Skip to main content
Top
Published in: Journal of Hematology & Oncology 1/2024

Open Access 01-12-2024 | Biomarkers | Review

Decoding the glycoproteome: a new frontier for biomarker discovery in cancer

Authors: Kai He, Maryam Baniasad, Hyunwoo Kwon, Tomislav Caval, Gege Xu, Carlito Lebrilla, Daniel W. Hommes, Carolyn Bertozzi

Published in: Journal of Hematology & Oncology | Issue 1/2024

Login to get access

Abstract

Cancer early detection and treatment response prediction continue to pose significant challenges. Cancer liquid biopsies focusing on detecting circulating tumor cells (CTCs) and DNA (ctDNA) have shown enormous potential due to their non-invasive nature and the implications in precision cancer management. Recently, liquid biopsy has been further expanded to profile glycoproteins, which are the products of post-translational modifications of proteins and play key roles in both normal and pathological processes, including cancers. The advancements in chemical and mass spectrometry-based technologies and artificial intelligence-based platforms have enabled extensive studies of cancer and organ-specific changes in glycans and glycoproteins through glycomics and glycoproteomics. Glycoproteomic analysis has emerged as a promising tool for biomarker discovery and development in early detection of cancers and prediction of treatment efficacy including response to immunotherapies. These biomarkers could play a crucial role in aiding in early intervention and personalized therapy decisions. In this review, we summarize the significant advance in cancer glycoproteomic biomarker studies and the promise and challenges in integration into clinical practice to improve cancer patient care.
Literature
1.
go back to reference Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.PubMedCrossRef Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.PubMedCrossRef
2.
go back to reference Raufaste-Cazavieille V, Santiago R, Droit A. Multi-omics analysis: Paving the path toward achieving precision medicine in cancer treatment and immuno-oncology. Front Mol Biosci. 2022;9:962743.PubMedPubMedCentralCrossRef Raufaste-Cazavieille V, Santiago R, Droit A. Multi-omics analysis: Paving the path toward achieving precision medicine in cancer treatment and immuno-oncology. Front Mol Biosci. 2022;9:962743.PubMedPubMedCentralCrossRef
3.
go back to reference Rifai N, Gillette MA, Carr SA. Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nat Biotechnol. 2006;24:971–83.PubMedCrossRef Rifai N, Gillette MA, Carr SA. Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nat Biotechnol. 2006;24:971–83.PubMedCrossRef
4.
go back to reference Hanash SM, Pitteri SJ, Faca VM. Mining the plasma proteome for cancer biomarkers. Nature. 2008;452:571–9.PubMedCrossRef Hanash SM, Pitteri SJ, Faca VM. Mining the plasma proteome for cancer biomarkers. Nature. 2008;452:571–9.PubMedCrossRef
5.
go back to reference Palmirotta R, Lovero D, Cafforio P, Felici C, Mannavola F, Pellè E, et al. Liquid biopsy of cancer: a multimodal diagnostic tool in clinical oncology. Ther Adv Med Oncol. 2018;10:1758835918794630.PubMedPubMedCentralCrossRef Palmirotta R, Lovero D, Cafforio P, Felici C, Mannavola F, Pellè E, et al. Liquid biopsy of cancer: a multimodal diagnostic tool in clinical oncology. Ther Adv Med Oncol. 2018;10:1758835918794630.PubMedPubMedCentralCrossRef
6.
go back to reference Alix-Panabières C, Pantel K. Liquid biopsy: from discovery to clinical application. Cancer Discov. 2021;11:858–73.PubMedCrossRef Alix-Panabières C, Pantel K. Liquid biopsy: from discovery to clinical application. Cancer Discov. 2021;11:858–73.PubMedCrossRef
7.
go back to reference Ignatiadis M, Sledge GW, Jeffrey SS. Liquid biopsy enters the clinic - implementation issues and future challenges. Nat Rev Clin Oncol. 2021;18:297–312.PubMedCrossRef Ignatiadis M, Sledge GW, Jeffrey SS. Liquid biopsy enters the clinic - implementation issues and future challenges. Nat Rev Clin Oncol. 2021;18:297–312.PubMedCrossRef
9.
go back to reference Cohen JD, Li L, Wang Y, Thoburn C, Afsari B, Danilova L, et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science. 2018;359:926–30.PubMedPubMedCentralCrossRef Cohen JD, Li L, Wang Y, Thoburn C, Afsari B, Danilova L, et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science. 2018;359:926–30.PubMedPubMedCentralCrossRef
10.
go back to reference Ohtsubo K, Marth JD. Glycosylation in cellular mechanisms of health and disease. Cell. 2006;126:855–67.PubMedCrossRef Ohtsubo K, Marth JD. Glycosylation in cellular mechanisms of health and disease. Cell. 2006;126:855–67.PubMedCrossRef
11.
go back to reference Schjoldager KT, Narimatsu Y, Joshi HJ, Clausen H. Global view of human protein glycosylation pathways and functions. Nat Rev Mol Cell Biol. 2020;21:729–49.PubMedCrossRef Schjoldager KT, Narimatsu Y, Joshi HJ, Clausen H. Global view of human protein glycosylation pathways and functions. Nat Rev Mol Cell Biol. 2020;21:729–49.PubMedCrossRef
12.
go back to reference Fuster MM, Esko JD. The sweet and sour of cancer: glycans as novel therapeutic targets. Nat Rev Cancer. 2005;5:526–42.PubMedCrossRef Fuster MM, Esko JD. The sweet and sour of cancer: glycans as novel therapeutic targets. Nat Rev Cancer. 2005;5:526–42.PubMedCrossRef
13.
go back to reference Pinho SS, Reis CA. Glycosylation in cancer: mechanisms and clinical implications. Nat Rev Cancer. 2015;15:540–55.PubMedCrossRef Pinho SS, Reis CA. Glycosylation in cancer: mechanisms and clinical implications. Nat Rev Cancer. 2015;15:540–55.PubMedCrossRef
14.
go back to reference Carvalho S, Catarino TA, Dias AM, Kato M, Almeida A, Hessling B, et al. Preventing E-cadherin aberrant N-glycosylation at Asn-554 improves its critical function in gastric cancer. Oncogene. 2016;35:1619–31.PubMedCrossRef Carvalho S, Catarino TA, Dias AM, Kato M, Almeida A, Hessling B, et al. Preventing E-cadherin aberrant N-glycosylation at Asn-554 improves its critical function in gastric cancer. Oncogene. 2016;35:1619–31.PubMedCrossRef
15.
go back to reference Taniguchi N, Kizuka Y. Glycans and Cancer. 2015. p. 11–51. Taniguchi N, Kizuka Y. Glycans and Cancer. 2015. p. 11–51.
16.
go back to reference Rodrigues JG, Balmaña M, Macedo JA, Poças J, Fernandes Â, de-Freitas-Junior JCM, et al. Glycosylation in cancer: selected roles in tumour progression, immune modulation and metastasis. Cell Immunol. 2018;333:46–57.PubMedCrossRef Rodrigues JG, Balmaña M, Macedo JA, Poças J, Fernandes Â, de-Freitas-Junior JCM, et al. Glycosylation in cancer: selected roles in tumour progression, immune modulation and metastasis. Cell Immunol. 2018;333:46–57.PubMedCrossRef
17.
go back to reference Ignatiadis M, Lee M, Jeffrey SS. Circulating tumor cells and circulating tumor DNA: challenges and opportunities on the path to clinical utility. Clin Cancer Res. 2015;21:4786–800.PubMedCrossRef Ignatiadis M, Lee M, Jeffrey SS. Circulating tumor cells and circulating tumor DNA: challenges and opportunities on the path to clinical utility. Clin Cancer Res. 2015;21:4786–800.PubMedCrossRef
18.
go back to reference Dang DK, Park BH. Circulating tumor DNA: current challenges for clinical utility. J Clin Invest. 2022;132:1–10.CrossRef Dang DK, Park BH. Circulating tumor DNA: current challenges for clinical utility. J Clin Invest. 2022;132:1–10.CrossRef
19.
go back to reference Alix-Panabières C, Pantel K. Challenges in circulating tumour cell research. Nat Rev Cancer. 2014;14:623–31.PubMedCrossRef Alix-Panabières C, Pantel K. Challenges in circulating tumour cell research. Nat Rev Cancer. 2014;14:623–31.PubMedCrossRef
20.
go back to reference Dai J, Su Y, Zhong S, Cong L, Liu B, Yang J, et al. Exosomes: key players in cancer and potential therapeutic strategy. Signal Transduct Target Ther. 2020;5:145.PubMedPubMedCentralCrossRef Dai J, Su Y, Zhong S, Cong L, Liu B, Yang J, et al. Exosomes: key players in cancer and potential therapeutic strategy. Signal Transduct Target Ther. 2020;5:145.PubMedPubMedCentralCrossRef
21.
go back to reference Merker JD, Oxnard GR, Compton C, Diehn M, Hurley P, Lazar AJ, et al. Circulating tumor DNA analysis in patients with cancer: American Society of Clinical Oncology and College of American Pathologists joint review. J Clin Oncol. 2018;36:1631–41.PubMedCrossRef Merker JD, Oxnard GR, Compton C, Diehn M, Hurley P, Lazar AJ, et al. Circulating tumor DNA analysis in patients with cancer: American Society of Clinical Oncology and College of American Pathologists joint review. J Clin Oncol. 2018;36:1631–41.PubMedCrossRef
22.
go back to reference Cree IA, Deans Z, Ligtenberg MJL, Normanno N, Edsjö A, Rouleau E, et al. Guidance for laboratories performing molecular pathology for cancer patients. J Clin Pathol. 2014;67:923–31.PubMedCrossRef Cree IA, Deans Z, Ligtenberg MJL, Normanno N, Edsjö A, Rouleau E, et al. Guidance for laboratories performing molecular pathology for cancer patients. J Clin Pathol. 2014;67:923–31.PubMedCrossRef
23.
go back to reference Wan JCM, Massie C, Garcia-Corbacho J, Mouliere F, Brenton JD, Caldas C, et al. Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat Rev Cancer. 2017;17:223–38.PubMedCrossRef Wan JCM, Massie C, Garcia-Corbacho J, Mouliere F, Brenton JD, Caldas C, et al. Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat Rev Cancer. 2017;17:223–38.PubMedCrossRef
24.
go back to reference Zhou J, Kulasinghe A, Bogseth A, O’Byrne K, Punyadeera C, Papautsky I. Isolation of circulating tumor cells in non-small-cell-lung-cancer patients using a multi-flow microfluidic channel. Microsyst Nanoeng. 2019;5:8.PubMedPubMedCentralCrossRef Zhou J, Kulasinghe A, Bogseth A, O’Byrne K, Punyadeera C, Papautsky I. Isolation of circulating tumor cells in non-small-cell-lung-cancer patients using a multi-flow microfluidic channel. Microsyst Nanoeng. 2019;5:8.PubMedPubMedCentralCrossRef
26.
go back to reference Sarioglu AF, Aceto N, Kojic N, Donaldson MC, Zeinali M, Hamza B, et al. A microfluidic device for label-free, physical capture of circulating tumor cell clusters. Nat Methods. 2015;12:685–91.PubMedPubMedCentralCrossRef Sarioglu AF, Aceto N, Kojic N, Donaldson MC, Zeinali M, Hamza B, et al. A microfluidic device for label-free, physical capture of circulating tumor cell clusters. Nat Methods. 2015;12:685–91.PubMedPubMedCentralCrossRef
27.
