Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2024

Open Access 01-12-2024 | Research

Biogenic zinc selenide nanoparticles fabricated using Rosmarinus officinalis leaf extract with potential biological activity

Authors: Shahram Ahmadi Somaghian, Seyedeh Zahra Mirzaei, Mohammad Ebrahim Khosravi Shakib, Abdolrazagh Marzban, Sarah Alsallameh, Hamed Esmaeil Lashgarian

Published in: BMC Complementary Medicine and Therapies | Issue 1/2024

Login to get access

Abstract

Zinc selenide nanoparticles (ZnSe) are semiconductor metals of zinc and selenium. ZnSe NPs are advantageous for biomedical and bio-imaging applications due to their low toxicity. ZnSe NPs can be used as a therapeutic agent by synthesizing those using biologically safe methods. As a novel facet of these NPs, plant-based ZnSe NPs were fabricated from an aqueous extract of Rosmarinus officinalis L. (RO extract). Physiochemical analyses such as UV-visible and FTIR spectroscopy, SEM-EDX and TEM Imaging, XRD and DLS-Zeta potential analyses confirmed the biological fabrication of RO-ZnSe NPs. Additionally, Ro-ZnSe NPs were investigated for their bioactivity. There was an apparent peak in the UV-visible spectrum at 398 nm to confirm the presence of ZnSe NPs. FTIR analysis confirmed RO-extract participation in ZnSe NPs synthesis by identifying putative functional groups associated with biomolecules. TEM and SEM analyses revealed that RO-ZnSe NPs have spherical shapes in the range of 90–100 nm. According to XRD and EDX analysis, RO-ZnSe NPs had a crystallite size of 42.13 nm and contain Se and Zn (1:2 ratio). These NPs demonstrated approximately 90.6% antioxidant and antibacterial activity against a range of bacterial strains at 100 µg/ml. Antibiofilm activity was greatest against Candida glabrata and Pseudomonas aeruginosa at 100 g/ml. Accordingly, the IC50 values for anticancer activity against HTB-9, SW742, and HF cell lines were 14.16, 8.03, and 35.35 g/ml, respectively. In light of the multiple applications for ZnSe NPs, our research indicates they may be an excellent option for biological and therapeutic purposes in treating cancers and infections. Therefore, additional research is required to determine their efficacy.
Literature
1.
go back to reference Rabiee N, Bagherzadeh M, Kiani M, Ghadiri AM. Rosmarinus officinalis directed palladium nanoparticle synthesis: investigation of potential anti-bacterial, anti-fungal and Mizoroki-Heck catalytic activities. Adv Powder Technol. 2020;31(4):1402–11.CrossRef Rabiee N, Bagherzadeh M, Kiani M, Ghadiri AM. Rosmarinus officinalis directed palladium nanoparticle synthesis: investigation of potential anti-bacterial, anti-fungal and Mizoroki-Heck catalytic activities. Adv Powder Technol. 2020;31(4):1402–11.CrossRef
2.
go back to reference Ahamed AJ, Ramar K. Kumar PVJJon, technology. Synthesis and characterization of ZnSe nanoparticles by co-precipitation method. 2016:148–50. Ahamed AJ, Ramar K. Kumar PVJJon, technology. Synthesis and characterization of ZnSe nanoparticles by co-precipitation method. 2016:148–50.
3.
go back to reference Noukelag S, Mohamed H, Moussa B et al. Investigation of structural and optical properties of biosynthesized Zincite (ZnO) nanoparticles (NPs) via an aqueous extract of Rosmarinus officinalis (rosemary) leaves. 2020;5(45):2349–58. Noukelag S, Mohamed H, Moussa B et al. Investigation of structural and optical properties of biosynthesized Zincite (ZnO) nanoparticles (NPs) via an aqueous extract of Rosmarinus officinalis (rosemary) leaves. 2020;5(45):2349–58.
