Skip to main content
Top
Published in: Journal of Neuro-Oncology 1/2014

01-08-2014 | Clinical Study

Bevacizumab treatment leads to observable morphological and metabolic changes in brain radiation necrosis

Authors: Shingo Yonezawa, Kazuhiro Miwa, Jun Shinoda, Yuichi Nomura, Yoshitaka Asano, Noriyuki Nakayama, Naoyuki Ohe, Hirohito Yano, Toru Iwama

Published in: Journal of Neuro-Oncology | Issue 1/2014

Login to get access

Abstract

We investigated morphological and metabolic changes of radiation necrosis (RN) of the brain following bevacizumab (BEV) treatment by using neuroimaging. Nine patients with symptomatic RN, who had already been treated with radiation therapy for malignant brain tumors (6 glioblastomas, 1 anaplastic oligodendroglioma, and 2 metastatic brain tumors), were enrolled in this prospective clinical study. RN diagnosis was neuroradiologically determined with Gd-enhanced MRI and 11C-methionine positron emission tomography (MET-PET). RN clinical and radiological changes in MRI, magnetic resonance spectroscopy (MRS) and PET were assessed following BEV therapy. Karnofsky performance status scores improved in seven patients (77.8 %). Both volumes of the Gd-enhanced area and FLAIR-high area from MRI decreased in all patients after BEV therapy and the mean size reduction rates of the lesions were 80.0 and 65.0 %, respectively. MRS, which was performed in three patients, showed a significant reduction in Cho/Cr ratio after BEV therapy. Lesion/normal tissue (L/N) ratios in MET- and 11C-choline positron emission tomography (CHO-PET) decreased in 8 (89 %) and 9 patients (100 %), respectively, and the mean L/N ratio reduction rates were 24.4 and 60.7 %, respectively. BEV-related adverse effects of grade 1 or 2 (anemia, neutropenia and lymphocytopenia) occurred in three patients. These results demonstrated that BEV therapy improved RN both clinically and radiologically. BEV therapeutic mechanisms on RN have been suggested to be related not only to the effect on vascular permeability reduction by repairing the blood–brain barrier, but also to the effect on suppression of tissue biological activity, such as immunoreactions and inflammation.
Literature
1.
go back to reference Glantz MJ, Burger PC, Friedman AH, Radtke RA, Massey EW, Schold SC Jr (1994) Treatment of radiation-induced nervous system injury with heparin and warfarin. Neurology 44:2020–2027PubMedCrossRef Glantz MJ, Burger PC, Friedman AH, Radtke RA, Massey EW, Schold SC Jr (1994) Treatment of radiation-induced nervous system injury with heparin and warfarin. Neurology 44:2020–2027PubMedCrossRef
2.
go back to reference Kohshi K, Imada H, Nomoto S, Yamaguchi R, Abe H, Yamamoto H (2003) Successful treatment of radiation-induced brain necrosis by hyperbaric oxygen therapy. J Neurol Sci 209:115–117PubMedCrossRef Kohshi K, Imada H, Nomoto S, Yamaguchi R, Abe H, Yamamoto H (2003) Successful treatment of radiation-induced brain necrosis by hyperbaric oxygen therapy. J Neurol Sci 209:115–117PubMedCrossRef
3.
go back to reference McPherson CM, Warnick RE (2004) Results of contemporary surgical management of radiation necrosis using frameless stereotaxis and intraoperative magnetic resonance imaging. J Neurooncol 68:41–47PubMedCrossRef McPherson CM, Warnick RE (2004) Results of contemporary surgical management of radiation necrosis using frameless stereotaxis and intraoperative magnetic resonance imaging. J Neurooncol 68:41–47PubMedCrossRef
4.
go back to reference Presta LG, Chen H, O’Connor SJ, Chisholm V, Meng YG, Krummen L et al (1997) Humanization of an anti-vascular endothelial growth factor monoclonal antibody for the therapy of solid tumors and other disorders. Cancer Res 57:4593–4599PubMed Presta LG, Chen H, O’Connor SJ, Chisholm V, Meng YG, Krummen L et al (1997) Humanization of an anti-vascular endothelial growth factor monoclonal antibody for the therapy of solid tumors and other disorders. Cancer Res 57:4593–4599PubMed