go back to reference Bronkhorst AJ, Ungerer V, Holdenrieder S. Early detection of cancer using circulating tumor DNA: biological, physiological and analytical considerations. Crit Rev Clin Lab Sci. 2019;57:253–69.PubMedCrossRef Bronkhorst AJ, Ungerer V, Holdenrieder S. Early detection of cancer using circulating tumor DNA: biological, physiological and analytical considerations. Crit Rev Clin Lab Sci. 2019;57:253–69.PubMedCrossRef
30.
go back to reference Walsh G. Post-translational modifications of protein biopharmaceuticals. Drug Discov Today. 2010;15:773–80.PubMedCrossRef Walsh G. Post-translational modifications of protein biopharmaceuticals. Drug Discov Today. 2010;15:773–80.PubMedCrossRef
31.
go back to reference Drake PM, Cho W, Li B, Prakobphol A, Johansen E, Anderson NL, et al. Sweetening the pot: adding glycosylation to the biomarker discovery equation. Clin Chem. 2010;56:223–36.PubMedCrossRef Drake PM, Cho W, Li B, Prakobphol A, Johansen E, Anderson NL, et al. Sweetening the pot: adding glycosylation to the biomarker discovery equation. Clin Chem. 2010;56:223–36.PubMedCrossRef
32.
go back to reference Trbojević-Akmačić I, Lageveen-Kammeijer GSM, Heijs B, Petrović T, Deriš H, Wuhrer M, et al. High-throughput glycomic methods. Chem Rev. 2022;122:15865–913.PubMedPubMedCentralCrossRef Trbojević-Akmačić I, Lageveen-Kammeijer GSM, Heijs B, Petrović T, Deriš H, Wuhrer M, et al. High-throughput glycomic methods. Chem Rev. 2022;122:15865–913.PubMedPubMedCentralCrossRef
33.
go back to reference Schwarz F, Aebi M. Mechanisms and principles of N-linked protein glycosylation. Curr Opin Struct Biol. 2011;21:576–82.PubMedCrossRef Schwarz F, Aebi M. Mechanisms and principles of N-linked protein glycosylation. Curr Opin Struct Biol. 2011;21:576–82.PubMedCrossRef
34.
go back to reference Schiel JE. Glycoprotein analysis using mass spectrometry: unraveling the layers of complexity. Anal Bioanal Chem. 2012;404:1141–9.PubMedCrossRef Schiel JE. Glycoprotein analysis using mass spectrometry: unraveling the layers of complexity. Anal Bioanal Chem. 2012;404:1141–9.PubMedCrossRef
35.
go back to reference Ruhaak LR, Xu G, Li Q, Goonatilleke E, Lebrilla CB. Mass spectrometry approaches to glycomic and glycoproteomic analyses. Chem Rev. 2018;118:7886–930.PubMedPubMedCentralCrossRef Ruhaak LR, Xu G, Li Q, Goonatilleke E, Lebrilla CB. Mass spectrometry approaches to glycomic and glycoproteomic analyses. Chem Rev. 2018;118:7886–930.PubMedPubMedCentralCrossRef
36.
go back to reference Levery SB, Steentoft C, Halim A, Narimatsu Y, Clausen H, Vakhrushev SY. Advances in mass spectrometry driven O-glycoproteomics. Biochim Biophys Acta. 2015;1850:33–42.PubMedCrossRef Levery SB, Steentoft C, Halim A, Narimatsu Y, Clausen H, Vakhrushev SY. Advances in mass spectrometry driven O-glycoproteomics. Biochim Biophys Acta. 2015;1850:33–42.PubMedCrossRef
37.
go back to reference Banazadeh A, Veillon L, Wooding KM, Zabet-Moghaddam M, Mechref Y. Recent advances in mass spectrometric analysis of glycoproteins. Electrophoresis. 2017;38:162–89.PubMedCrossRef Banazadeh A, Veillon L, Wooding KM, Zabet-Moghaddam M, Mechref Y. Recent advances in mass spectrometric analysis of glycoproteins. Electrophoresis. 2017;38:162–89.PubMedCrossRef
38.
go back to reference Tamara S, Franc V, Heck AJR. A wealth of genotype-specific proteoforms fine-tunes hemoglobin scavenging by haptoglobin. Proc Natl Acad Sci U S A. 2020;117:15554–64.PubMedPubMedCentralCrossRef Tamara S, Franc V, Heck AJR. A wealth of genotype-specific proteoforms fine-tunes hemoglobin scavenging by haptoglobin. Proc Natl Acad Sci U S A. 2020;117:15554–64.PubMedPubMedCentralCrossRef
39.
go back to reference Oh MJ, Lee SH, Kim U, An HJ. In-depth investigation of altered glycosylation in human haptoglobin associated cancer by mass spectrometry. Mass Spectrom Rev. 2023;42:496–518.PubMedCrossRef Oh MJ, Lee SH, Kim U, An HJ. In-depth investigation of altered glycosylation in human haptoglobin associated cancer by mass spectrometry. Mass Spectrom Rev. 2023;42:496–518.PubMedCrossRef
40.
go back to reference Fujimura T, Shinohara Y, Tissot B, Pang P-C, Kurogochi M, Saito S, et al. Glycosylation status of haptoglobin in sera of patients with prostate cancer vs. benign prostate disease or normal subjects. Int J Cancer. 2008;122:39–49.PubMedCrossRef Fujimura T, Shinohara Y, Tissot B, Pang P-C, Kurogochi M, Saito S, et al. Glycosylation status of haptoglobin in sera of patients with prostate cancer vs. benign prostate disease or normal subjects. Int J Cancer. 2008;122:39–49.PubMedCrossRef
41.
go back to reference Turner GA. Haptoglobin: a potential reporter molecule for glycosylation changes in disease. Adv Exp Med Biol. 1995;1995(376):231–8.CrossRef Turner GA. Haptoglobin: a potential reporter molecule for glycosylation changes in disease. Adv Exp Med Biol. 1995;1995(376):231–8.CrossRef
42.
43.
go back to reference Noda K, Miyoshi E, Uozumi N, Yanagidani S, Ikeda Y, Gao C, et al. Gene expression of alpha1-6 fucosyltransferase in human hepatoma tissues: a possible implication for increased fucosylation of alpha-fetoprotein. Hepatology. 1998;28:944–52.PubMedCrossRef Noda K, Miyoshi E, Uozumi N, Yanagidani S, Ikeda Y, Gao C, et al. Gene expression of alpha1-6 fucosyltransferase in human hepatoma tissues: a possible implication for increased fucosylation of alpha-fetoprotein. Hepatology. 1998;28:944–52.PubMedCrossRef
44.
go back to reference Liu Y-C, Yen H-Y, Chen C-Y, Chen C-H, Cheng P-F, Juan Y-H, et al. Sialylation and fucosylation of epidermal growth factor receptor suppress its dimerization and activation in lung cancer cells. Proc Natl Acad Sci U S A. 2011;108:11332–7.PubMedPubMedCentralCrossRef Liu Y-C, Yen H-Y, Chen C-Y, Chen C-H, Cheng P-F, Juan Y-H, et al. Sialylation and fucosylation of epidermal growth factor receptor suppress its dimerization and activation in lung cancer cells. Proc Natl Acad Sci U S A. 2011;108:11332–7.PubMedPubMedCentralCrossRef
45.
go back to reference Potapenko IO, Haakensen VD, Lüders T, Helland A, Bukholm I, Sørlie T, et al. Glycan gene expression signatures in normal and malignant breast tissue; possible role in diagnosis and progression. Mol Oncol. 2010;4:98–118.PubMedCrossRef Potapenko IO, Haakensen VD, Lüders T, Helland A, Bukholm I, Sørlie T, et al. Glycan gene expression signatures in normal and malignant breast tissue; possible role in diagnosis and progression. Mol Oncol. 2010;4:98–118.PubMedCrossRef
46.
go back to reference Hiraiwa N, Yabuta T, Yoritomi K, Hiraiwa M, Tanaka Y, Suzuki T, et al. Transactivation of the fucosyltransferase VII gene by human T-cell leukemia virus type 1 Tax through a variant cAMP-responsive element. Blood. 2003;101:3615–21.PubMedCrossRef Hiraiwa N, Yabuta T, Yoritomi K, Hiraiwa M, Tanaka Y, Suzuki T, et al. Transactivation of the fucosyltransferase VII gene by human T-cell leukemia virus type 1 Tax through a variant cAMP-responsive element. Blood. 2003;101:3615–21.PubMedCrossRef
47.
go back to reference Matsuura N, Narita T, Hiraiwa N, Hiraiwa M, Murai H, Iwase T, et al. Gene expression of fucosyl- and sialyl-transferases which synthesize sialyl Lewisx, the carbohydrate ligands for E-selectin, in human breast cancer. Int J Oncol. 1998;12:1157–64.PubMed Matsuura N, Narita T, Hiraiwa N, Hiraiwa M, Murai H, Iwase T, et al. Gene expression of fucosyl- and sialyl-transferases which synthesize sialyl Lewisx, the carbohydrate ligands for E-selectin, in human breast cancer. Int J Oncol. 1998;12:1157–64.PubMed
48.
go back to reference Holmes EH, Hakomori S, Ostrander GK. Synthesis of type 1 and 2 lacto series glycolipid antigens in human colonic adenocarcinoma and derived cell lines is due to activation of a normally unexpressed beta 1–3N-acetylglucosaminyltransferase. J Biol Chem. 1987;262:15649–58.PubMedCrossRef Holmes EH, Hakomori S, Ostrander GK. Synthesis of type 1 and 2 lacto series glycolipid antigens in human colonic adenocarcinoma and derived cell lines is due to activation of a normally unexpressed beta 1–3N-acetylglucosaminyltransferase. J Biol Chem. 1987;262:15649–58.PubMedCrossRef
49.
go back to reference Guo H, Nagy T, Pierce M. Post-translational glycoprotein modifications regulate colon cancer stem cells and colon adenoma progression in Apc(min/+) mice through altered Wnt receptor signaling. J Biol Chem. 2014;289:31534–49.PubMedPubMedCentralCrossRef Guo H, Nagy T, Pierce M. Post-translational glycoprotein modifications regulate colon cancer stem cells and colon adenoma progression in Apc(min/+) mice through altered Wnt receptor signaling. J Biol Chem. 2014;289:31534–49.PubMedPubMedCentralCrossRef
50.
go back to reference Yoshimura M, Nishikawa A, Ihara Y, Taniguchi S, Taniguchi N. Suppression of lung metastasis of B16 mouse melanoma by N-acetylglucosaminyltransferase III gene transfection. Proc Natl Acad Sci U S A. 1995;92:8754–8.PubMedPubMedCentralCrossRef Yoshimura M, Nishikawa A, Ihara Y, Taniguchi S, Taniguchi N. Suppression of lung metastasis of B16 mouse melanoma by N-acetylglucosaminyltransferase III gene transfection. Proc Natl Acad Sci U S A. 1995;92:8754–8.PubMedPubMedCentralCrossRef
51.
