Skip to main content
Top
Published in: BMC Immunology 1/2018

Open Access 01-12-2018 | Research article

Beta-2 adrenergic receptors increase TREG cell suppression in an OVA-induced allergic asthma mouse model when mice are moderate aerobically exercised

Authors: Kari J. Dugger, Taylor Chrisman, Sarah L. Sayner, Parker Chastain, Kacie Watson, Robert Estes

Published in: BMC Immunology | Issue 1/2018

Login to get access

Abstract

Background

The potency of T regulatory (TREG) cells to inhibit T helper (Th)-driven immune cell responses has been linked to increased intracellular cyclic-AMP (cAMP) levels of TREG cells. In an ovalbumin (OVA)-driven allergic asthma mouse model, moderate aerobic exercise increases TREG cell function in a contact-dependent manner that leads to a significant reduction in chronic inflammation and restoration of lung function. However, the mechanism, whereby exercise increases TREG function, remains unknown and was the focus of these investigations. Exercise can communicate with TREG cells by their expression of β2-adrenergic receptors (β2-AR). Activation of these receptors results in an increase in intracellular levels of cyclic-AMP, potentially creating a potent inhibitor of Th cell responses.

Results

For the allergic asthma model, female wildtype BALB/c mice were challenged with OVA, and exercised (13.5 m/min for 45 min) 3×/week for 4 weeks. TREG cells were isolated from all mouse asthma/exercise groups, including β2-AR−/− mice, to test suppressive function and intracellular cAMP levels. In these studies, cAMP levels were increased in TREG cells isolated from exercised mice. When β2-AR expression was absent on TREG cells, cAMP levels were significantly decreased. Correlatively, their suppressive function was compromised. Next, TREG cells from all mouse groups were tested for suppressive function after treatment with either a pharmaceutical β2-adrenergic agonist or an effector-specific cAMP analogue. These experiments showed TREG cell function was increased when treated with either a β2-adrenergic agonist or effector-specific cAMP analogue. Finally, female wildtype BALB/c mice were antibody-depleted of CD25+CD4+ TREG cells (anti-CD25). Twenty-four hours after TREG depletion, either β2-AR−/− or wildtype TREG cells were adoptively transferred. Recipient mice underwent the asthma/exercise protocols. β2-AR−/− TREG cells isolated from these mice showed no increase in TREG function in response to moderate aerobic exercise.

