Skip to main content
Top
Published in: BMC Cancer 1/2023

Open Access 01-12-2023 | Biomarkers | Study Protocol

Dynamic profiling of immune microenvironment during anti-PD-1 immunotherapy for head and neck squamous cell carcinoma: the IPRICE study

Authors: Carinato Hélène, Ombline Conrad, Carole Pflumio, Christian Borel, Manon Voegelin, Alexandre Bernard, Philippe Schultz, Mihaela-Alina Onea, Alain Jung, Sophie Martin, Mickaël Burgy

Published in: BMC Cancer | Issue 1/2023

Login to get access

Abstract

Background

Immune checkpoint inhibitors of programmed cell death protein 1 (PD-1) represent a significant breakthrough in treating head and neck squamous cell carcinoma (HNSCC), with long-lasting responses and prolonged survival observed in first- and second-line therapy. However, this is observed in < 20% of patients and high primary/secondary resistance may occur. The primary objective of the identification of predictive factors for the response to anti-PD-1 immunotherapy in head and neck squamous cell carcinoma (IPRICE) study is to identify predictive factors of response to anti-PD-1 immunotherapy.

Methods

The IPRICE study is a single-center, prospective, non-randomized, open-label, and interventional clinical trial. Liquid and tumor biopsies will be performed in 54 patients with recurrent/metastatic (R/M) HNSCC undergoing anti-PD-1 immunotherapy alone to compare the evolution of gene expression and immunological profile between responders and non-responders. We will use a multidisciplinary approach including spatial transcriptomics, single seq-RNA analysis, clinical data, and medical images. Genes, pathways, and transcription factors potentially involved in the immune response will also be analyzed, including genes involved in the interferon-gamma (IFN-γ) pathway, immunogenic cell death and mitophagy, hypoxia, circulating miRNA-mediated immunomodulation, cytokines, and immune repertoire within the tumor microenvironment (TME). With a follow-up period of 3-years, these data will help generate effective biomarkers to define optimal therapeutic strategy and new immunomodulatory agents based on a better understanding of primary/secondary resistance mechanisms. Tumor biopsy will be performed initially before the start of immunotherapy at the first tumor assessment and is only proposed at tumor progression. Clinical data will be collected using a dedicated Case Report Form (CRF).

Discussion

Identifying predictive factors of the response to anti-PD-1 immunotherapy and optimizing long-term immune response require a thorough understanding of the intrinsic and acquired resistance to immunotherapy. To achieve this, dynamic profiling of TME during anti-PD-1 immunotherapy based on analysis of tumor biopsy samples is critical. This will be accomplished through the anatomical localization of HNSCC, which will allow for the analysis of multiple biopsies during treatment and the emergence of breakthrough technologies including single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics.