go back to reference Niu L, Geyer PE, Wewer Albrechtsen NJ, Gluud LL, Santos A, Doll S, et al. Plasma proteome profiling discovers novel proteins associated with non-alcoholic fatty liver disease. Mol Syst Biol. 2019;15:e8793.PubMedPubMedCentralCrossRef Niu L, Geyer PE, Wewer Albrechtsen NJ, Gluud LL, Santos A, Doll S, et al. Plasma proteome profiling discovers novel proteins associated with non-alcoholic fatty liver disease. Mol Syst Biol. 2019;15:e8793.PubMedPubMedCentralCrossRef
52.
go back to reference Wang G, Li J, Bojmar L, Chen H, Li Z, Tobias GC, et al. Tumour extracellular vesicles and particles induce liver metabolic dysfunction. Nature. 2023;618:374–82.PubMedPubMedCentralCrossRef Wang G, Li J, Bojmar L, Chen H, Li Z, Tobias GC, et al. Tumour extracellular vesicles and particles induce liver metabolic dysfunction. Nature. 2023;618:374–82.PubMedPubMedCentralCrossRef
53.
go back to reference Jiao Y, Xu P, Shi H, Chen D, Shi H. Advances on liver cell-derived exosomes in liver diseases. J Cell Mol Med. 2021;25:15–26.PubMedCrossRef Jiao Y, Xu P, Shi H, Chen D, Shi H. Advances on liver cell-derived exosomes in liver diseases. J Cell Mol Med. 2021;25:15–26.PubMedCrossRef
54.
go back to reference Zhu J, Wu J, Yin H, Marrero J, Lubman DM. Mass spectrometric N-glycan analysis of haptoglobin from patient serum samples using a 96-well plate format. J Proteome Res. 2015;14:4932–9.PubMedPubMedCentralCrossRef Zhu J, Wu J, Yin H, Marrero J, Lubman DM. Mass spectrometric N-glycan analysis of haptoglobin from patient serum samples using a 96-well plate format. J Proteome Res. 2015;14:4932–9.PubMedPubMedCentralCrossRef
56.
go back to reference Zhu J, Warner E, Parikh ND, Lubman DM. Glycoproteomic markers of hepatocellular carcinoma-mass spectrometry based approaches. Mass Spectrom Rev. 2019;38:265–90.PubMedCrossRef Zhu J, Warner E, Parikh ND, Lubman DM. Glycoproteomic markers of hepatocellular carcinoma-mass spectrometry based approaches. Mass Spectrom Rev. 2019;38:265–90.PubMedCrossRef
57.
go back to reference Čaval T, Lin Y-H, Varkila M, Reiding KR, Bonten MJM, Cremer OL, et al. Glycoproteoform profiles of individual patients’ plasma alpha-1-antichymotrypsin are unique and extensively remodeled following a septic episode. Front Immunol. 2020;11:608466.PubMedCrossRef Čaval T, Lin Y-H, Varkila M, Reiding KR, Bonten MJM, Cremer OL, et al. Glycoproteoform profiles of individual patients’ plasma alpha-1-antichymotrypsin are unique and extensively remodeled following a septic episode. Front Immunol. 2020;11:608466.PubMedCrossRef
58.
go back to reference Keser T, Tijardović M, Gornik I, Lukić E, Lauc G, Gornik O, et al. High-throughput and site-specific N-glycosylation analysis of human alpha-1-acid glycoprotein offers a great potential for new biomarker discovery. Mol Cell Proteomics. 2021;20:100044.PubMedPubMedCentralCrossRef Keser T, Tijardović M, Gornik I, Lukić E, Lauc G, Gornik O, et al. High-throughput and site-specific N-glycosylation analysis of human alpha-1-acid glycoprotein offers a great potential for new biomarker discovery. Mol Cell Proteomics. 2021;20:100044.PubMedPubMedCentralCrossRef
59.
go back to reference Virág D, Kremmer T, Lőrincz K, Kiss N, Jobbágy A, Bozsányi S, et al. Altered glycosylation of human alpha-1-acid glycoprotein as a biomarker for malignant melanoma. Molecules. 2021;26:6003.PubMedPubMedCentralCrossRef Virág D, Kremmer T, Lőrincz K, Kiss N, Jobbágy A, Bozsányi S, et al. Altered glycosylation of human alpha-1-acid glycoprotein as a biomarker for malignant melanoma. Molecules. 2021;26:6003.PubMedPubMedCentralCrossRef
60.
go back to reference Yokobori T, Yazawa S, Asao T, Nakazawa N, Mogi A, Sano R, et al. Fucosylated α1-acid glycoprotein as a biomarker to predict prognosis following tumor immunotherapy of patients with lung cancer. Sci Rep. 2019;9:14503.PubMedPubMedCentralCrossRef Yokobori T, Yazawa S, Asao T, Nakazawa N, Mogi A, Sano R, et al. Fucosylated α1-acid glycoprotein as a biomarker to predict prognosis following tumor immunotherapy of patients with lung cancer. Sci Rep. 2019;9:14503.PubMedPubMedCentralCrossRef
61.
go back to reference Yazawa S, Takahashi R, Yokobori T, Sano R, Mogi A, Saniabadi AR, et al. Fucosylated glycans in α1-acid glycoprotein for monitoring treatment outcomes and prognosis of cancer patients. PLoS ONE. 2016;11:e0156277.PubMedPubMedCentralCrossRef Yazawa S, Takahashi R, Yokobori T, Sano R, Mogi A, Saniabadi AR, et al. Fucosylated glycans in α1-acid glycoprotein for monitoring treatment outcomes and prognosis of cancer patients. PLoS ONE. 2016;11:e0156277.PubMedPubMedCentralCrossRef
62.
63.
go back to reference de Vroome SW, Holst S, Girondo MR, van der Burgt YEM, Mesker WE, Tollenaar RAEM, et al. Serum N-glycome alterations in colorectal cancer associate with survival. Oncotarget. 2018;9:30610–23.PubMedPubMedCentralCrossRef de Vroome SW, Holst S, Girondo MR, van der Burgt YEM, Mesker WE, Tollenaar RAEM, et al. Serum N-glycome alterations in colorectal cancer associate with survival. Oncotarget. 2018;9:30610–23.PubMedPubMedCentralCrossRef
64.
go back to reference Dotz V, Wuhrer M. N-glycome signatures in human plasma: associations with physiology and major diseases. FEBS Lett. 2019;593:2966–76.PubMedCrossRef Dotz V, Wuhrer M. N-glycome signatures in human plasma: associations with physiology and major diseases. FEBS Lett. 2019;593:2966–76.PubMedCrossRef
65.
go back to reference Pickering C, Aiyetan P, Xu G, Mitchell A, Rice R, Najjar YG, et al. Plasma glycoproteomic biomarkers identify metastatic melanoma patients with reduced clinical benefit from immune checkpoint inhibitor therapy. Front Immunol. 2023;14:1187332.PubMedPubMedCentralCrossRef Pickering C, Aiyetan P, Xu G, Mitchell A, Rice R, Najjar YG, et al. Plasma glycoproteomic biomarkers identify metastatic melanoma patients with reduced clinical benefit from immune checkpoint inhibitor therapy. Front Immunol. 2023;14:1187332.PubMedPubMedCentralCrossRef
66.
go back to reference Desai K, Gupta S, May FP, Xu G, Shaukat A, Hommes DW, et al. Early detection of advanced adenomas and colorectal carcinoma by serum glycoproteome profiling. Gastroenterology. 2024;166:194-197.e2.PubMedCrossRef Desai K, Gupta S, May FP, Xu G, Shaukat A, Hommes DW, et al. Early detection of advanced adenomas and colorectal carcinoma by serum glycoproteome profiling. Gastroenterology. 2024;166:194-197.e2.PubMedCrossRef
67.
go back to reference Chen M, Ren AH, Prassas I, Soosaipillai A, Lim B, Fraser DD, et al. Plasma protein profiling by proximity extension assay technology reveals novel biomarkers of traumatic brain injury—a pilot study. J Appl Lab Med. 2021;6:1165–78.PubMedCrossRef Chen M, Ren AH, Prassas I, Soosaipillai A, Lim B, Fraser DD, et al. Plasma protein profiling by proximity extension assay technology reveals novel biomarkers of traumatic brain injury—a pilot study. J Appl Lab Med. 2021;6:1165–78.PubMedCrossRef
68.
go back to reference Wik L, Nordberg N, Broberg J, Björkesten J, Assarsson E, Henriksson S, et al. Proximity extension assay in combination with next-generation sequencing for high-throughput proteome-wide analysis. Mol Cell Proteomics. 2021;20:100168.PubMedPubMedCentralCrossRef Wik L, Nordberg N, Broberg J, Björkesten J, Assarsson E, Henriksson S, et al. Proximity extension assay in combination with next-generation sequencing for high-throughput proteome-wide analysis. Mol Cell Proteomics. 2021;20:100168.PubMedPubMedCentralCrossRef
69.
go back to reference Pietzner M, Wheeler E, Carrasco-Zanini J, Kerrison ND, Oerton E, Koprulu M, et al. Synergistic insights into human health from aptamer- and antibody-based proteomic profiling. Nat Commun. 2021;12:6822.PubMedPubMedCentralCrossRef Pietzner M, Wheeler E, Carrasco-Zanini J, Kerrison ND, Oerton E, Koprulu M, et al. Synergistic insights into human health from aptamer- and antibody-based proteomic profiling. Nat Commun. 2021;12:6822.PubMedPubMedCentralCrossRef
70.
go back to reference Dwek MV, Jenks A, Leathem AJC. A sensitive assay to measure biomarker glycosylation demonstrates increased fucosylation of prostate specific antigen (PSA) in patients with prostate cancer compared with benign prostatic hyperplasia. Clin Chim Acta. 2010;411:1935–9.PubMedCrossRef Dwek MV, Jenks A, Leathem AJC. A sensitive assay to measure biomarker glycosylation demonstrates increased fucosylation of prostate specific antigen (PSA) in patients with prostate cancer compared with benign prostatic hyperplasia. Clin Chim Acta. 2010;411:1935–9.PubMedCrossRef
71.
go back to reference Bojar D, Meche L, Meng G, Eng W, Smith DF, Cummings RD, et al. A useful guide to lectin binding: machine-learning directed annotation of 57 unique lectin specificities. ACS Chem Biol. 2022;17:2993–3012.PubMedPubMedCentralCrossRef Bojar D, Meche L, Meng G, Eng W, Smith DF, Cummings RD, et al. A useful guide to lectin binding: machine-learning directed annotation of 57 unique lectin specificities. ACS Chem Biol. 2022;17:2993–3012.PubMedPubMedCentralCrossRef
72.
go back to reference De Leoz MLA, Duewer DL, Fung A, Liu L, Yau HK, Potter O, et al. NIST interlaboratory study on glycosylation analysis of monoclonal antibodies: comparison of results from diverse analytical methods. Mol Cell Proteomics. 2020;19:11–30.PubMedCrossRef De Leoz MLA, Duewer DL, Fung A, Liu L, Yau HK, Potter O, et al. NIST interlaboratory study on glycosylation analysis of monoclonal antibodies: comparison of results from diverse analytical methods. Mol Cell Proteomics. 2020;19:11–30.PubMedCrossRef
73.
