Skip to main content
Top
Published in: Virology Journal 1/2015

Open Access 01-12-2015 | research

Binding of the eukaryotic translation elongation factor 1A with the 5’UTR of HIV-1 genomic RNA is important for reverse transcription

Authors: Dongsheng Li, Ting Wei, Hongping Jin, Amanda Rose, Rui Wang, Min-Hsuan Lin, Kirsten Spann, David Harrich

Published in: Virology Journal | Issue 1/2015

Login to get access

Abstract

Background

The cellular protein eukaryotic translation elongation factor 1A (eEF1A) binds to aminoacylated transfer RNAs and delivers them to the ribosome during translation. eEF1A also binds to RNA secondary structures present in genomes of several RNA viruses and plays important roles in their replication. As a RNA binding protein, whether eEF1A can bind with HIV-1 genomic RNA has not been investigated and was the aim of the study.

Methods

RNA-protein interaction was determined by reversible crosslink co-immunoprecipitation (RC-Co-IP) and biolayer Interferometry assay (BLI). eEF1A binding region within RNA was mapped by deletion and mutation analysis. Virus with genomic RNA mutations were examined for eEF1A-RT interaction by proximity ligation assay, for reverse transcription by qPCR and for replication by CAp24 ELISA in cells.

Results

The interaction of eEF1A with 5’UTR of HIV-1 genomic RNA was detected in cells and in vitro. Truncation and substitution mutations in the 5’UTR RNA demonstrated that a stem-loop formed by nucleotides 142 to 170, which encompass a reported tRNA anticodon-like-element, binds to eEF1A. Mutations that altered the stem-loop structure by changing two highly conserved sequence clusters in the stem-loop region result in reduction of the interaction with eEF1A in vitro. HIV-1 virus harbouring the same 5’UTR mutations significantly reduced the interaction of eEF1A with HIV-1 reverse transcription complex (RTC), reverse transcription and replication.