4.
go back to reference Dhandapani KV, Anbumani D, Gandhi AD et al. Green route for the synthesis of zinc oxide nanoparticles from Melia azedarach leaf extract and evaluation of their antioxidant and antibacterial activities. Biocatal Agric Biotechnol. 2020;24:101517. Dhandapani KV, Anbumani D, Gandhi AD et al. Green route for the synthesis of zinc oxide nanoparticles from Melia azedarach leaf extract and evaluation of their antioxidant and antibacterial activities. Biocatal Agric Biotechnol. 2020;24:101517.
5.
go back to reference Gupta P, Solanki RG, Patel P, Sujata KM, Kumar R, Pandit A. Enhanced Antibacterial and Photoluminescence Activities of ZnSe Nanostructures. ACS Omega. 2023;8(15):13670–13679. Gupta P, Solanki RG, Patel P, Sujata KM, Kumar R, Pandit A. Enhanced Antibacterial and Photoluminescence Activities of ZnSe Nanostructures. ACS Omega. 2023;8(15):13670–13679.
6.
go back to reference Kumar R, Praveen R, Rani S, Sharma K, Tiwary K, Kumar KD. ZnSe nanoparticles reinforced biopolymeric soy protein isolate film. J Renew Mater. 2019;7(8):749.CrossRef Kumar R, Praveen R, Rani S, Sharma K, Tiwary K, Kumar KD. ZnSe nanoparticles reinforced biopolymeric soy protein isolate film. J Renew Mater. 2019;7(8):749.CrossRef
7.
go back to reference Zhang Q, Li H, Ma Y, Zhai TJPMS. ZnSe Nanostructures: Synthesis Properties and Applications. 2016;83:472–535. Zhang Q, Li H, Ma Y, Zhai TJPMS. ZnSe Nanostructures: Synthesis Properties and Applications. 2016;83:472–535.
8.
go back to reference Daghestani M, Al Rashed SA, Bukhari W, et al. Bactericidal and cytotoxic properties of green synthesized nanosilver using Rosmarinus officinalis leaves. Green Process Synthesis. 2020;9(1):230–6.CrossRef Daghestani M, Al Rashed SA, Bukhari W, et al. Bactericidal and cytotoxic properties of green synthesized nanosilver using Rosmarinus officinalis leaves. Green Process Synthesis. 2020;9(1):230–6.CrossRef
9.
go back to reference Takaidza S, Mtunzi F, Pillay M. Analysis of the phytochemical contents and antioxidant activities of crude extracts from Tulbaghia species. J Tradit Chin Med. 2018;38(2):272–9.CrossRef Takaidza S, Mtunzi F, Pillay M. Analysis of the phytochemical contents and antioxidant activities of crude extracts from Tulbaghia species. J Tradit Chin Med. 2018;38(2):272–9.CrossRef
10.
go back to reference Mirzaei SZ, Lashgarian HE, Karkhane M, Shahzamani K, Alhameedawi AK, Marzban A. Bio-inspired silver selenide nano-chalcogens using aqueous extract of Melilotus officinalis with biological activities. Bioresources and Bioprocessing. 2021;8:1–11.CrossRef Mirzaei SZ, Lashgarian HE, Karkhane M, Shahzamani K, Alhameedawi AK, Marzban A. Bio-inspired silver selenide nano-chalcogens using aqueous extract of Melilotus officinalis with biological activities. Bioresources and Bioprocessing. 2021;8:1–11.CrossRef
11.
go back to reference Le V, Parks AE, Nguyen SH, Roach MD. P. Improving the Vanillin-Sulphuric Acid Method for quantifying total saponins. 2018;6(3):84. Le V, Parks AE, Nguyen SH, Roach MD. P. Improving the Vanillin-Sulphuric Acid Method for quantifying total saponins. 2018;6(3):84.