74.
go back to reference Kailemia MJ, Park D, Lebrilla CB. Glycans and glycoproteins as specific biomarkers for cancer. Anal Bioanal Chem. 2017;409:395–410.PubMedCrossRef Kailemia MJ, Park D, Lebrilla CB. Glycans and glycoproteins as specific biomarkers for cancer. Anal Bioanal Chem. 2017;409:395–410.PubMedCrossRef
75.
go back to reference Melmer M, Stangler T, Premstaller A, Lindner W. Comparison of hydrophilic-interaction, reversed-phase and porous graphitic carbon chromatography for glycan analysis. J Chromatogr A. 2011;1218:118–23.PubMedCrossRef Melmer M, Stangler T, Premstaller A, Lindner W. Comparison of hydrophilic-interaction, reversed-phase and porous graphitic carbon chromatography for glycan analysis. J Chromatogr A. 2011;1218:118–23.PubMedCrossRef
76.
go back to reference Ruhaak LR, Deelder AM, Wuhrer M. Oligosaccharide analysis by graphitized carbon liquid chromatography-mass spectrometry. Anal Bioanal Chem. 2009;394:163–74.PubMedCrossRef Ruhaak LR, Deelder AM, Wuhrer M. Oligosaccharide analysis by graphitized carbon liquid chromatography-mass spectrometry. Anal Bioanal Chem. 2009;394:163–74.PubMedCrossRef
77.
go back to reference Zhang C, Ye Z, Xue P, Shu Q, Zhou Y, Ji Y, et al. Evaluation of different N-glycopeptide enrichment methods for N-glycosylation sites mapping in mouse brain. J Proteome Res. 2016;15:2960–8.PubMedCrossRef Zhang C, Ye Z, Xue P, Shu Q, Zhou Y, Ji Y, et al. Evaluation of different N-glycopeptide enrichment methods for N-glycosylation sites mapping in mouse brain. J Proteome Res. 2016;15:2960–8.PubMedCrossRef
78.
go back to reference Liu Z, Xu M, Zhang W, Miao X, Wang PG, Li S, et al. Recent development in hydrophilic interaction liquid chromatography stationary materials for glycopeptide analysis. Anal Methods. 2022;14:4437–48.PubMedCrossRef Liu Z, Xu M, Zhang W, Miao X, Wang PG, Li S, et al. Recent development in hydrophilic interaction liquid chromatography stationary materials for glycopeptide analysis. Anal Methods. 2022;14:4437–48.PubMedCrossRef
79.
go back to reference Balaguer E, Neusüss C. Glycoprotein characterization combining intact protein and glycan analysis by capillary electrophoresis-electrospray ionization-mass spectrometry. Anal Chem. 2006;78:5384–93.PubMedCrossRef Balaguer E, Neusüss C. Glycoprotein characterization combining intact protein and glycan analysis by capillary electrophoresis-electrospray ionization-mass spectrometry. Anal Chem. 2006;78:5384–93.PubMedCrossRef
80.
go back to reference Lingg N, Zhang P, Song Z, Bardor M. The sweet tooth of biopharmaceuticals: importance of recombinant protein glycosylation analysis. Biotechnol J. 2012;7:1462–72.PubMedCrossRef Lingg N, Zhang P, Song Z, Bardor M. The sweet tooth of biopharmaceuticals: importance of recombinant protein glycosylation analysis. Biotechnol J. 2012;7:1462–72.PubMedCrossRef
81.
82.
go back to reference Song E, Pyreddy S, Mechref Y. Quantification of glycopeptides by multiple reaction monitoring liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom. 2012;26:1941–54.PubMedPubMedCentralCrossRef Song E, Pyreddy S, Mechref Y. Quantification of glycopeptides by multiple reaction monitoring liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom. 2012;26:1941–54.PubMedPubMedCentralCrossRef
84.
go back to reference Varki A, Cummings R, Esko JD. Essentials of Glycobiology. 2022. Varki A, Cummings R, Esko JD. Essentials of Glycobiology. 2022.
85.
go back to reference Wohlgemuth J, Karas M, Eichhorn T, Hendriks R, Andrecht S. Quantitative site-specific analysis of protein glycosylation by LC-MS using different glycopeptide-enrichment strategies. Anal Biochem. 2009;395:178–88.PubMedCrossRef Wohlgemuth J, Karas M, Eichhorn T, Hendriks R, Andrecht S. Quantitative site-specific analysis of protein glycosylation by LC-MS using different glycopeptide-enrichment strategies. Anal Biochem. 2009;395:178–88.PubMedCrossRef
86.
go back to reference Goumenou A, Delaunay N, Pichon V. Recent advances in lectin-based affinity sorbents for protein glycosylation studies. Front Mol Biosci. 2021;8:746822.PubMedPubMedCentralCrossRef Goumenou A, Delaunay N, Pichon V. Recent advances in lectin-based affinity sorbents for protein glycosylation studies. Front Mol Biosci. 2021;8:746822.PubMedPubMedCentralCrossRef
87.
go back to reference Hong Q, Ruhaak LR, Stroble C, Parker E, Huang J, Maverakis E, et al. A method for comprehensive glycosite-mapping and direct quantitation of serum glycoproteins. J Proteome Res. 2015;14:5179–92.PubMedPubMedCentralCrossRef Hong Q, Ruhaak LR, Stroble C, Parker E, Huang J, Maverakis E, et al. A method for comprehensive glycosite-mapping and direct quantitation of serum glycoproteins. J Proteome Res. 2015;14:5179–92.PubMedPubMedCentralCrossRef
88.
go back to reference Ongay S, Boichenko A, Govorukhina N, Bischoff R. Glycopeptide enrichment and separation for protein glycosylation analysis. J Sep Sci. 2012;35:2341–72.PubMedCrossRef Ongay S, Boichenko A, Govorukhina N, Bischoff R. Glycopeptide enrichment and separation for protein glycosylation analysis. J Sep Sci. 2012;35:2341–72.PubMedCrossRef
89.
go back to reference Xue Y, Xie J, Fang P, Yao J, Yan G, Shen H, et al. Study on behaviors and performances of universal N-glycopeptide enrichment methods. Analyst. 2018;143:1870–80.PubMedCrossRef Xue Y, Xie J, Fang P, Yao J, Yan G, Shen H, et al. Study on behaviors and performances of universal N-glycopeptide enrichment methods. Analyst. 2018;143:1870–80.PubMedCrossRef
90.
go back to reference Huang Y, Nie Y, Boyes B, Orlando R. Resolving isomeric glycopeptide glycoforms with hydrophilic interaction chromatography (HILIC). J Biomol Tech. 2016;27:98–104.PubMedPubMedCentralCrossRef Huang Y, Nie Y, Boyes B, Orlando R. Resolving isomeric glycopeptide glycoforms with hydrophilic interaction chromatography (HILIC). J Biomol Tech. 2016;27:98–104.PubMedPubMedCentralCrossRef
91.
go back to reference Mookherjee A, Guttman M. Bridging the structural gap of glycoproteomics with ion mobility spectrometry. Curr Opin Chem Biol. 2018;42:86–92.PubMedCrossRef Mookherjee A, Guttman M. Bridging the structural gap of glycoproteomics with ion mobility spectrometry. Curr Opin Chem Biol. 2018;42:86–92.PubMedCrossRef
92.
go back to reference Makrydaki E, Kotidis P, Polizzi KM, Kontoravdi C. Hitting the sweet spot with capillary electrophoresis: advances in N-glycomics and glycoproteomics. Curr Opin Biotechnol. 2021;71:182–90.PubMedCrossRef Makrydaki E, Kotidis P, Polizzi KM, Kontoravdi C. Hitting the sweet spot with capillary electrophoresis: advances in N-glycomics and glycoproteomics. Curr Opin Biotechnol. 2021;71:182–90.PubMedCrossRef
93.
go back to reference Macklin A, Khan S, Kislinger T. Recent advances in mass spectrometry based clinical proteomics: applications to cancer research. Clin Proteomics. 2020;17:17.PubMedPubMedCentralCrossRef Macklin A, Khan S, Kislinger T. Recent advances in mass spectrometry based clinical proteomics: applications to cancer research. Clin Proteomics. 2020;17:17.PubMedPubMedCentralCrossRef
95.
go back to reference Miyamoto S, Stroble CD, Taylor S, Hong Q, Lebrilla CB, Leiserowitz GS, et al. Multiple reaction monitoring for the quantitation of serum protein glycosylation profiles: application to ovarian cancer. J Proteome Res. 2018;17:222–33.PubMedCrossRef Miyamoto S, Stroble CD, Taylor S, Hong Q, Lebrilla CB, Leiserowitz GS, et al. Multiple reaction monitoring for the quantitation of serum protein glycosylation profiles: application to ovarian cancer. J Proteome Res. 2018;17:222–33.PubMedCrossRef
96.
go back to reference Goossens N, Nakagawa S, Sun X, Hoshida Y. Cancer biomarker discovery and validation. Transl Cancer Res. 2015;4:256–69.PubMed Goossens N, Nakagawa S, Sun X, Hoshida Y. Cancer biomarker discovery and validation. Transl Cancer Res. 2015;4:256–69.PubMed
97.
go back to reference Kirwan A, Utratna M, O’Dwyer ME, Joshi L, Kilcoyne M. Glycosylation-based serum biomarkers for cancer diagnostics and prognostics. Biomed Res Int. 2015;2015:1–16.CrossRef Kirwan A, Utratna M, O’Dwyer ME, Joshi L, Kilcoyne M. Glycosylation-based serum biomarkers for cancer diagnostics and prognostics. Biomed Res Int. 2015;2015:1–16.CrossRef
98.
go back to reference Li F, Li C, Wang M, Webb GI, Zhang Y, Whisstock JC, et al. GlycoMine: a machine learning-based approach for predicting N-, C- and O-linked glycosylation in the human proteome. Bioinformatics. 2015;31:1411–9.PubMedCrossRef Li F, Li C, Wang M, Webb GI, Zhang Y, Whisstock JC, et al. GlycoMine: a machine learning-based approach for predicting N-, C- and O-linked glycosylation in the human proteome. Bioinformatics. 2015;31:1411–9.PubMedCrossRef
99.
go back to reference Sato T, Furukawa K, Greenwalt DE, Kobata A. Most bovine milk fat globule membrane glycoproteins contain asparagine-linked sugar chains with GalNAc beta 1–>4GlcNAc groups. J Biochem. 1993;114:890–900.PubMedCrossRef Sato T, Furukawa K, Greenwalt DE, Kobata A. Most bovine milk fat globule membrane glycoproteins contain asparagine-linked sugar chains with GalNAc beta 1–>4GlcNAc groups. J Biochem. 1993;114:890–900.PubMedCrossRef
100.
go back to reference FDA Center for Devices and Radiological Health. AFP-L3% Immunological Test Systems - Class II Special Controls Guidance Document for Industry and FDA Staff. 2005 Oct. FDA Center for Devices and Radiological Health. AFP-L3% Immunological Test Systems - Class II Special Controls Guidance Document for Industry and FDA Staff. 2005 Oct.