Trial registration

Clinicaltrial.gov. Registered April 14, 2022, https://​www.​clinicaltrials.​gov/​study/​NCT05328024.
Literature
1.
go back to reference Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.PubMedCrossRef Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.PubMedCrossRef
2.
go back to reference Shaw R, Beasley N. Aetiology and risk factors for head and neck cancer: United Kingdom National Multidisciplinary Guidelines. J Laryngol Otol. 2016;130(S2):S9-12.PubMedPubMedCentralCrossRef Shaw R, Beasley N. Aetiology and risk factors for head and neck cancer: United Kingdom National Multidisciplinary Guidelines. J Laryngol Otol. 2016;130(S2):S9-12.PubMedPubMedCentralCrossRef
3.
go back to reference Powell SF, Vu L, Spanos WC, Pyeon D. The key differences between human papillomavirus-positive and -negative head and neck cancers: biological and clinical implications. Cancers. 2021;13(20):5206.PubMedPubMedCentralCrossRef Powell SF, Vu L, Spanos WC, Pyeon D. The key differences between human papillomavirus-positive and -negative head and neck cancers: biological and clinical implications. Cancers. 2021;13(20):5206.PubMedPubMedCentralCrossRef
5.
go back to reference Vermorken JB, Mesia R, Rivera F, Remenar E, Kawecki A, Rottey S, et al. Platinum-based chemotherapy plus cetuximab in head and neck cancer. N Engl J Med. 2008;359(11):1116–27.PubMedCrossRef Vermorken JB, Mesia R, Rivera F, Remenar E, Kawecki A, Rottey S, et al. Platinum-based chemotherapy plus cetuximab in head and neck cancer. N Engl J Med. 2008;359(11):1116–27.PubMedCrossRef
6.
go back to reference Ferris RL, Blumenschein G, Fayette J, Guigay J, Colevas AD, Licitra L, et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med. 2016;375(19):1856–67.PubMedPubMedCentralCrossRef Ferris RL, Blumenschein G, Fayette J, Guigay J, Colevas AD, Licitra L, et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med. 2016;375(19):1856–67.PubMedPubMedCentralCrossRef
7.
go back to reference Burtness B, Harrington KJ, Greil R, Soulières D, Tahara M, de Castro G, et al. Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): a randomised, open-label, phase 3 study. Lancet. 2019;394(10212):1915–28.PubMedCrossRef Burtness B, Harrington KJ, Greil R, Soulières D, Tahara M, de Castro G, et al. Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): a randomised, open-label, phase 3 study. Lancet. 2019;394(10212):1915–28.PubMedCrossRef
8.
go back to reference Harrington KJ, Rischin D, Greil R, Soulieres D, Tahara M, Castro G, et al. KEYNOTE-048: Progression after the next line of therapy following pembrolizumab (P) or P plus chemotherapy (P+C) vs EXTREME (E) as first-line (1L) therapy for recurrent/metastatic (R/M) head and neck squamous cell carcinoma (HNSCC). JCO. 2020;38(15_suppl):6505–6505.CrossRef Harrington KJ, Rischin D, Greil R, Soulieres D, Tahara M, Castro G, et al. KEYNOTE-048: Progression after the next line of therapy following pembrolizumab (P) or P plus chemotherapy (P+C) vs EXTREME (E) as first-line (1L) therapy for recurrent/metastatic (R/M) head and neck squamous cell carcinoma (HNSCC). JCO. 2020;38(15_suppl):6505–6505.CrossRef
9.
go back to reference Issa M, Klamer B, Karivedu V, Bhateja P, Laliotis GI, Dibs K, et al. Use of cetuximab added to weekly chemotherapy to improve progression-free survival in patients with recurrent metastatic head and neck squamous cell carcinoma after progression on immune checkpoint inhibitors. JCO. 2021;39(15_suppl):6038–6038.CrossRef Issa M, Klamer B, Karivedu V, Bhateja P, Laliotis GI, Dibs K, et al. Use of cetuximab added to weekly chemotherapy to improve progression-free survival in patients with recurrent metastatic head and neck squamous cell carcinoma after progression on immune checkpoint inhibitors. JCO. 2021;39(15_suppl):6038–6038.CrossRef
10.