5.
go back to reference Nordal RA, Nagy A, Pintilie M, Wong CS (2004) Hypoxia and hypoxia-inducible factor-1 target genes in central nervous system radiation injury: a role for vascular endothelial growth factor. Clin Cancer Res 15:3342–3353CrossRef Nordal RA, Nagy A, Pintilie M, Wong CS (2004) Hypoxia and hypoxia-inducible factor-1 target genes in central nervous system radiation injury: a role for vascular endothelial growth factor. Clin Cancer Res 15:3342–3353CrossRef
6.
go back to reference Nonoguchi N, Miyatake S, Fukumoto M, Furuse M, Hiramatsu R, Kawabata S et al (2011) The distribution of vascular endothelial growth factor-producing cells in clinical radiation necrosis of the brain: pathological consideration of their potential roles. J Neurooncol 105:423–431PubMedCrossRef Nonoguchi N, Miyatake S, Fukumoto M, Furuse M, Hiramatsu R, Kawabata S et al (2011) The distribution of vascular endothelial growth factor-producing cells in clinical radiation necrosis of the brain: pathological consideration of their potential roles. J Neurooncol 105:423–431PubMedCrossRef
7.
go back to reference Gonzalez J, Kumar AJ, Conrad CA, Levin VA (2007) Effect of bevacizumab on radiation necrosis of the brain. Int J Radiat Oncol Biol Phys 67:323–326PubMedCrossRef Gonzalez J, Kumar AJ, Conrad CA, Levin VA (2007) Effect of bevacizumab on radiation necrosis of the brain. Int J Radiat Oncol Biol Phys 67:323–326PubMedCrossRef
8.
go back to reference Levin VA, Bidaut L, Hou P, Kumar AJ, Wefel JS, Bekele BN et al (2011) Randomized double-blind placebo-controlled trial of bevacizumab therapy for radiation necrosis of the central nervous system. Int J Radiat Oncol Biol Phys 79:1487–1495PubMedCentralPubMedCrossRef Levin VA, Bidaut L, Hou P, Kumar AJ, Wefel JS, Bekele BN et al (2011) Randomized double-blind placebo-controlled trial of bevacizumab therapy for radiation necrosis of the central nervous system. Int J Radiat Oncol Biol Phys 79:1487–1495PubMedCentralPubMedCrossRef
9.
go back to reference Furuse M, Kawabata S, Kuroiwa T, Miyatake S (2011) Repeated treatments with bevacizumab for recurrent radiation necrosis in patients with malignant brain tumors: a report of 2 cases. J Neurooncol 102:471–475PubMedCrossRef Furuse M, Kawabata S, Kuroiwa T, Miyatake S (2011) Repeated treatments with bevacizumab for recurrent radiation necrosis in patients with malignant brain tumors: a report of 2 cases. J Neurooncol 102:471–475PubMedCrossRef
10.
go back to reference Torcuator R, Zuniga R, Mohan YS, Rock J, Doyle T, Anderson J et al (2009) Initial experience with bevacizumab treatment for biopsy confirmed cerebral radiation necrosis. J Neurooncol 94:63–68PubMedCrossRef Torcuator R, Zuniga R, Mohan YS, Rock J, Doyle T, Anderson J et al (2009) Initial experience with bevacizumab treatment for biopsy confirmed cerebral radiation necrosis. J Neurooncol 94:63–68PubMedCrossRef
11.
go back to reference Miwa K, Matsuo M, Shinoda J, Oka N, Kato T, Okumura A et al (2008) Simultaneous integrated boost technique by helical tomotherapy for the treatment of glioblastoma multiforme with 11C-methionine PET: report of three cases. J Neurooncol 87:333–339PubMedCrossRef Miwa K, Matsuo M, Shinoda J, Oka N, Kato T, Okumura A et al (2008) Simultaneous integrated boost technique by helical tomotherapy for the treatment of glioblastoma multiforme with 11C-methionine PET: report of three cases. J Neurooncol 87:333–339PubMedCrossRef
12.
go back to reference Matsuo M, Miwa K, Tanaka O, Shinoda J, Nishibori H, Tsuge Y et al (2012) Impact of [11C]methionine positron emission tomography for target definition of glioblastoma multiforme in radiation therapy planning. Int J Radiat Oncol Biol Phys 82:83–89PubMedCrossRef Matsuo M, Miwa K, Tanaka O, Shinoda J, Nishibori H, Tsuge Y et al (2012) Impact of [11C]methionine positron emission tomography for target definition of glioblastoma multiforme in radiation therapy planning. Int J Radiat Oncol Biol Phys 82:83–89PubMedCrossRef