101.
go back to reference Kim H, Kim K, Jin J, Park J, Yu SJ, Yoon J-H, et al. Measurement of glycosylated alpha-fetoprotein improves diagnostic power over the native form in hepatocellular carcinoma. PLoS ONE. 2014;9:e110366.PubMedPubMedCentralCrossRef Kim H, Kim K, Jin J, Park J, Yu SJ, Yoon J-H, et al. Measurement of glycosylated alpha-fetoprotein improves diagnostic power over the native form in hepatocellular carcinoma. PLoS ONE. 2014;9:e110366.PubMedPubMedCentralCrossRef
102.
go back to reference Li D, Mallory T, Satomura S. AFP-L3: a new generation of tumor marker for hepatocellular carcinoma. Clin Chim Acta. 2001;313:15–9.PubMedCrossRef Li D, Mallory T, Satomura S. AFP-L3: a new generation of tumor marker for hepatocellular carcinoma. Clin Chim Acta. 2001;313:15–9.PubMedCrossRef
103.
go back to reference Choi J, Kim G, Han S, Lee W, Chun S, Lim Y. Longitudinal assessment of three serum biomarkers to detect very early-stage hepatocellular carcinoma. Hepatology. 2019;69:1983–94.PubMedCrossRef Choi J, Kim G, Han S, Lee W, Chun S, Lim Y. Longitudinal assessment of three serum biomarkers to detect very early-stage hepatocellular carcinoma. Hepatology. 2019;69:1983–94.PubMedCrossRef
104.
go back to reference Dunbar C, Kushnir MM, Yang YK. Glycosylation profiling of the neoplastic biomarker alpha fetoprotein through intact mass protein analysis. J Proteome Res. 2023;22:226–34.PubMedCrossRef Dunbar C, Kushnir MM, Yang YK. Glycosylation profiling of the neoplastic biomarker alpha fetoprotein through intact mass protein analysis. J Proteome Res. 2023;22:226–34.PubMedCrossRef
106.
go back to reference Valmu L, Alfthan H, Hotakainen K, Birken S, Stenman U-H. Site-specific glycan analysis of human chorionic gonadotropin beta-subunit from malignancies and pregnancy by liquid chromatography–electrospray mass spectrometry. Glycobiology. 2006;16:1207–18.PubMedCrossRef Valmu L, Alfthan H, Hotakainen K, Birken S, Stenman U-H. Site-specific glycan analysis of human chorionic gonadotropin beta-subunit from malignancies and pregnancy by liquid chromatography–electrospray mass spectrometry. Glycobiology. 2006;16:1207–18.PubMedCrossRef
107.
go back to reference Elliott MM, Kardana A, Lustbader JW, Cole LA. Carbohydrate and peptide structure of the alpha- and beta-subunits of human chorionic gonadotropin from normal and aberrant pregnancy and choriocarcinoma. Endocrine. 1997;7:15–32.PubMedCrossRef Elliott MM, Kardana A, Lustbader JW, Cole LA. Carbohydrate and peptide structure of the alpha- and beta-subunits of human chorionic gonadotropin from normal and aberrant pregnancy and choriocarcinoma. Endocrine. 1997;7:15–32.PubMedCrossRef
108.
go back to reference Terävä J, Tiainen L, Lamminmäki U, Kellokumpu-Lehtinen P-L, Pettersson K, Gidwani K. Lectin nanoparticle assays for detecting breast cancer-associated glycovariants of cancer antigen 15–3 (CA15-3) in human plasma. PLoS ONE. 2019;14:e0219480.PubMedPubMedCentralCrossRef Terävä J, Tiainen L, Lamminmäki U, Kellokumpu-Lehtinen P-L, Pettersson K, Gidwani K. Lectin nanoparticle assays for detecting breast cancer-associated glycovariants of cancer antigen 15–3 (CA15-3) in human plasma. PLoS ONE. 2019;14:e0219480.PubMedPubMedCentralCrossRef
109.
go back to reference Choi JW, Moon B-I, Lee JW, Kim HJ, Jin Y, Kim H-J. Use of CA15-3 for screening breast cancer: an antibody-lectin sandwich assay for detecting glycosylation of CA15-3 in sera. Oncol Rep. 2018;40:145–54.PubMedPubMedCentral Choi JW, Moon B-I, Lee JW, Kim HJ, Jin Y, Kim H-J. Use of CA15-3 for screening breast cancer: an antibody-lectin sandwich assay for detecting glycosylation of CA15-3 in sera. Oncol Rep. 2018;40:145–54.PubMedPubMedCentral
110.
go back to reference Chen W, Zhang Z, Zhang S, Zhu P, Ko JK-S, Yung KK-L. MUC1: structure, function, and clinic application in epithelial cancers. Int J Mol Sci. 2021;22:6567.PubMedPubMedCentralCrossRef Chen W, Zhang Z, Zhang S, Zhu P, Ko JK-S, Yung KK-L. MUC1: structure, function, and clinic application in epithelial cancers. Int J Mol Sci. 2021;22:6567.PubMedPubMedCentralCrossRef
111.
go back to reference Scarà S, Bottoni P, Scatena R. CA 19–9: biochemical and clinical aspects. Adv Exp Med Biol. 2015;867:247–60.PubMedCrossRef Scarà S, Bottoni P, Scatena R. CA 19–9: biochemical and clinical aspects. Adv Exp Med Biol. 2015;867:247–60.PubMedCrossRef
112.
113.
go back to reference Duffy MJ. CA 19–9 as a marker for gastrointestinal cancers: a review. Ann Clin Biochem. 1998;35(Pt 3):364–70.PubMedCrossRef Duffy MJ. CA 19–9 as a marker for gastrointestinal cancers: a review. Ann Clin Biochem. 1998;35(Pt 3):364–70.PubMedCrossRef
114.
go back to reference Bayoumy S, Hyytiä H, Leivo J, Talha SM, Huhtinen K, Poutanen M, et al. Glycovariant-based lateral flow immunoassay to detect ovarian cancer-associated serum CA125. Commun Biol. 2020;3:460.PubMedPubMedCentralCrossRef Bayoumy S, Hyytiä H, Leivo J, Talha SM, Huhtinen K, Poutanen M, et al. Glycovariant-based lateral flow immunoassay to detect ovarian cancer-associated serum CA125. Commun Biol. 2020;3:460.PubMedPubMedCentralCrossRef
115.
go back to reference Chen K, Gentry-Maharaj A, Burnell M, Steentoft C, Marcos-Silva L, Mandel U, et al. Microarray Glycoprofiling of CA125 improves differential diagnosis of ovarian cancer. J Proteome Res. 2013;12:1408–18.PubMedCrossRef Chen K, Gentry-Maharaj A, Burnell M, Steentoft C, Marcos-Silva L, Mandel U, et al. Microarray Glycoprofiling of CA125 improves differential diagnosis of ovarian cancer. J Proteome Res. 2013;12:1408–18.PubMedCrossRef
116.
go back to reference Akita K, Yoshida S, Ikehara Y, Shirakawa S, Toda M, Inoue M, et al. Different levels of sialyl-Tn antigen expressed on MUC16 in patients with endometriosis and ovarian cancer. Int J Gynecol Cancer. 2012;22:531–8.PubMedCrossRef Akita K, Yoshida S, Ikehara Y, Shirakawa S, Toda M, Inoue M, et al. Different levels of sialyl-Tn antigen expressed on MUC16 in patients with endometriosis and ovarian cancer. Int J Gynecol Cancer. 2012;22:531–8.PubMedCrossRef
117.
go back to reference Zhao Q, Zhan T, Deng Z, Li Q, Liu Y, Yang S, et al. Glycan analysis of colorectal cancer samples reveals stage-dependent changes in CEA glycosylation patterns. Clin Proteomics. 2018;15:9.PubMedPubMedCentralCrossRef Zhao Q, Zhan T, Deng Z, Li Q, Liu Y, Yang S, et al. Glycan analysis of colorectal cancer samples reveals stage-dependent changes in CEA glycosylation patterns. Clin Proteomics. 2018;15:9.PubMedPubMedCentralCrossRef
118.
go back to reference Pont L, Kuzyk V, Benavente F, Sanz-Nebot V, Mayboroda OA, Wuhrer M, et al. Site-specific N-linked glycosylation analysis of human carcinoembryonic antigen by sheathless capillary electrophoresis-tandem mass spectrometry. J Proteome Res. 2021;20:1666–75.PubMedPubMedCentralCrossRef Pont L, Kuzyk V, Benavente F, Sanz-Nebot V, Mayboroda OA, Wuhrer M, et al. Site-specific N-linked glycosylation analysis of human carcinoembryonic antigen by sheathless capillary electrophoresis-tandem mass spectrometry. J Proteome Res. 2021;20:1666–75.PubMedPubMedCentralCrossRef
119.
go back to reference Gebauer F, Wicklein D, Horst J, Sundermann P, Maar H, Streichert T, et al. Carcinoembryonic antigen-related cell adhesion molecules (CEACAM) 1, 5 and 6 as biomarkers in pancreatic cancer. PLoS ONE. 2014;9:e113023.PubMedPubMedCentralCrossRef Gebauer F, Wicklein D, Horst J, Sundermann P, Maar H, Streichert T, et al. Carcinoembryonic antigen-related cell adhesion molecules (CEACAM) 1, 5 and 6 as biomarkers in pancreatic cancer. PLoS ONE. 2014;9:e113023.PubMedPubMedCentralCrossRef
120.
go back to reference Zhang X, Han X, Zuo P, Zhang X, Xu H. CEACAM5 stimulates the progression of non-small-cell lung cancer by promoting cell proliferation and migration. J Int Med Res. 2020;48:300060520959478.PubMed Zhang X, Han X, Zuo P, Zhang X, Xu H. CEACAM5 stimulates the progression of non-small-cell lung cancer by promoting cell proliferation and migration. J Int Med Res. 2020;48:300060520959478.PubMed
121.
go back to reference Beauchemin N, Arabzadeh A. Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) in cancer progression and metastasis. Cancer Metastasis Rev. 2013;32:643–71.PubMedCrossRef Beauchemin N, Arabzadeh A. Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) in cancer progression and metastasis. Cancer Metastasis Rev. 2013;32:643–71.PubMedCrossRef
122.
go back to reference Hayes JH, Barry MJ. Screening for prostate cancer with the prostate-specific antigen test. JAMA. 2014;311:1143.PubMedCrossRef Hayes JH, Barry MJ. Screening for prostate cancer with the prostate-specific antigen test. JAMA. 2014;311:1143.PubMedCrossRef
123.
go back to reference Thompson IM. Operating characteristics of prostate-specific antigen in men with an initial PSA level of 3.0 ng/mL or lower. JAMA. 2005;294:66.PubMedCrossRef Thompson IM. Operating characteristics of prostate-specific antigen in men with an initial PSA level of 3.0 ng/mL or lower. JAMA. 2005;294:66.PubMedCrossRef
124.
go back to reference Gilgunn S, Conroy PJ, Saldova R, Rudd PM, O’Kennedy RJ. Aberrant PSA glycosylation—a sweet predictor of prostate cancer. Nat Rev Urol. 2013;10:99–107.PubMedCrossRef Gilgunn S, Conroy PJ, Saldova R, Rudd PM, O’Kennedy RJ. Aberrant PSA glycosylation—a sweet predictor of prostate cancer. Nat Rev Urol. 2013;10:99–107.PubMedCrossRef
125.
go back to reference Meany DL, Zhang Z, Sokoll LJ, Zhang H, Chan DW. Glycoproteomics for prostate cancer detection: changes in serum PSA glycosylation patterns. J Proteome Res. 2009;8:613–9.PubMedPubMedCentralCrossRef Meany DL, Zhang Z, Sokoll LJ, Zhang H, Chan DW. Glycoproteomics for prostate cancer detection: changes in serum PSA glycosylation patterns. J Proteome Res. 2009;8:613–9.PubMedPubMedCentralCrossRef
126.
go back to reference Peracaula R. Altered glycosylation pattern allows the distinction between prostate-specific antigen (PSA) from normal and tumor origins. Glycobiology. 2003;13:457–70.PubMedCrossRef Peracaula R. Altered glycosylation pattern allows the distinction between prostate-specific antigen (PSA) from normal and tumor origins. Glycobiology. 2003;13:457–70.PubMedCrossRef
127.