Conclusion

eEF1A interacts with 5’UTR of HIV-1 genomic RNA and the interaction is important for late DNA synthesis in reverse transcription.
Literature
1.
go back to reference Li D, Wei T, Abbott CM, Harrich D. The unexpected roles of eukaryotic translation elongation factors in RNA virus replication and pathogenesis. Microbiol Mol Biol Rev. 2013;77(2):253–66.PubMedCentralPubMedCrossRef Li D, Wei T, Abbott CM, Harrich D. The unexpected roles of eukaryotic translation elongation factors in RNA virus replication and pathogenesis. Microbiol Mol Biol Rev. 2013;77(2):253–66.PubMedCentralPubMedCrossRef
3.
go back to reference Li Z, Pogany J, Panavas T, Xu K, Esposito AM, Kinzy TG, et al. Translation elongation factor 1A is a component of the tombusvirus replicase complex and affects the stability of the p33 replication co-factor. Virology. 2009;385(1):245–60.PubMedCentralPubMedCrossRef Li Z, Pogany J, Panavas T, Xu K, Esposito AM, Kinzy TG, et al. Translation elongation factor 1A is a component of the tombusvirus replicase complex and affects the stability of the p33 replication co-factor. Virology. 2009;385(1):245–60.PubMedCentralPubMedCrossRef
4.
go back to reference Davis WG, Blackwell JL, Shi PY, Brinton MA. Interaction between the cellular protein eEF1A and the 3'-terminal stem-loop of West Nile virus genomic RNA facilitates viral minus-strand RNA synthesis. J Virol. 2007;81(18):10172–87.PubMedCentralPubMedCrossRef Davis WG, Blackwell JL, Shi PY, Brinton MA. Interaction between the cellular protein eEF1A and the 3'-terminal stem-loop of West Nile virus genomic RNA facilitates viral minus-strand RNA synthesis. J Virol. 2007;81(18):10172–87.PubMedCentralPubMedCrossRef
5.
go back to reference Takeshita D, Tomita K. Assembly of Q{beta} viral RNA polymerase with host translational elongation factors EF-Tu and -Ts. Proc Nat Acad Sci USA. 2010;107(36):15733–8.PubMedCentralPubMedCrossRef Takeshita D, Tomita K. Assembly of Q{beta} viral RNA polymerase with host translational elongation factors EF-Tu and -Ts. Proc Nat Acad Sci USA. 2010;107(36):15733–8.PubMedCentralPubMedCrossRef
6.
7.
go back to reference Warren K, Warrilow D, Meredith L, Harrich D. Reverse transcriptase and cellular factors: regulators of HIV-1 reverse transcription. Viruses. 2009;1(3):873–94.PubMedCentralPubMedCrossRef Warren K, Warrilow D, Meredith L, Harrich D. Reverse transcriptase and cellular factors: regulators of HIV-1 reverse transcription. Viruses. 2009;1(3):873–94.PubMedCentralPubMedCrossRef
8.
go back to reference Warrilow D, Harrich D. HIV-1 replication from after cell entry to the nuclear periphery. Curr HIV Res. 2007;5(3):293–9.PubMedCrossRef Warrilow D, Harrich D. HIV-1 replication from after cell entry to the nuclear periphery. Curr HIV Res. 2007;5(3):293–9.PubMedCrossRef
9.
go back to reference Warrilow D, Meredith L, Davis A, Burrell C, Li P, Harrich D. Cell factors stimulate human immunodeficiency virus type 1 reverse transcription in vitro. J Virol. 2008;82(3):1425–37.PubMedCentralPubMedCrossRef Warrilow D, Meredith L, Davis A, Burrell C, Li P, Harrich D. Cell factors stimulate human immunodeficiency virus type 1 reverse transcription in vitro. J Virol. 2008;82(3):1425–37.PubMedCentralPubMedCrossRef
11.
go back to reference Willemsen NM, Hitchen EM, Bodetti TJ, Apolloni A, Warrilow D, Piller SC, et al. Protein methylation is required to maintain optimal HIV-1 infectivity. Retrovirology. 2006;3:92.PubMedCentralPubMedCrossRef Willemsen NM, Hitchen EM, Bodetti TJ, Apolloni A, Warrilow D, Piller SC, et al. Protein methylation is required to maintain optimal HIV-1 infectivity. Retrovirology. 2006;3:92.PubMedCentralPubMedCrossRef
12.
go back to reference Warren K, Wei T, Li D, Qin F, Warrilow D, Lin MH, et al. Eukaryotic elongation factor 1 complex subunits are critical HIV-1 reverse transcription cofactors. Proc Nat Acad Sci USA. 2012;109(24):9587–92.PubMedCentralPubMedCrossRef Warren K, Wei T, Li D, Qin F, Warrilow D, Lin MH, et al. Eukaryotic elongation factor 1 complex subunits are critical HIV-1 reverse transcription cofactors. Proc Nat Acad Sci USA. 2012;109(24):9587–92.PubMedCentralPubMedCrossRef
13.
go back to reference Cimarelli A, Luban J. Translation elongation factor 1-alpha interacts specifically with the human immunodeficiency virus type 1 Gag polyprotein. J Virol. 1999;73(7):5388–401.PubMedCentralPubMed Cimarelli A, Luban J. Translation elongation factor 1-alpha interacts specifically with the human immunodeficiency virus type 1 Gag polyprotein. J Virol. 1999;73(7):5388–401.PubMedCentralPubMed
14.
go back to reference Isel C, Lanchy JM, Le Grice SF, Ehresmann C, Ehresmann B, Marquet R. Specific initiation and switch to elongation of human immunodeficiency virus type 1 reverse transcription require the post-transcriptional modifications of primer tRNA3Lys. EMBO J. 1996;15(4):917–24.PubMedCentralPubMed Isel C, Lanchy JM, Le Grice SF, Ehresmann C, Ehresmann B, Marquet R. Specific initiation and switch to elongation of human immunodeficiency virus type 1 reverse transcription require the post-transcriptional modifications of primer tRNA3Lys. EMBO J. 1996;15(4):917–24.PubMedCentralPubMed
15.
go back to reference Jones CP, Saadatmand J, Kleiman L, Musier-Forsyth K. Molecular mimicry of human tRNALys anti-codon domain by HIV-1 RNA genome facilitates tRNA primer annealing. RNA. 2013;19(2):219–29.PubMedCentralPubMedCrossRef Jones CP, Saadatmand J, Kleiman L, Musier-Forsyth K. Molecular mimicry of human tRNALys anti-codon domain by HIV-1 RNA genome facilitates tRNA primer annealing. RNA. 2013;19(2):219–29.PubMedCentralPubMedCrossRef
16.
go back to reference Jones CP, Cantara WA, Olson ED, Musier-Forsyth K. Small-angle X-ray scattering-derived structure of the HIV-1 5' UTR reveals 3D tRNA mimicry. Proc Nat Acad Sci USA. 2014;111(9):3395–400.PubMedCentralPubMedCrossRef Jones CP, Cantara WA, Olson ED, Musier-Forsyth K. Small-angle X-ray scattering-derived structure of the HIV-1 5' UTR reveals 3D tRNA mimicry. Proc Nat Acad Sci USA. 2014;111(9):3395–400.PubMedCentralPubMedCrossRef
17.
go back to reference Watts JM, Dang KK, Gorelick RJ, Leonard CW, Bess Jr JW, Swanstrom R, et al. Architecture and secondary structure of an entire HIV-1 RNA genome. Nature. 2009;460(7256):711–6.PubMedCentralPubMedCrossRef Watts JM, Dang KK, Gorelick RJ, Leonard CW, Bess Jr JW, Swanstrom R, et al. Architecture and secondary structure of an entire HIV-1 RNA genome. Nature. 2009;460(7256):711–6.PubMedCentralPubMedCrossRef
18.
go back to reference De Guzman RN, Wu ZR, Stalling CC, Pappalardo L, Borer PN, Summers MF. Structure of the HIV-1 nucleocapsid protein bound to the SL3 psi-RNA recognition element. Science. 1998;279(5349):384–8.PubMedCrossRef De Guzman RN, Wu ZR, Stalling CC, Pappalardo L, Borer PN, Summers MF. Structure of the HIV-1 nucleocapsid protein bound to the SL3 psi-RNA recognition element. Science. 1998;279(5349):384–8.PubMedCrossRef
19.
go back to reference Wilkinson KA, Gorelick RJ, Vasa SM, Guex N, Rein A, Mathews DH, et al. High-throughput SHAPE analysis reveals structures in HIV-1 genomic RNA strongly conserved across distinct biological states. PLoS Biol. 2008;6(4), e96.PubMedCentralPubMedCrossRef Wilkinson KA, Gorelick RJ, Vasa SM, Guex N, Rein A, Mathews DH, et al. High-throughput SHAPE analysis reveals structures in HIV-1 genomic RNA strongly conserved across distinct biological states. PLoS Biol. 2008;6(4), e96.PubMedCentralPubMedCrossRef