Conclusion

These studies offer a novel role for β2-AR in regulating cAMP intracellular levels that can modify suppressive function in TREG cells.
Literature
2.
go back to reference Sakaguchi S, Wing K, Miyara M. Regulatory T cells - a brief history and perspective. Eur J Immunol. 2007;37(Suppl 1):S116–23.CrossRefPubMed Sakaguchi S, Wing K, Miyara M. Regulatory T cells - a brief history and perspective. Eur J Immunol. 2007;37(Suppl 1):S116–23.CrossRefPubMed
3.
go back to reference Beavis PA, Stagg J, Darcy PK, Smyth MJ. CD73: a potent suppressor of antitumor immune responses. Trends Immunol. 2012;33(5):231–7.CrossRefPubMed Beavis PA, Stagg J, Darcy PK, Smyth MJ. CD73: a potent suppressor of antitumor immune responses. Trends Immunol. 2012;33(5):231–7.CrossRefPubMed
5.
go back to reference Bodor J, Bopp T, Vaeth M, Klein M, Serfling E, Hunig T, et al. Cyclic AMP underpins suppression by regulatory T cells. Eur J Immunol. 2012;42(6):1375–84.CrossRefPubMed Bodor J, Bopp T, Vaeth M, Klein M, Serfling E, Hunig T, et al. Cyclic AMP underpins suppression by regulatory T cells. Eur J Immunol. 2012;42(6):1375–84.CrossRefPubMed
6.
go back to reference Lowder T, Dugger K, Deshane J, Estell K, Schwiebert LM. Repeated bouts of aerobic exercise enhance regulatory T cell responses in a murine asthma model. Brain Behav Immun. 2010;24(1):153–9.CrossRefPubMed Lowder T, Dugger K, Deshane J, Estell K, Schwiebert LM. Repeated bouts of aerobic exercise enhance regulatory T cell responses in a murine asthma model. Brain Behav Immun. 2010;24(1):153–9.CrossRefPubMed
7.
go back to reference Pastva A, Estell K, Schoeb TR, Atkinson TP, Schwiebert LM. Aerobic exercise attenuates airway inflammatory responses in a mouse model of atopic asthma. J Immunol. 2004;172(7):4520–6.CrossRefPubMedPubMedCentral Pastva A, Estell K, Schoeb TR, Atkinson TP, Schwiebert LM. Aerobic exercise attenuates airway inflammatory responses in a mouse model of atopic asthma. J Immunol. 2004;172(7):4520–6.CrossRefPubMedPubMedCentral
8.
go back to reference Guereschi MG, Araujo LP, Maricato JT, Takenaka MC, Nascimento VM, Vivanco BC, et al. Beta2-adrenergic receptor signaling in CD4+ Foxp3+ regulatory T cells enhances their suppressive function in a PKA-dependent manner. Eur J Immunol. 2013;43(4):1001–12.CrossRefPubMed Guereschi MG, Araujo LP, Maricato JT, Takenaka MC, Nascimento VM, Vivanco BC, et al. Beta2-adrenergic receptor signaling in CD4+ Foxp3+ regulatory T cells enhances their suppressive function in a PKA-dependent manner. Eur J Immunol. 2013;43(4):1001–12.CrossRefPubMed
9.
10.
go back to reference Tamir A, Isakov N. Cyclic AMP inhibits phosphatidylinositol-coupled and -uncoupled mitogenic signals in T lymphocytes. Evidence that cAMP alters PKC-induced transcription regulation of members of the jun and fos family of genes. J Immunol. 1994;152(7):3391–9.PubMed Tamir A, Isakov N. Cyclic AMP inhibits phosphatidylinositol-coupled and -uncoupled mitogenic signals in T lymphocytes. Evidence that cAMP alters PKC-induced transcription regulation of members of the jun and fos family of genes. J Immunol. 1994;152(7):3391–9.PubMed
11.
go back to reference Mosenden R, Tasken K. Cyclic AMP-mediated immune regulation--overview of mechanisms of action in T cells. Cell Signal. 2011;23(6):1009–16.CrossRefPubMed Mosenden R, Tasken K. Cyclic AMP-mediated immune regulation--overview of mechanisms of action in T cells. Cell Signal. 2011;23(6):1009–16.CrossRefPubMed
12.
go back to reference Vaeth M, Gogishvili T, Bopp T, Klein M, Berberich-Siebelt F, Gattenloehner S, et al. Regulatory T cells facilitate the nuclear accumulation of inducible cAMP early repressor (ICER) and suppress nuclear factor of activated T cell c1 (NFATc1). Proc Natl Acad Sci U S A. 2011;108(6):2480–5.CrossRefPubMedPubMedCentral Vaeth M, Gogishvili T, Bopp T, Klein M, Berberich-Siebelt F, Gattenloehner S, et al. Regulatory T cells facilitate the nuclear accumulation of inducible cAMP early repressor (ICER) and suppress nuclear factor of activated T cell c1 (NFATc1). Proc Natl Acad Sci U S A. 2011;108(6):2480–5.CrossRefPubMedPubMedCentral
13.
go back to reference Bopp T, Dehzad N, Reuter S, Klein M, Ullrich N, Stassen M, et al. Inhibition of cAMP degradation improves regulatory T cell-mediated suppression. J Immunol. 2009;182(7):4017–24.CrossRefPubMed Bopp T, Dehzad N, Reuter S, Klein M, Ullrich N, Stassen M, et al. Inhibition of cAMP degradation improves regulatory T cell-mediated suppression. J Immunol. 2009;182(7):4017–24.CrossRefPubMed
14.
go back to reference Bazhin AV, Kahnert S, Kimpfler S, Schadendorf D, Umansky V. Distinct metabolism of cyclic adenosine monophosphate in regulatory and helper CD4+ T cells. Mol Immunol. 2010;47(4):678–84.CrossRefPubMed Bazhin AV, Kahnert S, Kimpfler S, Schadendorf D, Umansky V. Distinct metabolism of cyclic adenosine monophosphate in regulatory and helper CD4+ T cells. Mol Immunol. 2010;47(4):678–84.CrossRefPubMed
15.
go back to reference Klein M, Vaeth M, Scheel T, Grabbe S, Baumgrass R, Berberich-Siebelt F, et al. Repression of cyclic adenosine monophosphate upregulation disarms and expands human regulatory T cells. J Immunol. 2012;188(3):1091–7.CrossRefPubMed Klein M, Vaeth M, Scheel T, Grabbe S, Baumgrass R, Berberich-Siebelt F, et al. Repression of cyclic adenosine monophosphate upregulation disarms and expands human regulatory T cells. J Immunol. 2012;188(3):1091–7.CrossRefPubMed
17.
go back to reference Wehbi VL, Tasken K. Molecular mechanisms for cAMP-mediated Immunoregulation in T cells - role of anchored protein kinase a signaling units. Front Immunol. 2016;7:222.CrossRefPubMedPubMedCentral Wehbi VL, Tasken K. Molecular mechanisms for cAMP-mediated Immunoregulation in T cells - role of anchored protein kinase a signaling units. Front Immunol. 2016;7:222.CrossRefPubMedPubMedCentral
18.
go back to reference Lahl K, Mayer CT, Bopp T, Huehn J, Loddenkemper C, Eberl G, et al. Nonfunctional regulatory T cells and defective control of Th2 cytokine production in natural scurfy mutant mice. J Immunol. 2009;183(9):5662–72.CrossRefPubMed Lahl K, Mayer CT, Bopp T, Huehn J, Loddenkemper C, Eberl G, et al. Nonfunctional regulatory T cells and defective control of Th2 cytokine production in natural scurfy mutant mice. J Immunol. 2009;183(9):5662–72.CrossRefPubMed
19.
go back to reference Kobilka B. Molecular and Cellular biology of adrenergic receptors. Trends Cardiovasc Med. 1991;1(5):189–94.CrossRefPubMed Kobilka B. Molecular and Cellular biology of adrenergic receptors. Trends Cardiovasc Med. 1991;1(5):189–94.CrossRefPubMed
20.
go back to reference Chruscinski AJ, Rohrer DK, Schauble E, Desai KH, Bernstein D, Kobilka BK. Targeted disruption of the beta2 adrenergic receptor gene. J Biol Chem. 1999;274(24):16694–700.CrossRefPubMed Chruscinski AJ, Rohrer DK, Schauble E, Desai KH, Bernstein D, Kobilka BK. Targeted disruption of the beta2 adrenergic receptor gene. J Biol Chem. 1999;274(24):16694–700.CrossRefPubMed
21.
go back to reference Park Y, Oh SJ, Chung DH. CD4(+)CD25(+) regulatory T cells attenuate hypersensitivity pneumonitis by suppressing IFN-gamma production by CD4(+) and CD8(+) T cells. J Leukoc Biol. 2009;86(6):1427–37.CrossRefPubMed Park Y, Oh SJ, Chung DH. CD4(+)CD25(+) regulatory T cells attenuate hypersensitivity pneumonitis by suppressing IFN-gamma production by CD4(+) and CD8(+) T cells. J Leukoc Biol. 2009;86(6):1427–37.CrossRefPubMed
22.