go back to reference Saleh K, Vinches M, Safta I, Guiard E, Marret G, Vion R, et al. Taxanes plus cetuximab with or without platinum chemotherapy after progression on immune checkpoint inhibitors in patients with squamous cell carcinoma of the head and neck. JCO. 2022;40(16_suppl):6036–6036.CrossRef Saleh K, Vinches M, Safta I, Guiard E, Marret G, Vion R, et al. Taxanes plus cetuximab with or without platinum chemotherapy after progression on immune checkpoint inhibitors in patients with squamous cell carcinoma of the head and neck. JCO. 2022;40(16_suppl):6036–6036.CrossRef
11.
12.
go back to reference Hegde PS, Karanikas V, Evers S. The where, the when, and the how of immune monitoring for cancer immunotherapies in the Era of Checkpoint Inhibition. Clin Cancer Res. 2016;22(8):1865–74.PubMedCrossRef Hegde PS, Karanikas V, Evers S. The where, the when, and the how of immune monitoring for cancer immunotherapies in the Era of Checkpoint Inhibition. Clin Cancer Res. 2016;22(8):1865–74.PubMedCrossRef
13.
go back to reference Ruffin AT, Li H, Vujanovic L, Zandberg DP, Ferris RL, Bruno TC. Improving head and neck cancer therapies by immunomodulation of the tumour microenvironment. Nat Rev Cancer. 2022;1:1–16. Ruffin AT, Li H, Vujanovic L, Zandberg DP, Ferris RL, Bruno TC. Improving head and neck cancer therapies by immunomodulation of the tumour microenvironment. Nat Rev Cancer. 2022;1:1–16.
14.
go back to reference Sautès-Fridman C, Petitprez F, Calderaro J, Fridman WH. Tertiary lymphoid structures in the era of cancer immunotherapy. Nat Rev Cancer. 2019;19(6):307–25.PubMedCrossRef Sautès-Fridman C, Petitprez F, Calderaro J, Fridman WH. Tertiary lymphoid structures in the era of cancer immunotherapy. Nat Rev Cancer. 2019;19(6):307–25.PubMedCrossRef
15.
go back to reference Wang MM, Coupland SE, Aittokallio T, Figueiredo CR. Resistance to immune checkpoint therapies by tumour-induced T-cell desertification and exclusion: key mechanisms, prognostication and new therapeutic opportunities. Br J Cancer. 2023;15:1–13. Wang MM, Coupland SE, Aittokallio T, Figueiredo CR. Resistance to immune checkpoint therapies by tumour-induced T-cell desertification and exclusion: key mechanisms, prognostication and new therapeutic opportunities. Br J Cancer. 2023;15:1–13.
16.
go back to reference Carinato H, Burgy M, Fischbach C, Kalish-Weindling M, Pabst L, Frasie V, et al. 930P Weekly paclitaxel, carboplatin and cetuximab (PCC) as first-line treatment of recurrent and/or metastatic head & neck squamous cell carcinoma (R/M-HNSCC) for patients ineligible to cisplatin based chemotherapy. Ann Oncol. 2020;1(31):S668.CrossRef Carinato H, Burgy M, Fischbach C, Kalish-Weindling M, Pabst L, Frasie V, et al. 930P Weekly paclitaxel, carboplatin and cetuximab (PCC) as first-line treatment of recurrent and/or metastatic head & neck squamous cell carcinoma (R/M-HNSCC) for patients ineligible to cisplatin based chemotherapy. Ann Oncol. 2020;1(31):S668.CrossRef
17.
go back to reference Borel C, Jung AC, Burgy M. Immunotherapy breakthroughs in the treatment of recurrent or metastatic head and neck squamous cell carcinoma. Cancers. 2020;12(9):2691.PubMedPubMedCentralCrossRef Borel C, Jung AC, Burgy M. Immunotherapy breakthroughs in the treatment of recurrent or metastatic head and neck squamous cell carcinoma. Cancers. 2020;12(9):2691.PubMedPubMedCentralCrossRef
18.
go back to reference Hanna GJ, Kaczmar JM, Zandberg DP, Wong DJL, Yilmaz E, Sherman EJ, et al. Dose expansion results of the bifunctional EGFR/TGFβ inhibitor BCA101 with pembrolizumab in patients with recurrent, metastatic head and neck squamous cell carcinoma. JCO. 2023;41(16_suppl):6005–6005.CrossRef Hanna GJ, Kaczmar JM, Zandberg DP, Wong DJL, Yilmaz E, Sherman EJ, et al. Dose expansion results of the bifunctional EGFR/TGFβ inhibitor BCA101 with pembrolizumab in patients with recurrent, metastatic head and neck squamous cell carcinoma. JCO. 2023;41(16_suppl):6005–6005.CrossRef
19.