12.
go back to reference Mena P, Cirlini M, Tassotti M, Herrlinger KA, Dall’Asta C, Del Rio D. Phytochemical profiling of flavonoids, phenolic acids, terpenoids, and volatile fraction of a rosemary (Rosmarinus officinalis L.) extract. Molecules. 2016;21(11):1576.CrossRefPubMedPubMedCentral Mena P, Cirlini M, Tassotti M, Herrlinger KA, Dall’Asta C, Del Rio D. Phytochemical profiling of flavonoids, phenolic acids, terpenoids, and volatile fraction of a rosemary (Rosmarinus officinalis L.) extract. Molecules. 2016;21(11):1576.CrossRefPubMedPubMedCentral
13.
go back to reference Andrade JM, Faustino C, Garcia C, Ladeiras D, Reis CP, Rijo P. Rosmarinus officinalis L.: an update review of its phytochemistry and biological activity. Future Sci OA. 2018;4(4):FSO283.CrossRefPubMedPubMedCentral Andrade JM, Faustino C, Garcia C, Ladeiras D, Reis CP, Rijo P. Rosmarinus officinalis L.: an update review of its phytochemistry and biological activity. Future Sci OA. 2018;4(4):FSO283.CrossRefPubMedPubMedCentral
14.
go back to reference Stan M, Popa A, Toloman D, Silipas T-D, Vodnar DC. Antibacterial and antioxidant activities of ZnO nanoparticles synthesized using extracts of Allium sativum, Rosmarinus officinalis and Ocimum basilicum. Acta Metall Sin. 2016;29:228–36.CrossRef Stan M, Popa A, Toloman D, Silipas T-D, Vodnar DC. Antibacterial and antioxidant activities of ZnO nanoparticles synthesized using extracts of Allium sativum, Rosmarinus officinalis and Ocimum basilicum. Acta Metall Sin. 2016;29:228–36.CrossRef
15.
go back to reference Abdallah Y, Ogunyemi SO, Abdelazez A et al. The Green Synthesis of MgO Nano-Flowers Using Rosmarinus officinalis L. (Rosemary) and the Antibacterial Activities against Xanthomonas oryzae pv. oryzae. BioMed Res Int. 2019;2019:5620989. Abdallah Y, Ogunyemi SO, Abdelazez A et al. The Green Synthesis of MgO Nano-Flowers Using Rosmarinus officinalis L. (Rosemary) and the Antibacterial Activities against Xanthomonas oryzae pv. oryzae. BioMed Res Int. 2019;2019:5620989.
16.
go back to reference Shafey AME. Green synthesis of metal and metal oxide nanoparticles from plant leaf extracts and their applications. A Review. 2020;9(1):304–39. Shafey AME. Green synthesis of metal and metal oxide nanoparticles from plant leaf extracts and their applications. A Review. 2020;9(1):304–39.
17.
go back to reference Mirzaei SZ, Ahmadi Somaghian S, Lashgarian HE, Karkhane M, Cheraghipour K, Marzban A. Phyco-fabrication of bimetallic nanoparticles (zinc–selenium) using aqueous extract of Gracilaria corticata and its biological activity potentials. Ceram Int. 2021;47(4):5580–5586. Mirzaei SZ, Ahmadi Somaghian S, Lashgarian HE, Karkhane M, Cheraghipour K, Marzban A. Phyco-fabrication of bimetallic nanoparticles (zinc–selenium) using aqueous extract of Gracilaria corticata and its biological activity potentials. Ceram Int. 2021;47(4):5580–5586.
18.
go back to reference Hong HS, Kim M-S, Byun EK, Lee YL. Facile synthesis and characterization of zinc selenide nanoparticles in aqueous solution at room temperature. J Cryst Growth. 2020;535:125523. Hong HS, Kim M-S, Byun EK, Lee YL. Facile synthesis and characterization of zinc selenide nanoparticles in aqueous solution at room temperature. J Cryst Growth. 2020;535:125523.
19.
go back to reference Yang Y, Zhang Y, Zhou X et al. Synthesis, Optical and Photocatalytic properties of ZnSe Microspheres/Nanosheets. Nano Biomed Eng 2011;3(2). Yang Y, Zhang Y, Zhou X et al. Synthesis, Optical and Photocatalytic properties of ZnSe Microspheres/Nanosheets. Nano Biomed Eng 2011;3(2).