go back to reference Lowder T, Dugger K, Deshane J, Estell K, Schwiebert LM. Repeated bouts of aerobic exercise enhance regulatory T cell responses in a murine asthma model. Brain Behav Immun. 24(1):153–9. Lowder T, Dugger K, Deshane J, Estell K, Schwiebert LM. Repeated bouts of aerobic exercise enhance regulatory T cell responses in a murine asthma model. Brain Behav Immun. 24(1):153–9.
23.
go back to reference Bopp T, Becker C, Klein M, Klein-Hessling S, Palmetshofer A, Serfling E, et al. Cyclic adenosine monophosphate is a key component of regulatory T cell-mediated suppression. J Exp Med. 2007;204(6):1303–10.CrossRefPubMedPubMedCentral Bopp T, Becker C, Klein M, Klein-Hessling S, Palmetshofer A, Serfling E, et al. Cyclic adenosine monophosphate is a key component of regulatory T cell-mediated suppression. J Exp Med. 2007;204(6):1303–10.CrossRefPubMedPubMedCentral
24.
go back to reference Kanda N, Watanabe S. Regulatory Roles of adenylate cyclase and cyclic nucleotide phosphodiesterases 1 and 4 in interleukin-13 production by activated human T cells. Biochem Pharmacol. 2001;62(4):495–507.CrossRefPubMed Kanda N, Watanabe S. Regulatory Roles of adenylate cyclase and cyclic nucleotide phosphodiesterases 1 and 4 in interleukin-13 production by activated human T cells. Biochem Pharmacol. 2001;62(4):495–507.CrossRefPubMed
25.
go back to reference Faisy C, Risse PA, Naline E, Guerot E, Fagon JY, Devillier P, et al. Phosphodiesterase 4 inhibitors modulate beta2-adrenoceptor agonist-induced human airway hyperresponsiveness. Life Sci. 2006;79(20):1929–35.CrossRefPubMed Faisy C, Risse PA, Naline E, Guerot E, Fagon JY, Devillier P, et al. Phosphodiesterase 4 inhibitors modulate beta2-adrenoceptor agonist-induced human airway hyperresponsiveness. Life Sci. 2006;79(20):1929–35.CrossRefPubMed
26.
go back to reference Bjorgo E, Moltu K, Tasken K. Phosphodiesterases as targets for modulating T-cell responses. Handb Exp Pharmacol. 2011;204:345–63.CrossRef Bjorgo E, Moltu K, Tasken K. Phosphodiesterases as targets for modulating T-cell responses. Handb Exp Pharmacol. 2011;204:345–63.CrossRef
27.
go back to reference Sayner S, Stevens T. Soluble adenylate cyclase reveals the significance of compartmentalized cAMP on endothelial cell barrier function. Biochem Soc Trans. 2006;34(Pt 4):492–4.CrossRefPubMed Sayner S, Stevens T. Soluble adenylate cyclase reveals the significance of compartmentalized cAMP on endothelial cell barrier function. Biochem Soc Trans. 2006;34(Pt 4):492–4.CrossRefPubMed
28.
go back to reference Kin NW, Sanders VM. It takes nerve to tell T and B cells what to do. J Leukoc Biol. 2006;79(6):1093–104.CrossRefPubMed Kin NW, Sanders VM. It takes nerve to tell T and B cells what to do. J Leukoc Biol. 2006;79(6):1093–104.CrossRefPubMed
29.
go back to reference Kohm AP, Sanders VM. Norepinephrine and beta 2-adrenergic receptor stimulation regulate CD4+ T and B lymphocyte function in vitro and in vivo. Pharmacol Rev. 2001;53(4):487–525.PubMed Kohm AP, Sanders VM. Norepinephrine and beta 2-adrenergic receptor stimulation regulate CD4+ T and B lymphocyte function in vitro and in vivo. Pharmacol Rev. 2001;53(4):487–525.PubMed
30.
go back to reference Matthews CE, Ockene IS, Freedson PS, Rosal MC, Merriam PA, Hebert JR. Moderate to vigorous physical activity and risk of upper-respiratory tract infection. Med Sci Sports Exerc. 2002;34(8):1242–8.CrossRefPubMed Matthews CE, Ockene IS, Freedson PS, Rosal MC, Merriam PA, Hebert JR. Moderate to vigorous physical activity and risk of upper-respiratory tract infection. Med Sci Sports Exerc. 2002;34(8):1242–8.CrossRefPubMed
31.