13.
go back to reference Takenaka S, Asano Y, Shinoda J, Nomura Y, Yonezawa S, Miwa K, et al (2014) Comparison of 11C-methionine, 11C-choline, and 18F-fluorodeoxyglucose-PET for distinguishing glioma recurrence from radiation necrosis. Neurol Med Chir (Tokyo). 54(4):280–289 Takenaka S, Asano Y, Shinoda J, Nomura Y, Yonezawa S, Miwa K, et al (2014) Comparison of 11C-methionine, 11C-choline, and 18F-fluorodeoxyglucose-PET for distinguishing glioma recurrence from radiation necrosis. Neurol Med Chir (Tokyo). 54(4):280–289
14.
go back to reference Shinoda J, Yano H, Ando H, Ohe N, Sakai N, Saio M et al (2002) Radiological response and histological changes in malignant astrocytic tumors after stereotactic radiosurgery. Brain Tumor Pathol 19:83–92PubMedCrossRef Shinoda J, Yano H, Ando H, Ohe N, Sakai N, Saio M et al (2002) Radiological response and histological changes in malignant astrocytic tumors after stereotactic radiosurgery. Brain Tumor Pathol 19:83–92PubMedCrossRef
15.
go back to reference Amin A, Moustafa H, Ahmed E, El-Toukhy M (2012) Glioma residual or recurrence versus radiation necrosis: accuracy of pentavalent technetium-99 m-di mercaptosuccinic acid [Tc-99 m (v) DMSA] brain SPECT compared to proton magnetic resonance spectroscopy (H1-MRS): initial results. J Neurooncol 106:579–587PubMedCrossRef Amin A, Moustafa H, Ahmed E, El-Toukhy M (2012) Glioma residual or recurrence versus radiation necrosis: accuracy of pentavalent technetium-99 m-di mercaptosuccinic acid [Tc-99 m (v) DMSA] brain SPECT compared to proton magnetic resonance spectroscopy (H1-MRS): initial results. J Neurooncol 106:579–587PubMedCrossRef
16.
go back to reference Matoba M, Kondou T, Tanaka T, Kitadate M, Oota K, Tonami H (2010) Noninvasive monitoring of radiation-induced early therapeutic response using high-resolution MR imaging and proton MR spectroscopy in VX2 carcinoma. J Radiat Res 51:690–705 Matoba M, Kondou T, Tanaka T, Kitadate M, Oota K, Tonami H (2010) Noninvasive monitoring of radiation-induced early therapeutic response using high-resolution MR imaging and proton MR spectroscopy in VX2 carcinoma. J Radiat Res 51:690–705
17.
go back to reference Nakajima T, Kumabe T, Kanamori M, Saito R, Tashiro R, Watanabe M et al (2009) Differential diagnosis between radiation necrosis and glioma progression using sequential proton magnetic resonance spectroscopy and methionine positron emission tomography. Neurol Med Chir (Tokyo) 49:394–401CrossRef Nakajima T, Kumabe T, Kanamori M, Saito R, Tashiro R, Watanabe M et al (2009) Differential diagnosis between radiation necrosis and glioma progression using sequential proton magnetic resonance spectroscopy and methionine positron emission tomography. Neurol Med Chir (Tokyo) 49:394–401CrossRef
18.
go back to reference Moravan MJ, Olschowka JA, Williams JP, O’Banion MK (2011) Cranial irradiation leads to acute and persistent neuroinflammation with delayed increases in T-cell infiltration and CD11c expression in C57BL/6 mouse brain. Radiat Res 176:459–473PubMedCentralPubMedCrossRef Moravan MJ, Olschowka JA, Williams JP, O’Banion MK (2011) Cranial irradiation leads to acute and persistent neuroinflammation with delayed increases in T-cell infiltration and CD11c expression in C57BL/6 mouse brain. Radiat Res 176:459–473PubMedCentralPubMedCrossRef
19.
go back to reference Zhao W, Robbins ME (2009) Inflammation and chronic oxdative stress in radiation-induced late normal tissue injury: therapeutic implications. Curr Med Chem 16:130–143PubMedCrossRef Zhao W, Robbins ME (2009) Inflammation and chronic oxdative stress in radiation-induced late normal tissue injury: therapeutic implications. Curr Med Chem 16:130–143PubMedCrossRef
20.