20.
go back to reference Javed R, Zia M, Naz S, Aisida SO, Ain Nu, Ao Q. Role of capping agents in the application of nanoparticles in biomedicine and environmental remediation: recent trends and future prospects. J Nanobiotechnol. 2020;18:1–15.CrossRef Javed R, Zia M, Naz S, Aisida SO, Ain Nu, Ao Q. Role of capping agents in the application of nanoparticles in biomedicine and environmental remediation: recent trends and future prospects. J Nanobiotechnol. 2020;18:1–15.CrossRef
21.
go back to reference Kumar PV. Synthesis and characterization of ZnSe nanoparticles by Co-precipitation Method. J Nanosci Technol. 2016;07/30:2:148–50. Kumar PV. Synthesis and characterization of ZnSe nanoparticles by Co-precipitation Method. J Nanosci Technol. 2016;07/30:2:148–50.
22.
go back to reference Imran M, Saleem A, Khan NA, Khurram AA, Mehmood N. Amorphous to crystalline phase transformation and band gap refinement in ZnSe thin films. Thin Solid Films. 2018;648:31–38. Imran M, Saleem A, Khan NA, Khurram AA, Mehmood N. Amorphous to crystalline phase transformation and band gap refinement in ZnSe thin films. Thin Solid Films. 2018;648:31–38.
23.
go back to reference Hernández R, Rosendo E, García G et al. Obtaining and characterization of ZnSe nanoparticles from aqueous colloidal dispersions. 2014;27(1):11–4. Hernández R, Rosendo E, García G et al. Obtaining and characterization of ZnSe nanoparticles from aqueous colloidal dispersions. 2014;27(1):11–4.
24.
go back to reference Scimeca M, Bischetti S, Lamsira HK, Bonfiglio R, Bonanno E. Energy Dispersive X-ray (EDX) microanalysis: a powerful tool in biomedical research and diagnosis. Eur J Histochemistry: EJH Mar. 2018;15(1):2841. Scimeca M, Bischetti S, Lamsira HK, Bonfiglio R, Bonanno E. Energy Dispersive X-ray (EDX) microanalysis: a powerful tool in biomedical research and diagnosis. Eur J Histochemistry: EJH Mar. 2018;15(1):2841.
25.
go back to reference Mandl HK, Quijano E, Suh HW, Sparago E, Oeck S, Grun M, Glazer PM, Saltzman WM. Optimizing biodegradable nanoparticle size for tissue-specific delivery. J Controlled Release. 2019;314:92–101.CrossRef Mandl HK, Quijano E, Suh HW, Sparago E, Oeck S, Grun M, Glazer PM, Saltzman WM. Optimizing biodegradable nanoparticle size for tissue-specific delivery. J Controlled Release. 2019;314:92–101.CrossRef
26.
go back to reference Clogston JD, Patri AK. Zeta potential measurement. Methods in Molecular Biology (Clifton NJ). 2011;697:63–70.CrossRef Clogston JD, Patri AK. Zeta potential measurement. Methods in Molecular Biology (Clifton NJ). 2011;697:63–70.CrossRef
27.
go back to reference Shao XR, Wei XQ, Song X, et al. Independent effect of polymeric nanoparticle zeta potential/surface charge, on their cytotoxicity and affinity to cells. Cell Prolif Aug. 2015;48(4):465–74.CrossRef Shao XR, Wei XQ, Song X, et al. Independent effect of polymeric nanoparticle zeta potential/surface charge, on their cytotoxicity and affinity to cells. Cell Prolif Aug. 2015;48(4):465–74.CrossRef
28.
go back to reference Rasmussen MK, Pedersen JN, Marie R. Size and surface charge characterization of nanoparticles with a salt gradient. Nat Commun. 2020;11(1):2337. Rasmussen MK, Pedersen JN, Marie R. Size and surface charge characterization of nanoparticles with a salt gradient. Nat Commun. 2020;11(1):2337.