go back to reference de DogerSpéville B, Felip E, Forster M, Majem M, Bajaj P, Peguero JA, et al. Final results from TACTI-002 Part C: A phase II study of eftilagimod alpha (soluble LAG-3 protein) and pembrolizumab in patients with metastatic 2nd line head and neck squamous cell carcinoma unselected for PD-L1. JCO. 2023;41(16_suppl):6029–6029.CrossRef de DogerSpéville B, Felip E, Forster M, Majem M, Bajaj P, Peguero JA, et al. Final results from TACTI-002 Part C: A phase II study of eftilagimod alpha (soluble LAG-3 protein) and pembrolizumab in patients with metastatic 2nd line head and neck squamous cell carcinoma unselected for PD-L1. JCO. 2023;41(16_suppl):6029–6029.CrossRef
20.
go back to reference Chen PL, Roh W, Reuben A, Cooper ZA, Spencer CN, Prieto PA, et al. Analysis of immune signatures in longitudinal tumor samples yields insight into biomarkers of response and mechanisms of resistance to immune checkpoint blockade. Cancer Discov. 2016;6(8):827–37.PubMedPubMedCentralCrossRef Chen PL, Roh W, Reuben A, Cooper ZA, Spencer CN, Prieto PA, et al. Analysis of immune signatures in longitudinal tumor samples yields insight into biomarkers of response and mechanisms of resistance to immune checkpoint blockade. Cancer Discov. 2016;6(8):827–37.PubMedPubMedCentralCrossRef
21.
go back to reference Riaz N, Havel JJ, Makarov V, Desrichard A, Urba WJ, Sims JS, et al. Tumor and microenvironment evolution during immunotherapy with Nivolumab. Cell. 2017;171(4):934-949.e16.PubMedPubMedCentralCrossRef Riaz N, Havel JJ, Makarov V, Desrichard A, Urba WJ, Sims JS, et al. Tumor and microenvironment evolution during immunotherapy with Nivolumab. Cell. 2017;171(4):934-949.e16.PubMedPubMedCentralCrossRef
22.
go back to reference Alban TJ, Riaz N, Parthasarathy P, Makarov V, Kendall S, Yoo SK, et al. Abstract 1125: Neoantigen immunogenicity landscapes and evolution of tumor ecosystems during immunotherapy with nivolumab. Cancer Res. 2023;83(7_Supplement):1125.CrossRef Alban TJ, Riaz N, Parthasarathy P, Makarov V, Kendall S, Yoo SK, et al. Abstract 1125: Neoantigen immunogenicity landscapes and evolution of tumor ecosystems during immunotherapy with nivolumab. Cancer Res. 2023;83(7_Supplement):1125.CrossRef
23.
go back to reference Vilain RE, Menzies AM, Wilmott JS, Kakavand H, Madore J, Guminski A, et al. Dynamic Changes in PD-L1 expression and immune infiltrates early during treatment predict response to PD-1 blockade in Melanoma. Clin Cancer Res. 2017;23(17):5024–33.PubMedCrossRef Vilain RE, Menzies AM, Wilmott JS, Kakavand H, Madore J, Guminski A, et al. Dynamic Changes in PD-L1 expression and immune infiltrates early during treatment predict response to PD-1 blockade in Melanoma. Clin Cancer Res. 2017;23(17):5024–33.PubMedCrossRef
24.
go back to reference Kurtulus S, Madi A, Escobar G, Klapholz M, Nyman J, Christian E, et al. Checkpoint Blockade Immunotherapy Induces Dynamic Changes in PD-1−CD8+ Tumor-Infiltrating T Cells. Immunity. 2019;50(1):181-194.e6.PubMedPubMedCentralCrossRef Kurtulus S, Madi A, Escobar G, Klapholz M, Nyman J, Christian E, et al. Checkpoint Blockade Immunotherapy Induces Dynamic Changes in PD-1−CD8+ Tumor-Infiltrating T Cells. Immunity. 2019;50(1):181-194.e6.PubMedPubMedCentralCrossRef
25.
go back to reference Das R, Verma R, Sznol M, Boddupalli CS, Gettinger SN, Kluger H, et al. Combination therapy with anti-CTLA-4 and anti-PD-1 leads to distinct immunologic changes in vivo. J Immunol. 2015;194(3):950–9.PubMedCrossRef Das R, Verma R, Sznol M, Boddupalli CS, Gettinger SN, Kluger H, et al. Combination therapy with anti-CTLA-4 and anti-PD-1 leads to distinct immunologic changes in vivo. J Immunol. 2015;194(3):950–9.PubMedCrossRef
26.
go back to reference Rosenthal R, Swanton C, McGranahan N. Understanding the impact of immune-mediated selection on lung cancer evolution. Br J Cancer. 2021;124(10):1615–7.PubMedPubMedCentralCrossRef Rosenthal R, Swanton C, McGranahan N. Understanding the impact of immune-mediated selection on lung cancer evolution. Br J Cancer. 2021;124(10):1615–7.PubMedPubMedCentralCrossRef
29.