go back to reference Pedersen BK, Nieman DC. Exercise immunology: integration and regulation. Immunol Today. 1998;19(5):204–6.CrossRefPubMed Pedersen BK, Nieman DC. Exercise immunology: integration and regulation. Immunol Today. 1998;19(5):204–6.CrossRefPubMed
32.
go back to reference Woods JA, Davis JM, Smith JA, Nieman DC. Exercise and cellular innate immune function. Med Sci Sports Exerc. 1999;31(1):57–66.CrossRefPubMed Woods JA, Davis JM, Smith JA, Nieman DC. Exercise and cellular innate immune function. Med Sci Sports Exerc. 1999;31(1):57–66.CrossRefPubMed
33.
35.
go back to reference Aandahl EM, Moretto WJ, Haslett PA, Vang T, Bryn T, Tasken K, et al. Inhibition of antigen-specific T cell proliferation and cytokine production by protein kinase a type I. J Immunol. 2002;169(2):802–8.CrossRefPubMed Aandahl EM, Moretto WJ, Haslett PA, Vang T, Bryn T, Tasken K, et al. Inhibition of antigen-specific T cell proliferation and cytokine production by protein kinase a type I. J Immunol. 2002;169(2):802–8.CrossRefPubMed
36.
go back to reference Abrahamsen H, Vang T, Tasken K. Protein kinase a intersects SRC signaling in membrane microdomains. J Biol Chem. 2003;278(19):17170–7.CrossRefPubMed Abrahamsen H, Vang T, Tasken K. Protein kinase a intersects SRC signaling in membrane microdomains. J Biol Chem. 2003;278(19):17170–7.CrossRefPubMed
37.
38.
go back to reference Ruppelt A, Mosenden R, Gronholm M, Aandahl EM, Tobin D, Carlson CR, et al. Inhibition of T cell activation by cyclic adenosine 5′-monophosphate requires lipid raft targeting of protein kinase a type I by the A-kinase anchoring protein ezrin. J Immunol. 2007;179(8):5159–68.CrossRefPubMed Ruppelt A, Mosenden R, Gronholm M, Aandahl EM, Tobin D, Carlson CR, et al. Inhibition of T cell activation by cyclic adenosine 5′-monophosphate requires lipid raft targeting of protein kinase a type I by the A-kinase anchoring protein ezrin. J Immunol. 2007;179(8):5159–68.CrossRefPubMed
39.
go back to reference Bodor J, Fehervari Z, Diamond B, Sakaguchi S. ICER/CREM-mediated transcriptional attenuation of IL-2 and its role in suppression by regulatory T cells. Eur J Immunol. 2007;37(4):884–95.CrossRefPubMed Bodor J, Fehervari Z, Diamond B, Sakaguchi S. ICER/CREM-mediated transcriptional attenuation of IL-2 and its role in suppression by regulatory T cells. Eur J Immunol. 2007;37(4):884–95.CrossRefPubMed
40.
go back to reference Bodor J, Bodorova J, Bare C, Hodge DL, Young HA, Gress RE. Differential inducibility of the transcriptional repressor ICER and its role in modulation of Fas ligand expression in T and NK lymphocytes. Eur J Immunol. 2002;32(1):203–12.CrossRefPubMed Bodor J, Bodorova J, Bare C, Hodge DL, Young HA, Gress RE. Differential inducibility of the transcriptional repressor ICER and its role in modulation of Fas ligand expression in T and NK lymphocytes. Eur J Immunol. 2002;32(1):203–12.CrossRefPubMed
41.
go back to reference Bodor J, Feigenbaum L, Bodorova J, Bare C, Reitz MS Jr, Gress RE. Suppression of T-cell responsiveness by inducible cAMP early repressor (ICER). J Leukoc Biol. 2001;69(6):1053–9.PubMed Bodor J, Feigenbaum L, Bodorova J, Bare C, Reitz MS Jr, Gress RE. Suppression of T-cell responsiveness by inducible cAMP early repressor (ICER). J Leukoc Biol. 2001;69(6):1053–9.PubMed
42.
go back to reference Bodor J, Spetz AL, Strominger JL, Habener JF. cAMP inducibility of transcriptional repressor ICER in developing and mature human T lymphocytes. Proc Natl Acad Sci U S A. 1996;93(8):3536–41.CrossRefPubMedPubMedCentral Bodor J, Spetz AL, Strominger JL, Habener JF. cAMP inducibility of transcriptional repressor ICER in developing and mature human T lymphocytes. Proc Natl Acad Sci U S A. 1996;93(8):3536–41.CrossRefPubMedPubMedCentral
43.