128.
go back to reference Wang C, Höti N, Lih T-SM, Sokoll LJ, Zhang R, Zhang Z, et al. Development of a glycoproteomic strategy to detect more aggressive prostate cancer using lectin-immunoassays for serum fucosylated PSA. Clin Proteomics. 2019;16:1–18.PubMedPubMedCentralCrossRef Wang C, Höti N, Lih T-SM, Sokoll LJ, Zhang R, Zhang Z, et al. Development of a glycoproteomic strategy to detect more aggressive prostate cancer using lectin-immunoassays for serum fucosylated PSA. Clin Proteomics. 2019;16:1–18.PubMedPubMedCentralCrossRef
129.
go back to reference Ferrer-Batallé M, Llop E, Ramírez M, Aleixandre R, Saez M, Comet J, et al. Comparative study of blood-based biomarkers, α2,3-sialic acid PSA and PHI, for high-risk prostate cancer detection. Int J Mol Sci. 2017;18:845.PubMedPubMedCentralCrossRef Ferrer-Batallé M, Llop E, Ramírez M, Aleixandre R, Saez M, Comet J, et al. Comparative study of blood-based biomarkers, α2,3-sialic acid PSA and PHI, for high-risk prostate cancer detection. Int J Mol Sci. 2017;18:845.PubMedPubMedCentralCrossRef
130.
go back to reference Ishikawa T, Yoneyama T, Tobisawa Y, Hatakeyama S, Kurosawa T, Nakamura K, et al. An automated micro-total immunoassay system for measuring cancer-associated α2,3-linked sialyl N-glycan-carrying prostate-specific antigen may improve the accuracy of prostate cancer diagnosis. Int J Mol Sci. 2017;18:470.PubMedPubMedCentralCrossRef Ishikawa T, Yoneyama T, Tobisawa Y, Hatakeyama S, Kurosawa T, Nakamura K, et al. An automated micro-total immunoassay system for measuring cancer-associated α2,3-linked sialyl N-glycan-carrying prostate-specific antigen may improve the accuracy of prostate cancer diagnosis. Int J Mol Sci. 2017;18:470.PubMedPubMedCentralCrossRef
131.
go back to reference Yoneyama T, Ohyama C, Hatakeyama S, Narita S, Habuchi T, Koie T, et al. Measurement of aberrant glycosylation of prostate specific antigen can improve specificity in early detection of prostate cancer. Biochem Biophys Res Commun. 2014;448:390–6.PubMedCrossRef Yoneyama T, Ohyama C, Hatakeyama S, Narita S, Habuchi T, Koie T, et al. Measurement of aberrant glycosylation of prostate specific antigen can improve specificity in early detection of prostate cancer. Biochem Biophys Res Commun. 2014;448:390–6.PubMedCrossRef
132.
go back to reference Kaya T, Kaneko T, Kojima S, Nakamura Y, Ide Y, Ishida K, et al. High-sensitivity immunoassay with surface plasmon field-enhanced fluorescence spectroscopy using a plastic sensor chip: application to quantitative analysis of total prostate-specific antigen and GalNAcβ1–4GlcNAc-linked prostate-specific antigen for prostate cancer diagnosis. Anal Chem. 2015;87:1797–803.PubMedCrossRef Kaya T, Kaneko T, Kojima S, Nakamura Y, Ide Y, Ishida K, et al. High-sensitivity immunoassay with surface plasmon field-enhanced fluorescence spectroscopy using a plastic sensor chip: application to quantitative analysis of total prostate-specific antigen and GalNAcβ1–4GlcNAc-linked prostate-specific antigen for prostate cancer diagnosis. Anal Chem. 2015;87:1797–803.PubMedCrossRef
133.
go back to reference Llop E, Ferrer-Batallé M, Barrabés S, Guerrero PE, Ramírez M, Saldova R, et al. Improvement of prostate cancer diagnosis by detecting PSA glycosylation-specific changes. Theranostics. 2016;6:1190–204.PubMedPubMedCentralCrossRef Llop E, Ferrer-Batallé M, Barrabés S, Guerrero PE, Ramírez M, Saldova R, et al. Improvement of prostate cancer diagnosis by detecting PSA glycosylation-specific changes. Theranostics. 2016;6:1190–204.PubMedPubMedCentralCrossRef
134.
go back to reference Fujita K, Hatano K, Tomiyama E, Hayashi Y, Matsushita M, Tsuchiya M, et al. Serum core-type fucosylated prostate-specific antigen index for the detection of high-risk prostate cancer. Int J Cancer. 2021;148:3111–8.PubMedCrossRef Fujita K, Hatano K, Tomiyama E, Hayashi Y, Matsushita M, Tsuchiya M, et al. Serum core-type fucosylated prostate-specific antigen index for the detection of high-risk prostate cancer. Int J Cancer. 2021;148:3111–8.PubMedCrossRef
135.
go back to reference Yoneyama T, Tobisawa Y, Kaneko T, Kaya T, Hatakeyama S, Mori K, et al. Clinical significance of the Lacdi <scp>NA</scp> c-glycosylated prostate-specific antigen assay for prostate cancer detection. Cancer Sci. 2019;110:2573–89.PubMedPubMedCentralCrossRef Yoneyama T, Tobisawa Y, Kaneko T, Kaya T, Hatakeyama S, Mori K, et al. Clinical significance of the Lacdi <scp>NA</scp> c-glycosylated prostate-specific antigen assay for prostate cancer detection. Cancer Sci. 2019;110:2573–89.PubMedPubMedCentralCrossRef
136.
go back to reference Leymarie N, Griffin PJ, Jonscher K, Kolarich D, Orlando R, McComb M, et al. Interlaboratory study on differential analysis of protein glycosylation by mass spectrometry: the ABRF glycoprotein research multi-institutional study 2012. Mol Cell Proteomics. 2013;12:2935–51.PubMedPubMedCentralCrossRef Leymarie N, Griffin PJ, Jonscher K, Kolarich D, Orlando R, McComb M, et al. Interlaboratory study on differential analysis of protein glycosylation by mass spectrometry: the ABRF glycoprotein research multi-institutional study 2012. Mol Cell Proteomics. 2013;12:2935–51.PubMedPubMedCentralCrossRef
137.
go back to reference Saeland E, Belo AI, Mongera S, van Die I, Meijer GA, van Kooyk Y. Differential glycosylation of MUC1 and CEACAM5 between normal mucosa and tumour tissue of colon cancer patients. Int J Cancer. 2012;131:117–28.PubMedCrossRef Saeland E, Belo AI, Mongera S, van Die I, Meijer GA, van Kooyk Y. Differential glycosylation of MUC1 and CEACAM5 between normal mucosa and tumour tissue of colon cancer patients. Int J Cancer. 2012;131:117–28.PubMedCrossRef
138.
go back to reference van Gisbergen KPJM, Aarnoudse CA, Meijer GA, Geijtenbeek TBH, van Kooyk Y. Dendritic cells recognize tumor-specific glycosylation of carcinoembryonic antigen on colorectal cancer cells through dendritic cell-specific intercellular adhesion molecule-3–grabbing nonintegrin. Cancer Res. 2005;65:5935–44.PubMedCrossRef van Gisbergen KPJM, Aarnoudse CA, Meijer GA, Geijtenbeek TBH, van Kooyk Y. Dendritic cells recognize tumor-specific glycosylation of carcinoembryonic antigen on colorectal cancer cells through dendritic cell-specific intercellular adhesion molecule-3–grabbing nonintegrin. Cancer Res. 2005;65:5935–44.PubMedCrossRef
140.
go back to reference Rangel-Angarita V, Malaker SA. Mucinomics as the Next Frontier of Mass Spectrometry. ACS Chem Biol. 2021;16:1866–83.PubMedCrossRef Rangel-Angarita V, Malaker SA. Mucinomics as the Next Frontier of Mass Spectrometry. ACS Chem Biol. 2021;16:1866–83.PubMedCrossRef
142.
go back to reference Malaker SA, Pedram K, Ferracane MJ, Bensing BA, Krishnan V, Pett C, et al. The mucin-selective protease StcE enables molecular and functional analysis of human cancer-associated mucins. Proc Natl Acad Sci. 2019;116:7278–87.PubMedPubMedCentralCrossRef Malaker SA, Pedram K, Ferracane MJ, Bensing BA, Krishnan V, Pett C, et al. The mucin-selective protease StcE enables molecular and functional analysis of human cancer-associated mucins. Proc Natl Acad Sci. 2019;116:7278–87.PubMedPubMedCentralCrossRef
143.
go back to reference Kletter D, Cao Z, Bern M, Haab B. Determining lectin specificity from glycan array data using motif segregation and glycosearch software. Curr Protoc Chem Biol. 2013;5:157–69.PubMedPubMedCentralCrossRef Kletter D, Cao Z, Bern M, Haab B. Determining lectin specificity from glycan array data using motif segregation and glycosearch software. Curr Protoc Chem Biol. 2013;5:157–69.PubMedPubMedCentralCrossRef
144.
go back to reference Kim H, Park S, Jeong IG, Song SH, Jeong Y, Kim C-S, et al. Noninvasive precision screening of prostate cancer by urinary multimarker sensor and artificial intelligence analysis. ACS Nano. 2021;15:4054–65.PubMedCrossRef Kim H, Park S, Jeong IG, Song SH, Jeong Y, Kim C-S, et al. Noninvasive precision screening of prostate cancer by urinary multimarker sensor and artificial intelligence analysis. ACS Nano. 2021;15:4054–65.PubMedCrossRef
145.
go back to reference Yurkovetsky Z, Skates S, Lomakin A, Nolen B, Pulsipher T, Modugno F, et al. Development of a multimarker assay for early detection of ovarian cancer. J Clin Oncol. 2010;28:2159–66.PubMedPubMedCentralCrossRef Yurkovetsky Z, Skates S, Lomakin A, Nolen B, Pulsipher T, Modugno F, et al. Development of a multimarker assay for early detection of ovarian cancer. J Clin Oncol. 2010;28:2159–66.PubMedPubMedCentralCrossRef
146.
go back to reference Füzéry AK, Levin J, Chan MM, Chan DW. Translation of proteomic biomarkers into FDA approved cancer diagnostics: issues and challenges. Clin Proteomics. 2013;10:13.PubMedPubMedCentralCrossRef Füzéry AK, Levin J, Chan MM, Chan DW. Translation of proteomic biomarkers into FDA approved cancer diagnostics: issues and challenges. Clin Proteomics. 2013;10:13.PubMedPubMedCentralCrossRef
147.
148.