go back to reference Xie N, Shen G, Gao W, Huang Z, Huang C, Fu L. Neoantigens: promising targets for cancer therapy. Sig Transduct Target Ther. 2023;8(1):1–38.CrossRef Xie N, Shen G, Gao W, Huang Z, Huang C, Fu L. Neoantigens: promising targets for cancer therapy. Sig Transduct Target Ther. 2023;8(1):1–38.CrossRef
30.
go back to reference Saleh K, Daste A, Martin N, Pons-Tostivint E, Auperin A, Herrera-Gomez RG, et al. Response to salvage chemotherapy after progression on immune checkpoint inhibitors in patients with recurrent and/or metastatic squamous cell carcinoma of the head and neck. Eur J Cancer. 2019;121:123–9.PubMedCrossRef Saleh K, Daste A, Martin N, Pons-Tostivint E, Auperin A, Herrera-Gomez RG, et al. Response to salvage chemotherapy after progression on immune checkpoint inhibitors in patients with recurrent and/or metastatic squamous cell carcinoma of the head and neck. Eur J Cancer. 2019;121:123–9.PubMedCrossRef
31.
go back to reference Guo W, Zhou B, Yang Z, Liu X, Huai Q, Guo L, et al. Integrating microarray-based spatial transcriptomics and single-cell RNA-sequencing reveals tissue architecture in esophageal squamous cell carcinoma. EBioMedicine. 2022;84:104281.PubMedPubMedCentralCrossRef Guo W, Zhou B, Yang Z, Liu X, Huai Q, Guo L, et al. Integrating microarray-based spatial transcriptomics and single-cell RNA-sequencing reveals tissue architecture in esophageal squamous cell carcinoma. EBioMedicine. 2022;84:104281.PubMedPubMedCentralCrossRef
32.
go back to reference Method of the Year 2020: spatially resolved transcriptomics. Nat Methods. 2021;18(1):1–1. Method of the Year 2020: spatially resolved transcriptomics. Nat Methods. 2021;18(1):1–1.
33.
go back to reference Limagne E, Nuttin L, Thibaudin M, Jacquin E, Aucagne R, Bon M, et al. MEK inhibition overcomes chemoimmunotherapy resistance by inducing CXCL10 in cancer cells. Cancer Cell. 2022;40(2):136-152.e12.PubMedCrossRef Limagne E, Nuttin L, Thibaudin M, Jacquin E, Aucagne R, Bon M, et al. MEK inhibition overcomes chemoimmunotherapy resistance by inducing CXCL10 in cancer cells. Cancer Cell. 2022;40(2):136-152.e12.PubMedCrossRef
35.
go back to reference Kumar S, Wilkes DW, Samuel N, Blanco MA, Nayak A, Alicea-Torres K, et al. ΔNp63-driven recruitment of myeloid-derived suppressor cells promotes metastasis in triple-negative breast cancer. J Clin Invest. 2018;128(11):5095–109.PubMedPubMedCentralCrossRef Kumar S, Wilkes DW, Samuel N, Blanco MA, Nayak A, Alicea-Torres K, et al. ΔNp63-driven recruitment of myeloid-derived suppressor cells promotes metastasis in triple-negative breast cancer. J Clin Invest. 2018;128(11):5095–109.PubMedPubMedCentralCrossRef
36.
go back to reference Gocher AM, Workman CJ, Vignali DAA. Interferon-γ: teammate or opponent in the tumour microenvironment? Nat Rev Immunol. 2022;22(3):158–72.PubMedCrossRef Gocher AM, Workman CJ, Vignali DAA. Interferon-γ: teammate or opponent in the tumour microenvironment? Nat Rev Immunol. 2022;22(3):158–72.PubMedCrossRef
37.
go back to reference Yang Y, Liu H, Chen Y, Xiao N, Zheng Z, Liu H, et al. Liquid biopsy on the horizon in immunotherapy of non-small cell lung cancer: current status, challenges, and perspectives. Cell Death Dis. 2023;14(3):1–15.CrossRef Yang Y, Liu H, Chen Y, Xiao N, Zheng Z, Liu H, et al. Liquid biopsy on the horizon in immunotherapy of non-small cell lung cancer: current status, challenges, and perspectives. Cell Death Dis. 2023;14(3):1–15.CrossRef
38.
go back to reference Chikuie N, Urabe Y, Ueda T, Hamamoto T, Taruya T, Kono T, et al. Utility of plasma circulating tumor DNA and tumor DNA profiles in head and neck squamous cell carcinoma. Sci Rep. 2022;12(1):9316.PubMedPubMedCentralCrossRef Chikuie N, Urabe Y, Ueda T, Hamamoto T, Taruya T, Kono T, et al. Utility of plasma circulating tumor DNA and tumor DNA profiles in head and neck squamous cell carcinoma. Sci Rep. 2022;12(1):9316.PubMedPubMedCentralCrossRef
39.