go back to reference Li J, Lin KW, Murray F, Nakajima T, Zhao Y, Perkins DL, et al. Regulation of cytotoxic T lymphocyte antigen 4 by cAMP. Am J Respir Cell Mol Biol. 2012;48(1):63–70.CrossRefPubMed Li J, Lin KW, Murray F, Nakajima T, Zhao Y, Perkins DL, et al. Regulation of cytotoxic T lymphocyte antigen 4 by cAMP. Am J Respir Cell Mol Biol. 2012;48(1):63–70.CrossRefPubMed
44.
go back to reference Jarnaess E, Tasken K. Spatiotemporal control of cAMP signalling processes by anchored signalling complexes. Biochem Soc Trans. 2007;35(Pt 5):931–7.CrossRefPubMed Jarnaess E, Tasken K. Spatiotemporal control of cAMP signalling processes by anchored signalling complexes. Biochem Soc Trans. 2007;35(Pt 5):931–7.CrossRefPubMed
45.
go back to reference Yaqub S, Tasken K. Role for the cAMP-protein kinase a signaling pathway in suppression of antitumor immune responses by regulatory T cells. Crit Rev Oncog. 2008;14(1):57–77.CrossRefPubMed Yaqub S, Tasken K. Role for the cAMP-protein kinase a signaling pathway in suppression of antitumor immune responses by regulatory T cells. Crit Rev Oncog. 2008;14(1):57–77.CrossRefPubMed
46.
go back to reference Jarnaess E, Ruppelt A, Stokka AJ, Lygren B, Scott JD, Tasken K. Dual specificity A-kinase anchoring proteins (AKAPs) contain an additional binding region that enhances targeting of protein kinase a type I. J Biol Chem. 2008;283(48):33708–18.CrossRefPubMedPubMedCentral Jarnaess E, Ruppelt A, Stokka AJ, Lygren B, Scott JD, Tasken K. Dual specificity A-kinase anchoring proteins (AKAPs) contain an additional binding region that enhances targeting of protein kinase a type I. J Biol Chem. 2008;283(48):33708–18.CrossRefPubMedPubMedCentral
47.
go back to reference Methi T, Ngai J, Vang T, Torgersen KM, Tasken K. Hypophosphorylated TCR/CD3zeta signals through a Grb2-SOS1-Ras pathway in Lck knockdown cells. Eur J Immunol. 2007;37(9):2539–48.CrossRefPubMed Methi T, Ngai J, Vang T, Torgersen KM, Tasken K. Hypophosphorylated TCR/CD3zeta signals through a Grb2-SOS1-Ras pathway in Lck knockdown cells. Eur J Immunol. 2007;37(9):2539–48.CrossRefPubMed
48.
go back to reference Tasken K, Stokka AJ. The molecular machinery for cAMP-dependent immunomodulation in T-cells. Biochem Soc Trans. 2006;34(Pt 4):476–9.CrossRefPubMed Tasken K, Stokka AJ. The molecular machinery for cAMP-dependent immunomodulation in T-cells. Biochem Soc Trans. 2006;34(Pt 4):476–9.CrossRefPubMed
49.
go back to reference Tasken K, Ruppelt A. Negative regulation of T-cell receptor activation by the cAMP-PKA-Csk signalling pathway in T-cell lipid rafts. Front Biosci. 2006;11:2929–39.CrossRefPubMed Tasken K, Ruppelt A. Negative regulation of T-cell receptor activation by the cAMP-PKA-Csk signalling pathway in T-cell lipid rafts. Front Biosci. 2006;11:2929–39.CrossRefPubMed
50.
go back to reference Bjorgo E, Tasken K. Role of cAMP phosphodiesterase 4 in regulation of T-cell function. Crit Rev Immunol. 2006;26(5):443–51.CrossRefPubMed Bjorgo E, Tasken K. Role of cAMP phosphodiesterase 4 in regulation of T-cell function. Crit Rev Immunol. 2006;26(5):443–51.CrossRefPubMed
51.
go back to reference Sanders VM, Baker RA, Ramer-Quinn DS, Kasprowicz DJ, Fuchs BA, Street NE. Differential expression of the beta2-adrenergic receptor by Th1 and Th2 clones: implications for cytokine production and B cell help. J Immunol. 1997;158(9):4200–10.PubMed Sanders VM, Baker RA, Ramer-Quinn DS, Kasprowicz DJ, Fuchs BA, Street NE. Differential expression of the beta2-adrenergic receptor by Th1 and Th2 clones: implications for cytokine production and B cell help. J Immunol. 1997;158(9):4200–10.PubMed
52.
