Skip to main content
Top
Published in: Journal of Neuro-Oncology 1/2012

01-08-2012 | Clinical Study

Evaluation of brain tumors using dynamic 11C-methionine-PET

Authors: Tatsuki Aki, Noriyuki Nakayama, Shingo Yonezawa, Syunsuke Takenaka, Kazuhiro Miwa, Yoshitaka Asano, Jun Shinoda, Hirohito Yano, Toru Iwama

Published in: Journal of Neuro-Oncology | Issue 1/2012

Login to get access

Abstract

The aim of this study is to assess whether dynamic imaging of 11C-methionine (MET) uptake on positron emission tomography (PET) is useful for the differential diagnosis of brain tumor histology. Regional MET uptake in static brain PET scans from three consecutive phases (5–15, 15–25, and 25–35 min) after intravenous injection were measured in 144 patients with brain tumors. Regions of interest (ROI) were placed in the pituitary gland, confluence, choroid plexus, coronal radiation, brainstem, frontal cortex, parietal cortex, cerebellum, and brain tumors. The standard uptake value (SUV) of the ROIs in the normal brain structures and brain tumors were measured, and the mean MET SUV region/normal frontal lobe cortex uptake ratio (R/N ratio) of the normal brain structures and the maximum MET SUV tumor/normal frontal cortex uptake ratio (T/N ratio) were evaluated semi-quantitatively. There were significant dynamic declines of the mean MET R/N ratio in the normal pituitary gland and confluence; however, there were significant dynamic increases in white matter. Significant dynamic decrease of the maximum MET T/N ratio was seen in meningiomas and oligodendrocytic tumors, whereas significant dynamic increase was seen in glioblastomas and malignant lymphomas. Dynamic changes of MET uptake vary significantly with the normal brain structures and brain tumor histology. These results suggest that MET-PET may be useful in the differential diagnosis of brain tumors.
Literature
1.
go back to reference De Witte O, Goldberg I, Wikler D et al (2001) Positron emission tomography with injection of methionine as a prognostic factor in glioma. J Neurosurg 95:746–750PubMedCrossRef De Witte O, Goldberg I, Wikler D et al (2001) Positron emission tomography with injection of methionine as a prognostic factor in glioma. J Neurosurg 95:746–750PubMedCrossRef
2.
go back to reference Herholz K, Holzer T, Bauer B et al (1998) 11C-methionine PET for differential diagnosis of low grade gliomas. Neurology 50:1316–1322PubMedCrossRef Herholz K, Holzer T, Bauer B et al (1998) 11C-methionine PET for differential diagnosis of low grade gliomas. Neurology 50:1316–1322PubMedCrossRef
3.
go back to reference Kato T, Shinoda J, Oka N et al (2008) Analysis of 11C-methionine uptake in low grade gliomas and correlation with proliferative activity. Am J Neuroradiol 29:1867–1871PubMedCrossRef Kato T, Shinoda J, Oka N et al (2008) Analysis of 11C-methionine uptake in low grade gliomas and correlation with proliferative activity. Am J Neuroradiol 29:1867–1871PubMedCrossRef
4.
go back to reference Nariai T, Tanaka Y, Wakimoto H et al (2005) Usefulness of l-[methyl-11C] methionine-positron emission tomography as a biological monitoring tool in the treatment of glioma. J Neurosurg 103:498–507PubMedCrossRef Nariai T, Tanaka Y, Wakimoto H et al (2005) Usefulness of l-[methyl-11C] methionine-positron emission tomography as a biological monitoring tool in the treatment of glioma. J Neurosurg 103:498–507PubMedCrossRef
5.
go back to reference Ogawa T, Inugami A, Hatazawa J et al (1996) Clinical positron emission tomography for brain tumors: comparison of fludeoxyglucose F 18 and l-methyl-11C-methionine. Am J Neuroradiol 17:345–353PubMed Ogawa T, Inugami A, Hatazawa J et al (1996) Clinical positron emission tomography for brain tumors: comparison of fludeoxyglucose F 18 and l-methyl-11C-methionine. Am J Neuroradiol 17:345–353PubMed
6.
go back to reference Ogawa T, Shihido F, Kanno I et al (1993) Cerebral glioma: evaluation with methionine PET. Radiology 186:45–53PubMed Ogawa T, Shihido F, Kanno I et al (1993) Cerebral glioma: evaluation with methionine PET. Radiology 186:45–53PubMed
7.
go back to reference Tovi M, Lilja A, Bergstrom M et al (1990) Delineation of gliomas with magnetic resonance imaging using Gd-DTPA in comparison with computed tomography and positron emission tomography. Acta Radiol 31:417–429PubMed Tovi M, Lilja A, Bergstrom M et al (1990) Delineation of gliomas with magnetic resonance imaging using Gd-DTPA in comparison with computed tomography and positron emission tomography. Acta Radiol 31:417–429PubMed
8.
go back to reference Nojiri T, Nariai T, Aoyagi M et al (2009) Contributions of biological tumor parameters to the incorporation rate of l-[methyl-11C] methionine into astrocytomas and oligodendrogliomas. J Neurooncol 93:233–241PubMedCrossRef Nojiri T, Nariai T, Aoyagi M et al (2009) Contributions of biological tumor parameters to the incorporation rate of l-[methyl-11C] methionine into astrocytomas and oligodendrogliomas. J Neurooncol 93:233–241PubMedCrossRef
9.
go back to reference Kato T, Shinoda J, Nakayama N et al (2008) Metabolic assessment of gliomas using 11C-methionine, 18F-fluorodeoxy-glucose, and 11C-choline positron-emission tomography. Am J Neuroradiol 29:1176–1182PubMedCrossRef Kato T, Shinoda J, Nakayama N et al (2008) Metabolic assessment of gliomas using 11C-methionine, 18F-fluorodeoxy-glucose, and 11C-choline positron-emission tomography. Am J Neuroradiol 29:1176–1182PubMedCrossRef
10.
go back to reference Ribom D, Eriksson A, Hartman M et al (2001) Positron emission tomography 11C-methionine and survival in patients with low-grade gliomas. Cancer 92:1541–1549PubMedCrossRef Ribom D, Eriksson A, Hartman M et al (2001) Positron emission tomography 11C-methionine and survival in patients with low-grade gliomas. Cancer 92:1541–1549PubMedCrossRef
11.
go back to reference Derlon JM, Chapon F, Noel MH et al (2000) Non-invasive grading of oligodendrogliomas: correlation between in vivo metabolic pattern and histopathology. Eur J Nucl Med 27:778–787PubMedCrossRef Derlon JM, Chapon F, Noel MH et al (2000) Non-invasive grading of oligodendrogliomas: correlation between in vivo metabolic pattern and histopathology. Eur J Nucl Med 27:778–787PubMedCrossRef
12.
go back to reference Tsuyuguchi N, Matsuoka Y, Sunada I et al (2001) Evaluation of pleomorphic xanthoastrocytoma by use of positron emission tomography with 18F-fluorodeoxyglucose and 11C-methionine tracers. Am J Neuroradiol 22:311–313PubMed Tsuyuguchi N, Matsuoka Y, Sunada I et al (2001) Evaluation of pleomorphic xanthoastrocytoma by use of positron emission tomography with 18F-fluorodeoxyglucose and 11C-methionine tracers. Am J Neuroradiol 22:311–313PubMed
13.
go back to reference Roelcke U, Radu EW, Hausmann O et al (1998) Tracer transport and metabolism in a patient with juvenile pilocytic astrocytoma: a PET study. J Neurooncol 36:279–283PubMedCrossRef Roelcke U, Radu EW, Hausmann O et al (1998) Tracer transport and metabolism in a patient with juvenile pilocytic astrocytoma: a PET study. J Neurooncol 36:279–283PubMedCrossRef
14.
go back to reference Norris AM, Carrington BM, Slevin NJ (1997) Late radiation change in the CNS: MR imaging following gadolinium enhancement. Clin Radiol 52:356–362PubMedCrossRef Norris AM, Carrington BM, Slevin NJ (1997) Late radiation change in the CNS: MR imaging following gadolinium enhancement. Clin Radiol 52:356–362PubMedCrossRef
15.
go back to reference Hustinx R, Pourdehnad M, Kaschten B et al (2005) PET imaging for differentiating recurrent brain tumor from radiation necrosis. Radiol Clin North Am 43:35–47PubMedCrossRef Hustinx R, Pourdehnad M, Kaschten B et al (2005) PET imaging for differentiating recurrent brain tumor from radiation necrosis. Radiol Clin North Am 43:35–47PubMedCrossRef
16.
go back to reference Hein P, Eskey C, Dunn J et al (2004) Diffusion-weighted imaging in the follow-up of treated high grade gliomas. Am J Neuroradiol 25:201–209PubMed Hein P, Eskey C, Dunn J et al (2004) Diffusion-weighted imaging in the follow-up of treated high grade gliomas. Am J Neuroradiol 25:201–209PubMed
17.
go back to reference Terakawa Y, Tsuyuguchi N, Iwai Y et al (2008) Diagnostic accuracy of 11C-methionine PET for differentiation of recurrent brain tumors from radiation necrosis after radiotherapy. J Nucl Med 49:694–699PubMedCrossRef Terakawa Y, Tsuyuguchi N, Iwai Y et al (2008) Diagnostic accuracy of 11C-methionine PET for differentiation of recurrent brain tumors from radiation necrosis after radiotherapy. J Nucl Med 49:694–699PubMedCrossRef
18.
19.
go back to reference Mineura K, Sasajima T, Kowada M et al (1997) Indications for differential diagnosis of nontumor central nervous system disease from tumors. A positron emission tomography study. J Neuroimaging 7:8–15PubMed Mineura K, Sasajima T, Kowada M et al (1997) Indications for differential diagnosis of nontumor central nervous system disease from tumors. A positron emission tomography study. J Neuroimaging 7:8–15PubMed
20.
go back to reference Dethy S, Manto M, Kentos A et al (1995) PET findings in a brain abscess associated with a silent atrial septal defect. Clin Neurol Neurosurg 97:349–353PubMedCrossRef Dethy S, Manto M, Kentos A et al (1995) PET findings in a brain abscess associated with a silent atrial septal defect. Clin Neurol Neurosurg 97:349–353PubMedCrossRef
21.
go back to reference Kawai N, Okauchi M, Miyake K et al (2010) 11C-methionine positron emission tomography in nontumorous brain lesions. No Shinkei Geka 38:985–995PubMed Kawai N, Okauchi M, Miyake K et al (2010) 11C-methionine positron emission tomography in nontumorous brain lesions. No Shinkei Geka 38:985–995PubMed
22.
go back to reference Kracht LW, Friese M, Herholz K et al (2003) Methyl-[11C]-l-methionine uptake as measured by positron emission tomography correlates to microvessel density in patients with glioma. Eur J Nucl Med Mol Imaging 30:868–873PubMedCrossRef Kracht LW, Friese M, Herholz K et al (2003) Methyl-[11C]-l-methionine uptake as measured by positron emission tomography correlates to microvessel density in patients with glioma. Eur J Nucl Med Mol Imaging 30:868–873PubMedCrossRef
23.
go back to reference Ishiwata K, Kubota K, Murakami M et al (1993) Re-evaluation of amino acid PET studies: can the protein synthesis rates in brain and tumor tissues be measured in vivo? J Nucl Med 34:1936–1943PubMed Ishiwata K, Kubota K, Murakami M et al (1993) Re-evaluation of amino acid PET studies: can the protein synthesis rates in brain and tumor tissues be measured in vivo? J Nucl Med 34:1936–1943PubMed
24.
go back to reference Moulin-Romsee G, D’Hondt E, de Groot T et al (2007) Non-invasive grading of tumor using dynamic amino acid PET imaging: dose it work for 11C-methionine? Eur J Nucl Med Mol Imaging 34:2082–2087PubMedCrossRef Moulin-Romsee G, D’Hondt E, de Groot T et al (2007) Non-invasive grading of tumor using dynamic amino acid PET imaging: dose it work for 11C-methionine? Eur J Nucl Med Mol Imaging 34:2082–2087PubMedCrossRef
25.
go back to reference Thompson CJ, Dagher A, Lunney DN (1986) A technique to reject scattered radiation in PET transmission scans. Proc SPIE 671:244–253 Thompson CJ, Dagher A, Lunney DN (1986) A technique to reject scattered radiation in PET transmission scans. Proc SPIE 671:244–253
26.
go back to reference Kapouleus I, Alavi A, Alves WM et al (1991) Registration of three-dimensional MR and PET images of the human brain without markers. Radiology 181:731–739 Kapouleus I, Alavi A, Alves WM et al (1991) Registration of three-dimensional MR and PET images of the human brain without markers. Radiology 181:731–739
27.
go back to reference Uda T, Tsuyuguchi N, Terakawa Y et al (2010) Evaluation of the accumulation of 11C-methionine with standardized uptake value in the normal brain. J Nucl Med 51:219–222PubMedCrossRef Uda T, Tsuyuguchi N, Terakawa Y et al (2010) Evaluation of the accumulation of 11C-methionine with standardized uptake value in the normal brain. J Nucl Med 51:219–222PubMedCrossRef
28.
go back to reference Cha S, Tihan T, Crawford F et al (2005) Differentiation of low-grade oligodendrogliomas from low-grade astrocytomas using quantitative blood-volume measurements derived from dynamic susceptibility contrast MR imaging. Am J Neuroradiol 26:266–273PubMed Cha S, Tihan T, Crawford F et al (2005) Differentiation of low-grade oligodendrogliomas from low-grade astrocytomas using quantitative blood-volume measurements derived from dynamic susceptibility contrast MR imaging. Am J Neuroradiol 26:266–273PubMed
29.
go back to reference Aroen HJ, Gazit IE, Louis DN et al (1994) Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. Radiology 191:41–51 Aroen HJ, Gazit IE, Louis DN et al (1994) Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. Radiology 191:41–51
30.
go back to reference Sugihara T, Korogi Y, Koichi M et al (1998) Correlation of MR and imaging-determined cerebral blood volume maps with histologic and angiographic determination of vascularity of gliomas. Am J Roentgenol 171:1479–1486 Sugihara T, Korogi Y, Koichi M et al (1998) Correlation of MR and imaging-determined cerebral blood volume maps with histologic and angiographic determination of vascularity of gliomas. Am J Roentgenol 171:1479–1486
31.
go back to reference Nyberg G, Bergstrom M, Enblad P et al (1997) PET-methionine of skull base neuromas and meningiomas. Acta Otolaryngol 117:482–489PubMedCrossRef Nyberg G, Bergstrom M, Enblad P et al (1997) PET-methionine of skull base neuromas and meningiomas. Acta Otolaryngol 117:482–489PubMedCrossRef
32.
go back to reference Dowd CF, Halbach VV, Higashida RT (2003) Meningiomas: the role of preoperative angiography and embolization. Neurosurg Focus 15:E10PubMedCrossRef Dowd CF, Halbach VV, Higashida RT (2003) Meningiomas: the role of preoperative angiography and embolization. Neurosurg Focus 15:E10PubMedCrossRef
33.
go back to reference Utriainen M, Metsahonkala L, Salmi TT et al (2002) Metabolic characterization of childhood brain tumors: comparison of 18F-fluorodeoxyglucose and 11C-methionine positron emission tomography. Cancer 95:1376–1386PubMedCrossRef Utriainen M, Metsahonkala L, Salmi TT et al (2002) Metabolic characterization of childhood brain tumors: comparison of 18F-fluorodeoxyglucose and 11C-methionine positron emission tomography. Cancer 95:1376–1386PubMedCrossRef
34.
go back to reference Galldiks N, Kracht LW, Berthold F et al (2009) [11C]-l-methionine positron emission tomography in the management of children and young adults with brain tumors. J Neurooncol 96:231–239PubMedCrossRef Galldiks N, Kracht LW, Berthold F et al (2009) [11C]-l-methionine positron emission tomography in the management of children and young adults with brain tumors. J Neurooncol 96:231–239PubMedCrossRef
Metadata
Title
Evaluation of brain tumors using dynamic 11C-methionine-PET
Authors
Tatsuki Aki
Noriyuki Nakayama
Shingo Yonezawa
Syunsuke Takenaka
Kazuhiro Miwa
Yoshitaka Asano
Jun Shinoda
Hirohito Yano
Toru Iwama
Publication date
01-08-2012
Publisher
Springer US
Published in
Journal of Neuro-Oncology / Issue 1/2012
Print ISSN: 0167-594X
Electronic ISSN: 1573-7373
DOI
https://doi.org/10.1007/s11060-012-0873-9

Other articles of this Issue 1/2012

Journal of Neuro-Oncology 1/2012 Go to the issue