29.
go back to reference Gilavand F, Saki R, Mirzaei SZ, Esmaeil Lashgarian H, Karkhane M, Marzban AJBRAC. Green synthesis of zinc nanoparticles using aqueous extract of Magnoliae officinalis and assessment of its bioactivity potentials. 2020. Gilavand F, Saki R, Mirzaei SZ, Esmaeil Lashgarian H, Karkhane M, Marzban AJBRAC. Green synthesis of zinc nanoparticles using aqueous extract of Magnoliae officinalis and assessment of its bioactivity potentials. 2020.
30.
go back to reference Rasmussen JW, Martinez E, Louka P, Wingett DG. Zinc oxide nanoparticles for selective destruction of Tumor cells and potential for drug delivery applications. Expert Opin drug Delivery Sep. 2010;7(9):1063–77.CrossRef Rasmussen JW, Martinez E, Louka P, Wingett DG. Zinc oxide nanoparticles for selective destruction of Tumor cells and potential for drug delivery applications. Expert Opin drug Delivery Sep. 2010;7(9):1063–77.CrossRef
31.
go back to reference Akhtar MJ, Ahamed M, Kumar S, Khan MM, Ahmad J, Alrokayan SA. Zinc oxide nanoparticles selectively induce apoptosis in human cancer cells through reactive oxygen species. Int J Nanomed. 2012;7:845–57. Akhtar MJ, Ahamed M, Kumar S, Khan MM, Ahmad J, Alrokayan SA. Zinc oxide nanoparticles selectively induce apoptosis in human cancer cells through reactive oxygen species. Int J Nanomed. 2012;7:845–57.
32.
go back to reference Alijani HQ, Pourseyedi S, Mahani MT, Khatami M. Green synthesis of zinc sulfide (ZnS) nanoparticles using Stevia rebaudiana Bertoni and evaluation of its cytotoxic properties. J Mol Struct. 2019;1175:214–8.CrossRef Alijani HQ, Pourseyedi S, Mahani MT, Khatami M. Green synthesis of zinc sulfide (ZnS) nanoparticles using Stevia rebaudiana Bertoni and evaluation of its cytotoxic properties. J Mol Struct. 2019;1175:214–8.CrossRef
33.
go back to reference Khezripour AR, Souri D, Tavafi H, Ghabooli M. Serial dilution bioassay for the detection of antibacterial potential of ZnSe quantum dots and their Fourier transform infra-red spectroscopy. Measurement. 2019;148:106939.CrossRef Khezripour AR, Souri D, Tavafi H, Ghabooli M. Serial dilution bioassay for the detection of antibacterial potential of ZnSe quantum dots and their Fourier transform infra-red spectroscopy. Measurement. 2019;148:106939.CrossRef
34.
go back to reference Souri D, Salimi N, Ghabooli M. Hydrothermal fabrication of pure ZnSe nanocrystals at different microwave irradiation times and their disc-diffusion antibacterial potential against Gram negative bacteria: Bio-optical advantages. Inorg Chem Commun. 2021;123:108345. Souri D, Salimi N, Ghabooli M. Hydrothermal fabrication of pure ZnSe nanocrystals at different microwave irradiation times and their disc-diffusion antibacterial potential against Gram negative bacteria: Bio-optical advantages. Inorg Chem Commun. 2021;123:108345.
35.
go back to reference Mir IA, Alam H, Priyadarshini E, et al. Antimicrobial and biocompatibility of highly fluorescent ZnSe core and ZnSe@ ZnS core-shell quantum dots. J Nanopart Res. 2018;20:1–11.CrossRef Mir IA, Alam H, Priyadarshini E, et al. Antimicrobial and biocompatibility of highly fluorescent ZnSe core and ZnSe@ ZnS core-shell quantum dots. J Nanopart Res. 2018;20:1–11.CrossRef
36.
go back to reference Abd El-Hamid MI, ES YE-N TMK et al. Promising Antibiofilm agents: recent breakthrough against Biofilm Producing Methicillin-Resistant Staphylococcus aureus. Antibiot (Basel Switzerland) Oct 3 2020;9(10). Abd El-Hamid MI, ES YE-N TMK et al. Promising Antibiofilm agents: recent breakthrough against Biofilm Producing Methicillin-Resistant Staphylococcus aureus. Antibiot (Basel Switzerland) Oct 3 2020;9(10).