20.
go back to reference Isel C, Westhof E, Massire C, Le Grice SF, Ehresmann B, Ehresmann C, et al. Structural basis for the specificity of the initiation of HIV-1 reverse transcription. EMBO J. 1999;18(4):1038–48.PubMedCentralPubMedCrossRef Isel C, Westhof E, Massire C, Le Grice SF, Ehresmann B, Ehresmann C, et al. Structural basis for the specificity of the initiation of HIV-1 reverse transcription. EMBO J. 1999;18(4):1038–48.PubMedCentralPubMedCrossRef
22.
go back to reference Cen S, Khorchid A, Javanbakht H, Gabor J, Stello T, Shiba K, et al. Incorporation of lysyl-tRNA synthetase into human immunodeficiency virus type 1. J Virol. 2001;75(11):5043–8.PubMedCentralPubMedCrossRef Cen S, Khorchid A, Javanbakht H, Gabor J, Stello T, Shiba K, et al. Incorporation of lysyl-tRNA synthetase into human immunodeficiency virus type 1. J Virol. 2001;75(11):5043–8.PubMedCentralPubMedCrossRef
23.
go back to reference Cen S, Javanbakht H, Kim S, Shiba K, Craven R, Rein A, et al. Retrovirus-specific packaging of aminoacyl-tRNA synthetases with cognate primer tRNAs. J Virol. 2002;76(24):13111–5.PubMedCentralPubMedCrossRef Cen S, Javanbakht H, Kim S, Shiba K, Craven R, Rein A, et al. Retrovirus-specific packaging of aminoacyl-tRNA synthetases with cognate primer tRNAs. J Virol. 2002;76(24):13111–5.PubMedCentralPubMedCrossRef
24.
go back to reference Blumenthal T, Carmichael GG. RNA replication: function and structure of Qbeta-replicase. Annu Rev Biochem. 1979;48:525–48.PubMedCrossRef Blumenthal T, Carmichael GG. RNA replication: function and structure of Qbeta-replicase. Annu Rev Biochem. 1979;48:525–48.PubMedCrossRef
26.
go back to reference Matsuda D, Yoshinari S, Dreher TW. eEF1A binding to aminoacylated viral RNA represses minus strand synthesis by TYMV RNA-dependent RNA polymerase. Virology. 2004;321(1):47–56.PubMedCrossRef Matsuda D, Yoshinari S, Dreher TW. eEF1A binding to aminoacylated viral RNA represses minus strand synthesis by TYMV RNA-dependent RNA polymerase. Virology. 2004;321(1):47–56.PubMedCrossRef
28.
go back to reference Dreher TW, Uhlenbeck OC, Browning KS. Quantitative assessment of EF-1alpha.GTP binding to aminoacyl-tRNAs, aminoacyl-viral RNA, and tRNA shows close correspondence to the RNA binding properties of EF-Tu. J Biol Chem. 1999;274(2):666–72.PubMedCrossRef Dreher TW, Uhlenbeck OC, Browning KS. Quantitative assessment of EF-1alpha.GTP binding to aminoacyl-tRNAs, aminoacyl-viral RNA, and tRNA shows close correspondence to the RNA binding properties of EF-Tu. J Biol Chem. 1999;274(2):666–72.PubMedCrossRef
30.
go back to reference Blackwell JL, Brinton MA. Translation elongation factor-1 alpha interacts with the 3' stem-loop region of West Nile virus genomic RNA. J Virol. 1997;71(9):6433–44.PubMedCentralPubMed Blackwell JL, Brinton MA. Translation elongation factor-1 alpha interacts with the 3' stem-loop region of West Nile virus genomic RNA. J Virol. 1997;71(9):6433–44.PubMedCentralPubMed
31.
go back to reference Sikora D, Greco-Stewart VS, Miron P, Pelchat M. The hepatitis delta virus RNA genome interacts with eEF1A1, p54(nrb), hnRNP-L, GAPDH and ASF/SF2. Virology. 2009;390(1):71–8.PubMedCrossRef Sikora D, Greco-Stewart VS, Miron P, Pelchat M. The hepatitis delta virus RNA genome interacts with eEF1A1, p54(nrb), hnRNP-L, GAPDH and ASF/SF2. Virology. 2009;390(1):71–8.PubMedCrossRef
32.