go back to reference Kohm AP, Sanders VM. Suppression Of antigen-specific Th2 cell-dependent IgM and IgG1 production following norepinephrine depletion in vivo. J Immunol. 1999;162(9):5299–308.PubMed Kohm AP, Sanders VM. Suppression Of antigen-specific Th2 cell-dependent IgM and IgG1 production following norepinephrine depletion in vivo. J Immunol. 1999;162(9):5299–308.PubMed
53.
go back to reference Kohm AP, Tang Y, Sanders VM, Jones SB. Activation of antigen-specific CD4+ Th2 cells and B cells in vivo increases norepinephrine release in the spleen and bone marrow. J Immunol. 2000;165(2):725–33.CrossRefPubMed Kohm AP, Tang Y, Sanders VM, Jones SB. Activation of antigen-specific CD4+ Th2 cells and B cells in vivo increases norepinephrine release in the spleen and bone marrow. J Immunol. 2000;165(2):725–33.CrossRefPubMed
54.
go back to reference Mary D, Aussel C, Ferrua B, Fehlmann M. Regulation Of interleukin 2 synthesis by cAMP in human T cells. J Immunol. 1987;139(4):1179–84.PubMed Mary D, Aussel C, Ferrua B, Fehlmann M. Regulation Of interleukin 2 synthesis by cAMP in human T cells. J Immunol. 1987;139(4):1179–84.PubMed
55.
go back to reference Krause DS, Deutsch C. Cyclic AMP directly inhibits IL-2 receptor expression in human T cells: expression of both p55 and p75 subunits is affected. J Immunol. 1991;146(7):2285–96.PubMed Krause DS, Deutsch C. Cyclic AMP directly inhibits IL-2 receptor expression in human T cells: expression of both p55 and p75 subunits is affected. J Immunol. 1991;146(7):2285–96.PubMed
56.
go back to reference Ramer-Quinn DS, Baker RA, Sanders VM. Activated T helper 1 and T helper 2 cells differentially express the beta-2-adrenergic receptor: a mechanism for selective modulation of T helper 1 cell cytokine production. J Immunol. 1997;159(10):4857–67.PubMed Ramer-Quinn DS, Baker RA, Sanders VM. Activated T helper 1 and T helper 2 cells differentially express the beta-2-adrenergic receptor: a mechanism for selective modulation of T helper 1 cell cytokine production. J Immunol. 1997;159(10):4857–67.PubMed
57.
go back to reference Molina CA, Foulkes NS, Lalli E, Sassone-Corsi P. Inducibility and negative autoregulation of CREM: an alternative promoter directs the expression of ICER, an early response repressor. Cell. 1993;75(5):875–86.CrossRefPubMed Molina CA, Foulkes NS, Lalli E, Sassone-Corsi P. Inducibility and negative autoregulation of CREM: an alternative promoter directs the expression of ICER, an early response repressor. Cell. 1993;75(5):875–86.CrossRefPubMed
58.
go back to reference Hoeffler JP, Meyer TE, Yun Y, Jameson JL, Habener JF. Cyclic AMP-responsive DNA-binding protein: structure based on a cloned placental cDNA. Science. 1988;242(4884):1430–3.CrossRefPubMed Hoeffler JP, Meyer TE, Yun Y, Jameson JL, Habener JF. Cyclic AMP-responsive DNA-binding protein: structure based on a cloned placental cDNA. Science. 1988;242(4884):1430–3.CrossRefPubMed
59.
go back to reference Deutsch PJ, Hoeffler JP, Jameson JL, Lin JC, Habener JF. Structural determinants for transcriptional activation by cAMP-responsive DNA elements. J Biol Chem. 1988;263(34):18466–72.PubMed Deutsch PJ, Hoeffler JP, Jameson JL, Lin JC, Habener JF. Structural determinants for transcriptional activation by cAMP-responsive DNA elements. J Biol Chem. 1988;263(34):18466–72.PubMed
Metadata
Title
Beta-2 adrenergic receptors increase TREG cell suppression in an OVA-induced allergic asthma mouse model when mice are moderate aerobically exercised
Authors
Kari J. Dugger
Taylor Chrisman
Sarah L. Sayner
Parker Chastain
Kacie Watson
Robert Estes
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Immunology / Issue 1/2018
Electronic ISSN: 1471-2172
DOI
https://doi.org/10.1186/s12865-018-0244-1

Other articles of this Issue 1/2018

BMC Immunology 1/2018 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.