go back to reference Zhou G, Liu Z, Myers JN. TP53 mutations in head and neck squamous cell carcinoma and their impact on disease progression and treatment response. J Cell Biochem. 2016;117(12):2682–92.PubMedPubMedCentralCrossRef Zhou G, Liu Z, Myers JN. TP53 mutations in head and neck squamous cell carcinoma and their impact on disease progression and treatment response. J Cell Biochem. 2016;117(12):2682–92.PubMedPubMedCentralCrossRef
40.
go back to reference Schwarzenbach H, Nishida N, Calin GA, Pantel K. Clinical relevance of circulating cell-free microRNAs in cancer. Nat Rev Clin Oncol. 2014;11(3):145–56.PubMedCrossRef Schwarzenbach H, Nishida N, Calin GA, Pantel K. Clinical relevance of circulating cell-free microRNAs in cancer. Nat Rev Clin Oncol. 2014;11(3):145–56.PubMedCrossRef
41.
go back to reference Conrad O, Burgy M, Foppolo S, Jehl A, Thiéry A, Guihard S, et al. Tumor-Suppressive and Immunomodulating Activity of miR-30a-3p and miR-30e-3p in HNSCC Cells and Tumoroids. Int J Mol Sci. 2023;24(13):11178.PubMedPubMedCentralCrossRef Conrad O, Burgy M, Foppolo S, Jehl A, Thiéry A, Guihard S, et al. Tumor-Suppressive and Immunomodulating Activity of miR-30a-3p and miR-30e-3p in HNSCC Cells and Tumoroids. Int J Mol Sci. 2023;24(13):11178.PubMedPubMedCentralCrossRef
42.
go back to reference Paladini L, Fabris L, Bottai G, Raschioni C, Calin GA, Santarpia L. Targeting microRNAs as key modulators of tumor immune response. J Exp Clin Cancer Res. 2016;35(1):103.PubMedPubMedCentralCrossRef Paladini L, Fabris L, Bottai G, Raschioni C, Calin GA, Santarpia L. Targeting microRNAs as key modulators of tumor immune response. J Exp Clin Cancer Res. 2016;35(1):103.PubMedPubMedCentralCrossRef
43.
go back to reference Berraondo P, Sanmamed MF, Ochoa MC, Etxeberria I, Aznar MA, Pérez-Gracia JL, et al. Cytokines in clinical cancer immunotherapy. Br J Cancer. 2019;120(1):6–15.PubMedCrossRef Berraondo P, Sanmamed MF, Ochoa MC, Etxeberria I, Aznar MA, Pérez-Gracia JL, et al. Cytokines in clinical cancer immunotherapy. Br J Cancer. 2019;120(1):6–15.PubMedCrossRef
44.
go back to reference Xu Z, Zhang T, Chen H, Zhu Y, Lv Y, Zhang S, et al. High-throughput single nucleus total RNA sequencing of formalin-fixed paraffin-embedded tissues by snRandom-seq. Nat Commun. 2023;14(1):2734.PubMedPubMedCentralCrossRef Xu Z, Zhang T, Chen H, Zhu Y, Lv Y, Zhang S, et al. High-throughput single nucleus total RNA sequencing of formalin-fixed paraffin-embedded tissues by snRandom-seq. Nat Commun. 2023;14(1):2734.PubMedPubMedCentralCrossRef
45.
go back to reference D’Alessandra Y, Valerio V, Moschetta D, Massaiu I, Bozzi M, Conte M, et al. Extraction-free absolute quantification of circulating miRNAs by Chip-Based Digital PCR. Biomedicines. 2022;10(6):1354.PubMedPubMedCentralCrossRef D’Alessandra Y, Valerio V, Moschetta D, Massaiu I, Bozzi M, Conte M, et al. Extraction-free absolute quantification of circulating miRNAs by Chip-Based Digital PCR. Biomedicines. 2022;10(6):1354.PubMedPubMedCentralCrossRef
46.
go back to reference Saâda-Bouzid E, Defaucheux C, Karabajakian A, Coloma VP, Servois V, Paoletti X, et al. Hyperprogression during anti-PD-1/PD-L1 therapy in patients with recurrent and/or metastatic head and neck squamous cell carcinoma. Ann Oncol. 2017;28(7):1605–11.PubMedCrossRef Saâda-Bouzid E, Defaucheux C, Karabajakian A, Coloma VP, Servois V, Paoletti X, et al. Hyperprogression during anti-PD-1/PD-L1 therapy in patients with recurrent and/or metastatic head and neck squamous cell carcinoma. Ann Oncol. 2017;28(7):1605–11.PubMedCrossRef
Metadata
Title
Dynamic profiling of immune microenvironment during anti-PD-1 immunotherapy for head and neck squamous cell carcinoma: the IPRICE study
Authors
Carinato Hélène
Ombline Conrad
Carole Pflumio
Christian Borel
Manon Voegelin
Alexandre Bernard
Philippe Schultz
Mihaela-Alina Onea
Alain Jung
Sophie Martin
Mickaël Burgy
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2023
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-023-11672-x

Other articles of this Issue 1/2023

BMC Cancer 1/2023 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine