Skip to main content
Top
Published in: Annals of Intensive Care 1/2018

Open Access 01-12-2018 | Editorial

Beneficial effects of antioxidant therapy in crush syndrome in a rodent model: enough evidences to be used in humans?

Authors: Patrick M. Honore, David De Bels, Herbert D. Spapen

Published in: Annals of Intensive Care | Issue 1/2018

Login to get access

Excerpt

Rhabdomyolysis or skeletal muscle breakdown results in a huge release of myoglobin, sarcoplasmic proteins, and electrolytes into the plasma. The term “crush syndrome (CS)” describes muscle destruction after direct trauma, injury, or compression [1]. CS is the archetype of ischemia–reperfusion injury (IRI) which encompasses tissue and cellular damage due to inadequate blood supply followed by resumption of blood flow. Acute kidney injury (AKI) is the most common systemic complication of rhabdomyolysis. It occurs at an incidence ranging between 10 and 55% and is associated with a poor outcome, particularly in the presence of multiple organ failure [1]. Rhabdomyolysis-induced AKI is likely initiated by lack of oxygen, depletion of high-energy molecules, accumulation of toxic metabolites, and intratubular protein precipitation during the ischemia phase but becomes substantially worsened by myoglobin-induced oxidative stress, inflammation, endothelial dysfunction, vasoconstriction, and apoptosis during reperfusion [2]. Despite increasing insight into the pathophysiologic mechanisms underlying CS, treatment has scarcely evolved over time. Akin to any case of CS are adequate surgical management with timely fasciotomies and debridement, ample intravenous fluid resuscitation, mannitol diuresis, urine alkalinization with bicarbonate, serum potassium control, and organ support [1]. …
Literature
1.
go back to reference Bosch X, Poch E, Grau JM. Rhabdomyolysis and acute kidney injury. N Engl J Med. 2009;361(1):62–72.CrossRef Bosch X, Poch E, Grau JM. Rhabdomyolysis and acute kidney injury. N Engl J Med. 2009;361(1):62–72.CrossRef
2.
go back to reference Panizo N, Rubio-Navarro A, Amaro-Villalobos JM, Egido J, Moreno JA. Molecular mechanisms and novel therapeutic approaches to rhabdomyolysis-induced acute kidney injury. Kidney Blood Press Res. 2015;40(5):520–32.CrossRef Panizo N, Rubio-Navarro A, Amaro-Villalobos JM, Egido J, Moreno JA. Molecular mechanisms and novel therapeutic approaches to rhabdomyolysis-induced acute kidney injury. Kidney Blood Press Res. 2015;40(5):520–32.CrossRef
3.
go back to reference Murata I, Abe Y, Yaginuma Y, Yodo K, Kamakari Y, Miyazaki Y, et al. Astragaloside-IV prevents acute kidney injury and inflammation by normalizing muscular mitochondrial function associated with a nitric oxide protective mechanism in crush syndrome rats. Ann Intensive Care. 2017;7:90.CrossRef Murata I, Abe Y, Yaginuma Y, Yodo K, Kamakari Y, Miyazaki Y, et al. Astragaloside-IV prevents acute kidney injury and inflammation by normalizing muscular mitochondrial function associated with a nitric oxide protective mechanism in crush syndrome rats. Ann Intensive Care. 2017;7:90.CrossRef
4.
go back to reference Qi Y, Gao F, Hou L, Wan C. Anti-inflammatory and immunostimulatory activities of astragalosides. Am J Chin Med. 2017;45(6):1157–67.CrossRef Qi Y, Gao F, Hou L, Wan C. Anti-inflammatory and immunostimulatory activities of astragalosides. Am J Chin Med. 2017;45(6):1157–67.CrossRef
5.
go back to reference Gui D, Huang J, Liu W, Guo Y, Xiao W, Wang N. Astragaloside IV prevents acute kidney injury in two rodent models by inhibiting oxidative stress and apoptosis pathways. Apoptosis. 2013;18(4):409–22.CrossRef Gui D, Huang J, Liu W, Guo Y, Xiao W, Wang N. Astragaloside IV prevents acute kidney injury in two rodent models by inhibiting oxidative stress and apoptosis pathways. Apoptosis. 2013;18(4):409–22.CrossRef
6.
go back to reference Kiełczykowska M, Kocot J, Paździor M, Musik I. Selenium—a fascinating antioxidant of protective properties. Adv Clin Exp Med. 2018;27(2):245–55.CrossRef Kiełczykowska M, Kocot J, Paździor M, Musik I. Selenium—a fascinating antioxidant of protective properties. Adv Clin Exp Med. 2018;27(2):245–55.CrossRef
7.
go back to reference Spapen H. N-acetylcysteine in clinical sepsis: a difficult marriage. Crit Care. 2004;8(4):229–30.CrossRef Spapen H. N-acetylcysteine in clinical sepsis: a difficult marriage. Crit Care. 2004;8(4):229–30.CrossRef
8.
go back to reference Moore KP, Holt SG, Patel RP, Svistunenko DA, Zackert W, Goodier D, Reeder BJ, Clozel M, Anand R, Cooper CE, Morrow JD, Wilson MT, Darley-Usmar V, Roberts LJ 2nd. A causative role for redox cycling of myoglobin and its inhibition by alkalinization in the pathogenesis and treatment of rhabdomyolysis-induced renal failure. J Biol Chem. 1998;273:31731–7.CrossRef Moore KP, Holt SG, Patel RP, Svistunenko DA, Zackert W, Goodier D, Reeder BJ, Clozel M, Anand R, Cooper CE, Morrow JD, Wilson MT, Darley-Usmar V, Roberts LJ 2nd. A causative role for redox cycling of myoglobin and its inhibition by alkalinization in the pathogenesis and treatment of rhabdomyolysis-induced renal failure. J Biol Chem. 1998;273:31731–7.CrossRef
9.
go back to reference Olivier PY, Beloncle F, Seegers V, Tabka M, Renou de La Bourdonnaye M, Mercat A, Cales P, Henrion D, Radermacher P, Piquilloud L, Lerolle N, Asfar P. Assessment of renal hemodynamic toxicity of fluid challenge with 0.9% NaCl compared to balanced crystalloid (PlasmaLyte(®)) in a rat model with severe sepsis. Ann Intensive. Care. 2017;7(1):66. Olivier PY, Beloncle F, Seegers V, Tabka M, Renou de La Bourdonnaye M, Mercat A, Cales P, Henrion D, Radermacher P, Piquilloud L, Lerolle N, Asfar P. Assessment of renal hemodynamic toxicity of fluid challenge with 0.9% NaCl compared to balanced crystalloid (PlasmaLyte(®)) in a rat model with severe sepsis. Ann Intensive. Care. 2017;7(1):66.
Metadata
Title
Beneficial effects of antioxidant therapy in crush syndrome in a rodent model: enough evidences to be used in humans?
Authors
Patrick M. Honore
David De Bels
Herbert D. Spapen
Publication date
01-12-2018
Publisher
Springer International Publishing
Published in
Annals of Intensive Care / Issue 1/2018
Electronic ISSN: 2110-5820
DOI
https://doi.org/10.1186/s13613-018-0431-5

Other articles of this Issue 1/2018

Annals of Intensive Care 1/2018 Go to the issue