go back to reference Ogawa T, Shishido F, Kanno I, Inugami A, Fujita H, Murakami M et al (1993) Cerebral glioma: evaluation with methionine PET. Radiology 186:45–53PubMedCrossRef Ogawa T, Shishido F, Kanno I, Inugami A, Fujita H, Murakami M et al (1993) Cerebral glioma: evaluation with methionine PET. Radiology 186:45–53PubMedCrossRef
21.
go back to reference Aki T, Nakayama N, Yonezawa S, Takenaka S, Miwa K, Asano Y et al (2012) Evaluation of brain tumors using dynamic 11C-methinone-PET. J Neurooncol 109:115–122PubMedCrossRef Aki T, Nakayama N, Yonezawa S, Takenaka S, Miwa K, Asano Y et al (2012) Evaluation of brain tumors using dynamic 11C-methinone-PET. J Neurooncol 109:115–122PubMedCrossRef
22.
go back to reference De Witte O, Goldberg I, Wikler D, Rorive S, Damhaut P, Monclus M et al (2001) Positron emission tomography with injection of methionine as a prognostic factor in glioma. J Neurosurg 95:746–750PubMedCrossRef De Witte O, Goldberg I, Wikler D, Rorive S, Damhaut P, Monclus M et al (2001) Positron emission tomography with injection of methionine as a prognostic factor in glioma. J Neurosurg 95:746–750PubMedCrossRef
23.
go back to reference Herholz K, Hölzer T, Bauer B, Schröder R, Voges J, Ernestus RI et al (1998) 11C-methionine PET for differential diagnosis of low grade gliomas. Neurology 50:1316–1322PubMedCrossRef Herholz K, Hölzer T, Bauer B, Schröder R, Voges J, Ernestus RI et al (1998) 11C-methionine PET for differential diagnosis of low grade gliomas. Neurology 50:1316–1322PubMedCrossRef
24.
go back to reference Kato T, Shinoda J, Nakayama N, Miwa K, Okumura A, Yano H et al (2008) Metabolic assessment of gliomas using 11C-methionine, 18F-fluorodeoxyglucose, and 11C-choline positron-emission tomography. AJNR Am J Neuroradiol 29:1176–1182PubMedCrossRef Kato T, Shinoda J, Nakayama N, Miwa K, Okumura A, Yano H et al (2008) Metabolic assessment of gliomas using 11C-methionine, 18F-fluorodeoxyglucose, and 11C-choline positron-emission tomography. AJNR Am J Neuroradiol 29:1176–1182PubMedCrossRef
25.
go back to reference Nariai T, Tanaka Y, Wakimoto H, Aoyagi M, Tamaki M, Ishiwata K et al (2005) Usefulness of l-[methyl-11C] methionine-positron emission tomography as a biological monitoring tool in the treatment of glioma. J Neurosurg 103:498–507PubMedCrossRef Nariai T, Tanaka Y, Wakimoto H, Aoyagi M, Tamaki M, Ishiwata K et al (2005) Usefulness of l-[methyl-11C] methionine-positron emission tomography as a biological monitoring tool in the treatment of glioma. J Neurosurg 103:498–507PubMedCrossRef
26.
go back to reference Ogawa T, Inugami A, Hatazawa J, Kanno I, Murakami M, Yasui N et al (1996) Clinical positron emission tomography for brain tumors: comparison of fludeoxyglucose F 18 and L-methyl-11C-methionine. AJNR Am J Neuroradiol 17:345–353PubMed Ogawa T, Inugami A, Hatazawa J, Kanno I, Murakami M, Yasui N et al (1996) Clinical positron emission tomography for brain tumors: comparison of fludeoxyglucose F 18 and L-methyl-11C-methionine. AJNR Am J Neuroradiol 17:345–353PubMed
27.
go back to reference Tovi M, Lilja A, Bergström M, Ericsson A, Bergström K, Hartman M (1990) Delineation of gliomas with magnetic resonance imaging using Gd-DTPA in comparison with computed tomography and positron emission tomography. Acta Radiol 31:417–429PubMedCrossRef Tovi M, Lilja A, Bergström M, Ericsson A, Bergström K, Hartman M (1990) Delineation of gliomas with magnetic resonance imaging using Gd-DTPA in comparison with computed tomography and positron emission tomography. Acta Radiol 31:417–429PubMedCrossRef
28.
go back to reference Ohtani T, Kurihara H, Ishiuchi S, Saito N, Oriuchi N, Inoue T et al (2001) Brain tumour imaging with carbon-11 choline: comparison with FDG PET and gadolinium-enhanced MR imaging. Eur J Nucl Med 28:1664–1670PubMedCrossRef Ohtani T, Kurihara H, Ishiuchi S, Saito N, Oriuchi N, Inoue T et al (2001) Brain tumour imaging with carbon-11 choline: comparison with FDG PET and gadolinium-enhanced MR imaging. Eur J Nucl Med 28:1664–1670PubMedCrossRef
29.