149.
go back to reference Yin H, Zhu J. Methods for quantification of glycopeptides by liquid separation and mass spectrometry. Mass Spectrom Rev. 2023;42:887–917.PubMedCrossRef Yin H, Zhu J. Methods for quantification of glycopeptides by liquid separation and mass spectrometry. Mass Spectrom Rev. 2023;42:887–917.PubMedCrossRef
150.
go back to reference Hong Q, Lebrilla CB, Miyamoto S, Ruhaak LR. Absolute quantitation of immunoglobulin g and its glycoforms using multiple reaction monitoring. Anal Chem. 2013;85:8585–93.PubMedCrossRef Hong Q, Lebrilla CB, Miyamoto S, Ruhaak LR. Absolute quantitation of immunoglobulin g and its glycoforms using multiple reaction monitoring. Anal Chem. 2013;85:8585–93.PubMedCrossRef
151.
go back to reference Krishnan S, Shimoda M, Sacchi R, Kailemia MJ, Luxardi G, Kaysen GA, et al. HDL glycoprotein composition and site-specific glycosylation differentiates between clinical groups and affects IL-6 secretion in lipopolysaccharide-stimulated monocytes. Sci Rep. 2017;7:43728.PubMedPubMedCentralCrossRef Krishnan S, Shimoda M, Sacchi R, Kailemia MJ, Luxardi G, Kaysen GA, et al. HDL glycoprotein composition and site-specific glycosylation differentiates between clinical groups and affects IL-6 secretion in lipopolysaccharide-stimulated monocytes. Sci Rep. 2017;7:43728.PubMedPubMedCentralCrossRef
152.
go back to reference Ruhaak LR, Kim K, Stroble C, Taylor SL, Hong Q, Miyamoto S, et al. Protein-specific differential glycosylation of immunoglobulins in serum of ovarian cancer patients. J Proteome Res. 2016;15:1002–10.PubMedPubMedCentralCrossRef Ruhaak LR, Kim K, Stroble C, Taylor SL, Hong Q, Miyamoto S, et al. Protein-specific differential glycosylation of immunoglobulins in serum of ovarian cancer patients. J Proteome Res. 2016;15:1002–10.PubMedPubMedCentralCrossRef
153.
go back to reference Ruhaak LR, Barkauskas DA, Torres J, Cooke CL, Wu LD, Stroble C, et al. The serum immunoglobulin G glycosylation signature of gastric cancer. EuPA Open Proteom. 2015;6:1–9.PubMedCrossRef Ruhaak LR, Barkauskas DA, Torres J, Cooke CL, Wu LD, Stroble C, et al. The serum immunoglobulin G glycosylation signature of gastric cancer. EuPA Open Proteom. 2015;6:1–9.PubMedCrossRef
154.
go back to reference Darebna P, Novak P, Kucera R, Topolcan O, Sanda M, Goldman R, et al. Changes in the expression of N- and O-glycopeptides in patients with colorectal cancer and hepatocellular carcinoma quantified by full-MS scan FT-ICR and multiple reaction monitoring. J Proteomics. 2017;153:44–52.PubMedCrossRef Darebna P, Novak P, Kucera R, Topolcan O, Sanda M, Goldman R, et al. Changes in the expression of N- and O-glycopeptides in patients with colorectal cancer and hepatocellular carcinoma quantified by full-MS scan FT-ICR and multiple reaction monitoring. J Proteomics. 2017;153:44–52.PubMedCrossRef
155.
go back to reference Li Q, Kailemia MJ, Merleev AA, Xu G, Serie D, Danan LM, et al. Site-specific glycosylation quantitation of 50 serum glycoproteins enhanced by predictive glycopeptidomics for improved disease biomarker discovery. Anal Chem. 2019;91:5433–45.PubMedCrossRef Li Q, Kailemia MJ, Merleev AA, Xu G, Serie D, Danan LM, et al. Site-specific glycosylation quantitation of 50 serum glycoproteins enhanced by predictive glycopeptidomics for improved disease biomarker discovery. Anal Chem. 2019;91:5433–45.PubMedCrossRef
156.
go back to reference Ramachandran P, Xu G, Huang HH, Rice R, Zhou B, Lindpaintner K, et al. Serum glycoprotein markers in nonalcoholic steatohepatitis and hepatocellular carcinoma. J Proteome Res. 2022;21:1083–94.PubMedPubMedCentralCrossRef Ramachandran P, Xu G, Huang HH, Rice R, Zhou B, Lindpaintner K, et al. Serum glycoprotein markers in nonalcoholic steatohepatitis and hepatocellular carcinoma. J Proteome Res. 2022;21:1083–94.PubMedPubMedCentralCrossRef
157.
go back to reference Wu Z, Serie D, Xu G, Zou J. PB-Net: Automatic peak integration by sequential deep learning for multiple reaction monitoring. J Proteomics. 2020;223:103820.PubMedCrossRef Wu Z, Serie D, Xu G, Zou J. PB-Net: Automatic peak integration by sequential deep learning for multiple reaction monitoring. J Proteomics. 2020;223:103820.PubMedCrossRef
158.
go back to reference Pickering C, Zhou B, Xu G, Rice R, Ramachandran P, Huang H, et al. Differential peripheral blood glycoprotein profiles in symptomatic and asymptomatic COVID-19. Viruses. 2022;14:553.PubMedPubMedCentralCrossRef Pickering C, Zhou B, Xu G, Rice R, Ramachandran P, Huang H, et al. Differential peripheral blood glycoprotein profiles in symptomatic and asymptomatic COVID-19. Viruses. 2022;14:553.PubMedPubMedCentralCrossRef
160.
go back to reference Chandrasekar D, Guerrier C, Alisson-Silva F, Dhar C, Caval T, Schwarz F, et al. Warning signs from the crypt: aberrant protein glycosylation marks opportunities for early colorectal cancer detection. Clin Transl Gastroenterol. 2023;14:e00592.PubMedPubMedCentralCrossRef Chandrasekar D, Guerrier C, Alisson-Silva F, Dhar C, Caval T, Schwarz F, et al. Warning signs from the crypt: aberrant protein glycosylation marks opportunities for early colorectal cancer detection. Clin Transl Gastroenterol. 2023;14:e00592.PubMedPubMedCentralCrossRef
161.
go back to reference Qiu Y, Patwa TH, Xu L, Shedden K, Misek DE, Tuck M, et al. Plasma glycoprotein profiling for colorectal cancer biomarker identification by lectin glycoarray and lectin blot. J Proteome Res. 2008;7:1693–703.PubMedPubMedCentralCrossRef Qiu Y, Patwa TH, Xu L, Shedden K, Misek DE, Tuck M, et al. Plasma glycoprotein profiling for colorectal cancer biomarker identification by lectin glycoarray and lectin blot. J Proteome Res. 2008;7:1693–703.PubMedPubMedCentralCrossRef
162.
go back to reference Pan Y, Zhang L, Zhang R, Han J, Qin W, Gu Y, et al. Screening and diagnosis of colorectal cancer and advanced adenoma by Bionic Glycome method and machine learning. Am J Cancer Res. 2021;11:3002–20.PubMedPubMedCentral Pan Y, Zhang L, Zhang R, Han J, Qin W, Gu Y, et al. Screening and diagnosis of colorectal cancer and advanced adenoma by Bionic Glycome method and machine learning. Am J Cancer Res. 2021;11:3002–20.PubMedPubMedCentral
163.
go back to reference Gu Y, Duan B, Sha J, Zhang R, Fan J, Xu X, et al. Serum IgG N-glycans enable early detection and early relapse prediction of colorectal cancer. Int J Cancer. 2023;152:536–47.PubMedCrossRef Gu Y, Duan B, Sha J, Zhang R, Fan J, Xu X, et al. Serum IgG N-glycans enable early detection and early relapse prediction of colorectal cancer. Int J Cancer. 2023;152:536–47.PubMedCrossRef
164.
go back to reference Takei D, Harada K, Nouso K, Miyahara K, Dohi C, Matsushita H, et al. Clinical utility of a serum glycome analysis in patients with colorectal cancer. J Gastroenterol Hepatol. 2022;37:727–33.PubMedCrossRef Takei D, Harada K, Nouso K, Miyahara K, Dohi C, Matsushita H, et al. Clinical utility of a serum glycome analysis in patients with colorectal cancer. J Gastroenterol Hepatol. 2022;37:727–33.PubMedCrossRef
165.
go back to reference Barrow H, Guo X, Wandall HH, Pedersen JW, Fu B, Zhao Q, et al. Serum galectin-2, -4, and -8 are greatly increased in colon and breast cancer patients and promote cancer cell adhesion to blood vascular endothelium. Clin Cancer Res. 2011;17:7035–46.PubMedCrossRef Barrow H, Guo X, Wandall HH, Pedersen JW, Fu B, Zhao Q, et al. Serum galectin-2, -4, and -8 are greatly increased in colon and breast cancer patients and promote cancer cell adhesion to blood vascular endothelium. Clin Cancer Res. 2011;17:7035–46.PubMedCrossRef
166.
go back to reference Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer Statistics, 2023. CA Cancer J Clin. 2023;73:17–48.PubMedCrossRef Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer Statistics, 2023. CA Cancer J Clin. 2023;73:17–48.PubMedCrossRef
167.
go back to reference Mulshine JL, D’Amico TA. Issues with implementing a high-quality lung cancer screening program. CA Cancer J Clin. 2014;64:352–63.PubMedCrossRef Mulshine JL, D’Amico TA. Issues with implementing a high-quality lung cancer screening program. CA Cancer J Clin. 2014;64:352–63.PubMedCrossRef
168.
go back to reference Zeng X, Hood BL, Sun M, Conrads TP, Day RS, Weissfeld JL, et al. Lung cancer serum biomarker discovery using glycoprotein capture and liquid chromatography mass spectrometry. J Proteome Res. 2010;9:6440–9.PubMedPubMedCentralCrossRef Zeng X, Hood BL, Sun M, Conrads TP, Day RS, Weissfeld JL, et al. Lung cancer serum biomarker discovery using glycoprotein capture and liquid chromatography mass spectrometry. J Proteome Res. 2010;9:6440–9.PubMedPubMedCentralCrossRef
169.
go back to reference Heo S-H, Lee S-J, Ryoo H-M, Park J-Y, Cho J-Y. Identification of putative serum glycoprotein biomarkers for human lung adenocarcinoma by multilectin affinity chromatography and LC-MS/MS. Proteomics. 2007;7:4292–302.PubMedCrossRef Heo S-H, Lee S-J, Ryoo H-M, Park J-Y, Cho J-Y. Identification of putative serum glycoprotein biomarkers for human lung adenocarcinoma by multilectin affinity chromatography and LC-MS/MS. Proteomics. 2007;7:4292–302.PubMedCrossRef
170.
go back to reference Arnold JN, Saldova R, Galligan MC, Murphy TB, Mimura-Kimura Y, Telford JE, et al. Novel glycan biomarkers for the detection of lung cancer. J Proteome Res. 2011;10:1755–64.PubMedCrossRef Arnold JN, Saldova R, Galligan MC, Murphy TB, Mimura-Kimura Y, Telford JE, et al. Novel glycan biomarkers for the detection of lung cancer. J Proteome Res. 2011;10:1755–64.PubMedCrossRef
171.
go back to reference Vasseur JA, Goetz JA, Alley WR, Novotny MV. Smoking and lung cancer-induced changes in N-glycosylation of blood serum proteins. Glycobiology. 2012;22:1684–708.PubMedPubMedCentralCrossRef Vasseur JA, Goetz JA, Alley WR, Novotny MV. Smoking and lung cancer-induced changes in N-glycosylation of blood serum proteins. Glycobiology. 2012;22:1684–708.PubMedPubMedCentralCrossRef
172.