go back to reference Abrahem A, Pelchat M. Formation of an RNA polymerase II preinitiation complex on an RNA promoter derived from the hepatitis delta virus RNA genome. Nucleic Acids Res. 2008;36(16):5201–11.PubMedCentralPubMedCrossRef Abrahem A, Pelchat M. Formation of an RNA polymerase II preinitiation complex on an RNA promoter derived from the hepatitis delta virus RNA genome. Nucleic Acids Res. 2008;36(16):5201–11.PubMedCentralPubMedCrossRef
33.
go back to reference Andino R, Rieckhof GE, Achacoso PL, Baltimore D. Poliovirus RNA synthesis utilizes an RNP complex formed around the 5'-end of viral RNA. EMBO J. 1993;12(9):3587–98.PubMedCentralPubMed Andino R, Rieckhof GE, Achacoso PL, Baltimore D. Poliovirus RNA synthesis utilizes an RNP complex formed around the 5'-end of viral RNA. EMBO J. 1993;12(9):3587–98.PubMedCentralPubMed
34.
go back to reference Andino R, Rieckhof GE, Baltimore D. A functional ribonucleoprotein complex forms around the 5' end of poliovirus RNA. Cell. 1990;63(2):369–80.PubMedCrossRef Andino R, Rieckhof GE, Baltimore D. A functional ribonucleoprotein complex forms around the 5' end of poliovirus RNA. Cell. 1990;63(2):369–80.PubMedCrossRef
35.
go back to reference Allouch A, Cereseto A. Identification of cellular factors binding to acetylated HIV-1 integrase. Amino Acids. 2011;41(5):1137–45.PubMedCrossRef Allouch A, Cereseto A. Identification of cellular factors binding to acetylated HIV-1 integrase. Amino Acids. 2011;41(5):1137–45.PubMedCrossRef
36.
go back to reference Lin MH, Sivakumaran H, Apolloni A, Wei T, Jans DA, Harrich D. Nullbasic, a potent anti-HIV tat mutant, induces CRM1-dependent disruption of hiv rev trafficking. PLoS One. 2012;7(12), e51466.PubMedCentralPubMedCrossRef Lin MH, Sivakumaran H, Apolloni A, Wei T, Jans DA, Harrich D. Nullbasic, a potent anti-HIV tat mutant, induces CRM1-dependent disruption of hiv rev trafficking. PLoS One. 2012;7(12), e51466.PubMedCentralPubMedCrossRef
37.
38.
go back to reference Niranjanakumari S, Lasda E, Brazas R, Garcia-Blanco MA. Reversible cross-linking combined with immunoprecipitation to study RNA-protein interactions in vivo. Methods. 2002;26(2):182–90.PubMedCrossRef Niranjanakumari S, Lasda E, Brazas R, Garcia-Blanco MA. Reversible cross-linking combined with immunoprecipitation to study RNA-protein interactions in vivo. Methods. 2002;26(2):182–90.PubMedCrossRef
39.
go back to reference Apolloni A, Lin MH, Sivakumaran H, Li D, Kershaw MH, Harrich D. A mutant Tat protein provides strong protection from HIV-1 infection in human CD4+ T cells. Hum Gene Ther. 2013;24(3):270–82.PubMedCentralPubMedCrossRef Apolloni A, Lin MH, Sivakumaran H, Li D, Kershaw MH, Harrich D. A mutant Tat protein provides strong protection from HIV-1 infection in human CD4+ T cells. Hum Gene Ther. 2013;24(3):270–82.PubMedCentralPubMedCrossRef
40.
go back to reference Lin MH, Apolloni A, Cutillas V, Sivakumaran H, Martin S, Li D, et al. A mutant tat protein inhibits HIV-1 reverse transcription by targeting the reverse transcription complex. J Virol. 2015;89(9):4827–36.PubMedCrossRef Lin MH, Apolloni A, Cutillas V, Sivakumaran H, Martin S, Li D, et al. A mutant tat protein inhibits HIV-1 reverse transcription by targeting the reverse transcription complex. J Virol. 2015;89(9):4827–36.PubMedCrossRef
Metadata
Title
Binding of the eukaryotic translation elongation factor 1A with the 5’UTR of HIV-1 genomic RNA is important for reverse transcription
Authors
Dongsheng Li
Ting Wei
Hongping Jin
Amanda Rose
Rui Wang
Min-Hsuan Lin
Kirsten Spann
David Harrich
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2015
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-015-0337-x

Other articles of this Issue 1/2015

Virology Journal 1/2015 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.