go back to reference Kureshi SA, Hofman FM, Schneider JH, Chin LS, Apuzzo ML, Hinton DR (1994) Cytokine expression in radiation-induced delayed cerebral injury. Neurosurgery 35:822–830PubMedCrossRef Kureshi SA, Hofman FM, Schneider JH, Chin LS, Apuzzo ML, Hinton DR (1994) Cytokine expression in radiation-induced delayed cerebral injury. Neurosurgery 35:822–830PubMedCrossRef
30.
go back to reference Chiang CS, McBride WH, Withers HR (1993) Radiation-induced astrocytic and microglial responses in mouse brain. Radiother Oncol 29:60–68PubMedCrossRef Chiang CS, McBride WH, Withers HR (1993) Radiation-induced astrocytic and microglial responses in mouse brain. Radiother Oncol 29:60–68PubMedCrossRef
31.
go back to reference Tsuyuguchi N, Sunada I, Iwai Y, Yamanaka K, Tanaka K, Takami T et al (2003) Methionine positron emission tomography of recurrent metastatic brain tumor and radiation necrosis after stereotactic radiosurgery: is a differential diagnosis possible? J Neurosurg 98:1056–1064PubMedCrossRef Tsuyuguchi N, Sunada I, Iwai Y, Yamanaka K, Tanaka K, Takami T et al (2003) Methionine positron emission tomography of recurrent metastatic brain tumor and radiation necrosis after stereotactic radiosurgery: is a differential diagnosis possible? J Neurosurg 98:1056–1064PubMedCrossRef
32.
go back to reference Friedman HS, Prados MD, Wen PY, Mikkelsen T, Schiff D, Abrey LE et al (2009) Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J Clin Oncol 27:4733–4740PubMedCrossRef Friedman HS, Prados MD, Wen PY, Mikkelsen T, Schiff D, Abrey LE et al (2009) Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J Clin Oncol 27:4733–4740PubMedCrossRef
33.
go back to reference Kreisl TN, Kim L, Moore K, Duic P, Royce C, Stroud I et al (2009) Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J Clin Oncol 27:740–745PubMedCentralPubMedCrossRef Kreisl TN, Kim L, Moore K, Duic P, Royce C, Stroud I et al (2009) Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J Clin Oncol 27:740–745PubMedCentralPubMedCrossRef
34.
go back to reference Lai A, Tran A, Nghiemphu PL, Pope WB, Solis OE, Selch M et al (2010) Phase II study of bevacizumab plus temozolomide during and after radiation therapy for patients with newly diagnosed glioblastoma multiforme. J Clin Oncol 29:142–148PubMedCentralPubMedCrossRef Lai A, Tran A, Nghiemphu PL, Pope WB, Solis OE, Selch M et al (2010) Phase II study of bevacizumab plus temozolomide during and after radiation therapy for patients with newly diagnosed glioblastoma multiforme. J Clin Oncol 29:142–148PubMedCentralPubMedCrossRef
35.
go back to reference Narayana A, Gruber D, Kunnakkat S, Golfinos JG, Parker E, Raza S et al (2012) A clinical trial of bevacizumab, temozolomide, and radiation for newly diagnosed glioblastoma. J Neurosurg 116:341–345PubMedCrossRef Narayana A, Gruber D, Kunnakkat S, Golfinos JG, Parker E, Raza S et al (2012) A clinical trial of bevacizumab, temozolomide, and radiation for newly diagnosed glioblastoma. J Neurosurg 116:341–345PubMedCrossRef
36.
go back to reference Vredenburgh JJ, Desjardins A, Herndon JE II, Marcello J, Reardon DA, Quinn JA et al (2007) Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J Clin Oncol 25:4722–4729PubMedCrossRef Vredenburgh JJ, Desjardins A, Herndon JE II, Marcello J, Reardon DA, Quinn JA et al (2007) Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J Clin Oncol 25:4722–4729PubMedCrossRef
Metadata
Title
Bevacizumab treatment leads to observable morphological and metabolic changes in brain radiation necrosis
Authors
Shingo Yonezawa
Kazuhiro Miwa
Jun Shinoda
Yuichi Nomura
Yoshitaka Asano
Noriyuki Nakayama
Naoyuki Ohe
Hirohito Yano
Toru Iwama
Publication date
01-08-2014
Publisher
Springer US
Published in
Journal of Neuro-Oncology / Issue 1/2014
Print ISSN: 0167-594X
Electronic ISSN: 1573-7373
DOI
https://doi.org/10.1007/s11060-014-1453-y

Other articles of this Issue 1/2014

Journal of Neuro-Oncology 1/2014 Go to the issue