37.
go back to reference GÜRKÖK S, Antimicrobial ÖZDALM. Antibiofilm and Antiurease activities of Microbially Synthesized Silver nanoparticles against Proteus mirabilis. Yüzüncü Yıl University Journal of the Institute of Science and Technology. 2023;28(2):359–69. GÜRKÖK S, Antimicrobial ÖZDALM. Antibiofilm and Antiurease activities of Microbially Synthesized Silver nanoparticles against Proteus mirabilis. Yüzüncü Yıl University Journal of the Institute of Science and Technology. 2023;28(2):359–69.
38.
go back to reference Abdelghany AM, Ayaad DM, Mahmoud SM. Antibacterial and energy gap correlation of PVA/SA biofilms doped with selenium nanoparticles. Biointerface Res Appl Chem. 2020;10:6280–8. Abdelghany AM, Ayaad DM, Mahmoud SM. Antibacterial and energy gap correlation of PVA/SA biofilms doped with selenium nanoparticles. Biointerface Res Appl Chem. 2020;10:6280–8.
39.
go back to reference Fulaz S, Vitale S, Quinn L, Casey E. Nanoparticle–biofilm interactions: the role of the EPS Matrix. Trends in Microbiology 2019/11/01/. 2019;27(11):915–26.CrossRef Fulaz S, Vitale S, Quinn L, Casey E. Nanoparticle–biofilm interactions: the role of the EPS Matrix. Trends in Microbiology 2019/11/01/. 2019;27(11):915–26.CrossRef
40.
go back to reference Mir IA, Rawat K, Bohidar H. Interaction of plasma proteins with ZnSe and ZnSe@ ZnS core-shell quantum dots. Colloids Surf a: Physicochemical Eng Aspects. 2017;520:131–7.CrossRef Mir IA, Rawat K, Bohidar H. Interaction of plasma proteins with ZnSe and ZnSe@ ZnS core-shell quantum dots. Colloids Surf a: Physicochemical Eng Aspects. 2017;520:131–7.CrossRef
41.
go back to reference Ge X, Cao Z, Chu L. The antioxidant effect of the metal and metal-oxide nanoparticles. Antioxid (Basel Switzerland). 2022;11(4):791. Ge X, Cao Z, Chu L. The antioxidant effect of the metal and metal-oxide nanoparticles. Antioxid (Basel Switzerland). 2022;11(4):791.
42.
go back to reference Liu Y, Kim S, Kim YJ et al. Green synthesis of gold nanoparticles using Euphrasia officinalis leaf extract to inhibit lipopolysaccharide-induced inflammation through NF-κB and JAK/STAT pathways in RAW 264.7 macrophages. 2019:2945–59. Liu Y, Kim S, Kim YJ et al. Green synthesis of gold nanoparticles using Euphrasia officinalis leaf extract to inhibit lipopolysaccharide-induced inflammation through NF-κB and JAK/STAT pathways in RAW 264.7 macrophages. 2019:2945–59.
44.
go back to reference Khalil I, Yehye WA, Etxeberria AE et al. Nanoantioxidants: recent trends in antioxidant delivery applications. Antioxid (Basel Switzerland) Dec 26 2019;9(1). Khalil I, Yehye WA, Etxeberria AE et al. Nanoantioxidants: recent trends in antioxidant delivery applications. Antioxid (Basel Switzerland) Dec 26 2019;9(1).
Metadata
Title
Biogenic zinc selenide nanoparticles fabricated using Rosmarinus officinalis leaf extract with potential biological activity
Authors
Shahram Ahmadi Somaghian
Seyedeh Zahra Mirzaei
Mohammad Ebrahim Khosravi Shakib
Abdolrazagh Marzban
Sarah Alsallameh
Hamed Esmaeil Lashgarian
Publication date
01-12-2024
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2024
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-023-04329-6

Other articles of this Issue 1/2024

BMC Complementary Medicine and Therapies 1/2024 Go to the issue