go back to reference Fang K, Long Q, Liao Z, Zhang C, Jiang Z. Glycoproteomics revealed novel N-glycosylation biomarkers for early diagnosis of lung adenocarcinoma cancers. Clin Proteomics. 2022;19:43.PubMedPubMedCentralCrossRef Fang K, Long Q, Liao Z, Zhang C, Jiang Z. Glycoproteomics revealed novel N-glycosylation biomarkers for early diagnosis of lung adenocarcinoma cancers. Clin Proteomics. 2022;19:43.PubMedPubMedCentralCrossRef
173.
go back to reference Ahn J-M, Sung H-J, Yoon Y-H, Kim B-G, Yang WS, Lee C, et al. Integrated glycoproteomics demonstrates fucosylated serum paraoxonase 1 alterations in small cell lung cancer. Mol Cell Proteomics. 2014;13:30–48.PubMedCrossRef Ahn J-M, Sung H-J, Yoon Y-H, Kim B-G, Yang WS, Lee C, et al. Integrated glycoproteomics demonstrates fucosylated serum paraoxonase 1 alterations in small cell lung cancer. Mol Cell Proteomics. 2014;13:30–48.PubMedCrossRef
174.
go back to reference Mitchell A, Pickering C, Xu G, Rice R, Castellanos A, Bhadra R, et al. Glycoproteomics as a powerful liquid biopsy-based screening tool for non-small cell lung cancer. J Clin Oncol. 2022;40:e21148–e21148.CrossRef Mitchell A, Pickering C, Xu G, Rice R, Castellanos A, Bhadra R, et al. Glycoproteomics as a powerful liquid biopsy-based screening tool for non-small cell lung cancer. J Clin Oncol. 2022;40:e21148–e21148.CrossRef
175.
go back to reference Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global Cancer Statistics, 2012. CA Cancer J Clin. 2015;65:87–108.PubMedCrossRef Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global Cancer Statistics, 2012. CA Cancer J Clin. 2015;65:87–108.PubMedCrossRef
177.
178.
go back to reference Dochez V, Caillon H, Vaucel E, Dimet J, Winer N, Ducarme G. Biomarkers and algorithms for diagnosis of ovarian cancer: CA125, HE4, RMI and ROMA, a review. J Ovarian Res. 2019;12:28.PubMedPubMedCentralCrossRef Dochez V, Caillon H, Vaucel E, Dimet J, Winer N, Ducarme G. Biomarkers and algorithms for diagnosis of ovarian cancer: CA125, HE4, RMI and ROMA, a review. J Ovarian Res. 2019;12:28.PubMedPubMedCentralCrossRef
179.
go back to reference Ankenbauer KE, Rao TC, Mattheyses AL, Bellis SL. Sialylation of EGFR by ST6GAL1 induces receptor activation and modulates trafficking dynamics. J Biol Chem. 2023;299:105217.PubMedPubMedCentralCrossRef Ankenbauer KE, Rao TC, Mattheyses AL, Bellis SL. Sialylation of EGFR by ST6GAL1 induces receptor activation and modulates trafficking dynamics. J Biol Chem. 2023;299:105217.PubMedPubMedCentralCrossRef
180.
go back to reference Dorsett KA, Jones RB, Ankenbauer KE, Hjelmeland AB, Bellis SL. Sox2 promotes expression of the ST6Gal-I glycosyltransferase in ovarian cancer cells. J Ovarian Res. 2019;12:93.PubMedPubMedCentralCrossRef Dorsett KA, Jones RB, Ankenbauer KE, Hjelmeland AB, Bellis SL. Sox2 promotes expression of the ST6Gal-I glycosyltransferase in ovarian cancer cells. J Ovarian Res. 2019;12:93.PubMedPubMedCentralCrossRef
181.
go back to reference Schultz MJ, Holdbrooks AT, Chakraborty A, Grizzle WE, Landen CN, Buchsbaum DJ, et al. The tumor-associated glycosyltransferase ST6GaL-I regulates stem cell transcription factors and confers a cancer stem cell phenotype. Cancer Res. 2016;76:3978–88.PubMedPubMedCentralCrossRef Schultz MJ, Holdbrooks AT, Chakraborty A, Grizzle WE, Landen CN, Buchsbaum DJ, et al. The tumor-associated glycosyltransferase ST6GaL-I regulates stem cell transcription factors and confers a cancer stem cell phenotype. Cancer Res. 2016;76:3978–88.PubMedPubMedCentralCrossRef
182.
go back to reference O’Flaherty R, Muniyappa M, Walsh I, Stöckmann H, Hilliard M, Hutson R, et al. A robust and versatile automated glycoanalytical technology for serum antibodies and acute phase proteins: ovarian cancer case study. Mol Cell Proteomics. 2019;18:2191–206.PubMedPubMedCentralCrossRef O’Flaherty R, Muniyappa M, Walsh I, Stöckmann H, Hilliard M, Hutson R, et al. A robust and versatile automated glycoanalytical technology for serum antibodies and acute phase proteins: ovarian cancer case study. Mol Cell Proteomics. 2019;18:2191–206.PubMedPubMedCentralCrossRef
183.
go back to reference Pan J, Hu Y, Sun S, Chen L, Schnaubelt M, Clark D, et al. Glycoproteomics-based signatures for tumor subtyping and clinical outcome prediction of high-grade serous ovarian cancer. Nat Commun. 2020;11:6139.PubMedPubMedCentralCrossRef Pan J, Hu Y, Sun S, Chen L, Schnaubelt M, Clark D, et al. Glycoproteomics-based signatures for tumor subtyping and clinical outcome prediction of high-grade serous ovarian cancer. Nat Commun. 2020;11:6139.PubMedPubMedCentralCrossRef
184.
go back to reference Hu Y, Pan J, Shah P, Ao M, Thomas SN, Liu Y, et al. Integrated proteomic and glycoproteomic characterization of human high-grade serous ovarian carcinoma. Cell Rep. 2020;33:108276.PubMedPubMedCentralCrossRef Hu Y, Pan J, Shah P, Ao M, Thomas SN, Liu Y, et al. Integrated proteomic and glycoproteomic characterization of human high-grade serous ovarian carcinoma. Cell Rep. 2020;33:108276.PubMedPubMedCentralCrossRef
185.
go back to reference Serie D, Moser K, Pickering C, Aiyetan P, Xu G, Rice R, et al. Liquid-biopsy-derived glycoproteomic profiling as a novel means for noninvasive diagnosis of ovarian cancer. J Clin Oncol. 2022;40:e17604–e17604.CrossRef Serie D, Moser K, Pickering C, Aiyetan P, Xu G, Rice R, et al. Liquid-biopsy-derived glycoproteomic profiling as a novel means for noninvasive diagnosis of ovarian cancer. J Clin Oncol. 2022;40:e17604–e17604.CrossRef
186.
go back to reference Lindpaintner K, Pickering C, Mitchell A, Xu G, Cong X, Serie D. Abstract 5314: A peripheral blood-based glycoproteomic predictor of checkpoint inhibitor treatment benefit in advanced non-small cell lung cancer. Cancer Res. 2023;83:5314–5314.CrossRef Lindpaintner K, Pickering C, Mitchell A, Xu G, Cong X, Serie D. Abstract 5314: A peripheral blood-based glycoproteomic predictor of checkpoint inhibitor treatment benefit in advanced non-small cell lung cancer. Cancer Res. 2023;83:5314–5314.CrossRef
187.
go back to reference Lindpaintner K, Srinivasan A, Mitchell A, Dixit A, Xu G, Cong X, et al. 158 A novel, highly accurate liquid biopsy-based glycoproteomic predictor of checkpoint inhibitor treatment benefit in advanced non-small cell lung cancer. Regular and Young Investigator Award Abstracts. BMJ Publishing Group Ltd; 2022. p. A171–A171. Lindpaintner K, Srinivasan A, Mitchell A, Dixit A, Xu G, Cong X, et al. 158 A novel, highly accurate liquid biopsy-based glycoproteomic predictor of checkpoint inhibitor treatment benefit in advanced non-small cell lung cancer. Regular and Young Investigator Award Abstracts. BMJ Publishing Group Ltd; 2022. p. A171–A171.
188.
go back to reference Lindpaintner K, Cheng M, Prendergast J, Normington K, Wong M, Xu G, et al. 30 Blood-based glycoprotein signatures in advanced non-small-cell lung carcinoma (NSCLC) receiving first-line immune checkpoint blockade. J Immunother Cancer. 2021;9:A35–A35.CrossRef Lindpaintner K, Cheng M, Prendergast J, Normington K, Wong M, Xu G, et al. 30 Blood-based glycoprotein signatures in advanced non-small-cell lung carcinoma (NSCLC) receiving first-line immune checkpoint blockade. J Immunother Cancer. 2021;9:A35–A35.CrossRef
189.
go back to reference Wang Y-N, Lee H-H, Hsu JL, Yu D, Hung M-C. The impact of PD-L1 N-linked glycosylation on cancer therapy and clinical diagnosis. J Biomed Sci. 2020;27:77.PubMedPubMedCentralCrossRef Wang Y-N, Lee H-H, Hsu JL, Yu D, Hung M-C. The impact of PD-L1 N-linked glycosylation on cancer therapy and clinical diagnosis. J Biomed Sci. 2020;27:77.PubMedPubMedCentralCrossRef
190.
go back to reference Lee H-H, Wang Y-N, Xia W, Chen C-H, Rau K-M, Ye L, et al. Removal of N-linked glycosylation enhances PD-L1 detection and predicts anti-PD-1/PD-L1 therapeutic efficacy. Cancer Cell. 2019;36:168–78.PubMedPubMedCentralCrossRef Lee H-H, Wang Y-N, Xia W, Chen C-H, Rau K-M, Ye L, et al. Removal of N-linked glycosylation enhances PD-L1 detection and predicts anti-PD-1/PD-L1 therapeutic efficacy. Cancer Cell. 2019;36:168–78.PubMedPubMedCentralCrossRef
191.
go back to reference Li C-W, Lim S-O, Xia W, Lee H-H, Chan L-C, Kuo C-W, et al. Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity. Nat Commun. 2016;7:12632.PubMedPubMedCentralCrossRef Li C-W, Lim S-O, Xia W, Lee H-H, Chan L-C, Kuo C-W, et al. Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity. Nat Commun. 2016;7:12632.PubMedPubMedCentralCrossRef
192.
go back to reference Li C-W, Lim S-O, Chung EM, Kim Y-S, Park AH, Yao J, et al. Eradication of triple-negative breast cancer cells by targeting glycosylated PD-L1. Cancer Cell. 2018;33:187–201.PubMedPubMedCentralCrossRef Li C-W, Lim S-O, Chung EM, Kim Y-S, Park AH, Yao J, et al. Eradication of triple-negative breast cancer cells by targeting glycosylated PD-L1. Cancer Cell. 2018;33:187–201.PubMedPubMedCentralCrossRef
Metadata
Title
Decoding the glycoproteome: a new frontier for biomarker discovery in cancer
Authors
Kai He
Maryam Baniasad
Hyunwoo Kwon
Tomislav Caval
Gege Xu
Carlito Lebrilla
Daniel W. Hommes
Carolyn Bertozzi
Publication date
01-12-2024
Publisher
BioMed Central
Keyword
Biomarkers
Published in
Journal of Hematology & Oncology / Issue 1/2024
Electronic ISSN: 1756-8722
DOI
https://doi.org/10.1186/s13045-024-01532-x

Other articles of this Issue 1/2024

Journal of Hematology & Oncology 1/2024 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine