2011) Neuroprotective effect of human mesenchymal stem cells in an animal model of double toxin-induced multiple system atrophy parkinsonism. Cell Transplant 20(6):827–835PubMed
224.
go back to reference Stemberger S et al (2011) Mesenchymal stem cells in a transgenic mouse model of multiple system atrophy: immunomodulation and neuroprotection. PLoS ONE 6(5):e19808PubMedPubMedCentral Stemberger S et al (2011) Mesenchymal stem cells in a transgenic mouse model of multiple system atrophy: immunomodulation and neuroprotection. PLoS ONE 6(5):e19808PubMedPubMedCentral
225.
go back to reference Lee PH et al (2008) Autologous mesenchymal stem cell therapy delays the progression of neurological deficits in patients with multiple system atrophy. Clin Pharmacol Ther 83(5):723–730PubMed Lee PH et al (2008) Autologous mesenchymal stem cell therapy delays the progression of neurological deficits in patients with multiple system atrophy. Clin Pharmacol Ther 83(5):723–730PubMed
226.
go back to reference Low PA, Gilman S (2012) Are trials of intravascular infusions of autologous mesenchymal stem cells in patients with multiple system atrophy currently justified, and are they effective? Ann Neurol 72(1):4–5PubMed Low PA, Gilman S (2012) Are trials of intravascular infusions of autologous mesenchymal stem cells in patients with multiple system atrophy currently justified, and are they effective? Ann Neurol 72(1):4–5PubMed
227.
go back to reference Lee PH et al (2012) A randomized trial of mesenchymal stem cells in multiple system atrophy. Ann Neurol 72(1):32–40PubMed Lee PH et al (2012) A randomized trial of mesenchymal stem cells in multiple system atrophy. Ann Neurol 72(1):32–40PubMed
228.
go back to reference Singer W et al (2019) Intrathecal administration of autologous mesenchymal stem cells in multiple system atrophy. Neurology 93(1):e77–e87PubMedPubMedCentral Singer W et al (2019) Intrathecal administration of autologous mesenchymal stem cells in multiple system atrophy. Neurology 93(1):e77–e87PubMedPubMedCentral
229.
go back to reference Meissner WG et al (2012) Assessment of quality of life with the multiple system atrophy health-related quality of life scale. Mov Disord 27(12):1574–1577PubMed Meissner WG et al (2012) Assessment of quality of life with the multiple system atrophy health-related quality of life scale. Mov Disord 27(12):1574–1577PubMed
230.
go back to reference Lv Q et al (2022) Depression in multiple system atrophy: views on pathological, clinical and imaging aspects. Front Psychiatry 13:980371PubMedPubMedCentral Lv Q et al (2022) Depression in multiple system atrophy: views on pathological, clinical and imaging aspects. Front Psychiatry 13:980371PubMedPubMedCentral
231.
go back to reference Golden EP, McCreary M, Vernino S (2022) Responsiveness of UMSARS and other clinical measures in a longitudinal structured care clinic for multiple system atrophy. Clin Auton Res 32(6):477–484PubMed Golden EP, McCreary M, Vernino S (2022) Responsiveness of UMSARS and other clinical measures in a longitudinal structured care clinic for multiple system atrophy. Clin Auton Res 32(6):477–484PubMed
233.
go back to reference Wilson DM 3rd et al (2023) Hallmarks of neurodegenerative diseases. Cell 186(4):693–714PubMed Wilson DM 3rd et al (2023) Hallmarks of neurodegenerative diseases. Cell 186(4):693–714PubMed
234.
go back to reference Arguello A et al (2022) Molecular architecture determines brain delivery of a transferrin receptor-targeted lysosomal enzyme. J Exp Med 219(3):20211057 Arguello A et al (2022) Molecular architecture determines brain delivery of a transferrin receptor-targeted lysosomal enzyme. J Exp Med 219(3):20211057
235.
go back to reference Li F et al (2018) NLRP3 Inflammasome-related proteins are upregulated in the putamen of patients with multiple system atrophy. J Neuropathol Exp Neurol 77(11):1055–1065PubMed Li F et al (2018) NLRP3 Inflammasome-related proteins are upregulated in the putamen of patients with multiple system atrophy. J Neuropathol Exp Neurol 77(11):1055–1065PubMed
Metadata
Title
Multiple system atrophy: an update and emerging directions of biomarkers and clinical trials
Authors
Min Liu
Zhiyao Wang
Huifang Shang
Publication date
14-03-2024
Publisher
Springer Berlin Heidelberg
Published in
Journal of Neurology / Issue 5/2024
Print ISSN: 0340-5354
Electronic ISSN: 1432-1459
DOI
https://doi.org/10.1007/s00415-024-12269-5

Other articles of this Issue 5/2024

Journal of Neurology 5/2024 Go to the issue