Skip to main content
Top
Published in: Intensive Care Medicine 1/2012

01-01-2012 | Physiological and Technical Notes

Bench studies evaluating devices for non-invasive ventilation: critical analysis and future perspectives

Authors: Carlo Olivieri, Roberta Costa, Giorgio Conti, Paolo Navalesi

Published in: Intensive Care Medicine | Issue 1/2012

Login to get access

Abstract

Purpose

Because non-invasive mechanical ventilation (NIV) is increasingly used, new devices, both ventilators and interfaces, have been continuously proposed for clinical use in recent years. To provide the clinicians with valuable information about ventilators and interfaces for NIV, several bench studies evaluating and comparing the performance of NIV devices have been concomitantly published, which may influence the choice in equipment acquisition. As these comparisons, however, may be problematic and sometimes lacking in consistency, in the present article we review and discuss those technical aspects that may explain discrepancies.

Methods

Studies concerning bench evaluations of devices for NIV were reviewed, focusing on some specific technical aspects: lung models and simulation of inspiratory demand and effort, mechanical properties of the virtual respiratory system, generation and quantification of air leaks, ventilator modes and settings, assessment of the interface-ventilator unit performance.

Results

The impact of the use of different test lung models is not clear and warrants elucidation; standard references for simulated demand and effort, mode of generation and extent of air leaks, resistance and compliance of the virtual respiratory system, and ventilator settings are lacking; the criteria for assessment of inspiratory trigger function, inspiration-to-expiration (I:E) cycling, and pressurization rate vary among studies; finally, the terminology utilized is inconsistent, which may also lead to confusion.

Conclusions

Consistent experimental settings, uniform terminology, and standard measurement criteria are deemed to be useful to enhance bench assessment of characteristics and comparison of performance of ventilators and interfaces for NIV.
Literature
1.
go back to reference Gonzalez-Bermejo J, Laplanche V, Husseini FE, Duguet A, Derenne JP, Similowski T (2006) Evaluation of the user-friendliness of 11 home mechanical ventilators. Eur Respir J 27:1236–1243PubMedCrossRef Gonzalez-Bermejo J, Laplanche V, Husseini FE, Duguet A, Derenne JP, Similowski T (2006) Evaluation of the user-friendliness of 11 home mechanical ventilators. Eur Respir J 27:1236–1243PubMedCrossRef
2.
go back to reference Lofaso F, Brochard L, Hang T, Lorino H, Harf A, Isabey D (1996) Home versus intensive care pressure support devices: experimental and clinical comparison. Am J Respir Crit Care Med 153:1591–1599PubMed Lofaso F, Brochard L, Hang T, Lorino H, Harf A, Isabey D (1996) Home versus intensive care pressure support devices: experimental and clinical comparison. Am J Respir Crit Care Med 153:1591–1599PubMed
3.
go back to reference Aslanian P, El Atrous S, Isabey D, Valente E, Corsi D, Harf A, Lemaire F, Brochard L (1998) Effects of flow triggering on breathing effort during partial ventilatory support. Am J Respir Crit Care Med 157:135–143PubMed Aslanian P, El Atrous S, Isabey D, Valente E, Corsi D, Harf A, Lemaire F, Brochard L (1998) Effects of flow triggering on breathing effort during partial ventilatory support. Am J Respir Crit Care Med 157:135–143PubMed
4.
go back to reference Lofaso F, Aslanian P, Richard JC, Isabey D, Hang T, Corriger E, Harf A, Brochard L (1998) Expiratory valves used for home devices: experimental and clinical comparison. Eur Respir J 11:1382–1388PubMedCrossRef Lofaso F, Aslanian P, Richard JC, Isabey D, Hang T, Corriger E, Harf A, Brochard L (1998) Expiratory valves used for home devices: experimental and clinical comparison. Eur Respir J 11:1382–1388PubMedCrossRef
5.
go back to reference Adams AB, Bliss PL, Hotchkiss J (2000) Effects of respiratory impedance on the performance of bi-level pressure ventilators. Respir Care 45:390–400PubMed Adams AB, Bliss PL, Hotchkiss J (2000) Effects of respiratory impedance on the performance of bi-level pressure ventilators. Respir Care 45:390–400PubMed
6.
go back to reference Mehta S, McCool FD, Hill NS (2001) Leak compensation in positive pressure ventilators: a lung model study. Eur Respir J 17:259–267PubMedCrossRef Mehta S, McCool FD, Hill NS (2001) Leak compensation in positive pressure ventilators: a lung model study. Eur Respir J 17:259–267PubMedCrossRef
7.
go back to reference Zanetta G, Robert D, Guérin C (2002) Evaluation of ventilators used during transport of ICU patients—a bench study. Intensive Care Med 28:443–451PubMedCrossRef Zanetta G, Robert D, Guérin C (2002) Evaluation of ventilators used during transport of ICU patients—a bench study. Intensive Care Med 28:443–451PubMedCrossRef
8.
go back to reference Richard JC, Carlucci A, Breton L, Langlais N, Jaber S, Maggiore S, Fougère S, Harf A, Brochard L (2002) Bench testing of pressure support ventilation with three different generations of ventilators. Intensive Care Med 28:1049–1057PubMedCrossRef Richard JC, Carlucci A, Breton L, Langlais N, Jaber S, Maggiore S, Fougère S, Harf A, Brochard L (2002) Bench testing of pressure support ventilation with three different generations of ventilators. Intensive Care Med 28:1049–1057PubMedCrossRef
9.
go back to reference Tassaux D, Strasser S, Fonseca S, Dalmas E, Jolliet P (2002) Comparative bench study of triggering, pressurization, and cycling between the home ventilator VPAP II and three ICU ventilators. Intensive Care Med 28:1254–1261PubMedCrossRef Tassaux D, Strasser S, Fonseca S, Dalmas E, Jolliet P (2002) Comparative bench study of triggering, pressurization, and cycling between the home ventilator VPAP II and three ICU ventilators. Intensive Care Med 28:1254–1261PubMedCrossRef
10.
go back to reference Battisti A, Tassaux D, Janssens JP, Michotte JB, Jaber S, Jolliet P (2005) Performance characteristics of 10 home mechanical ventilators in pressure-support mode: a comparative bench study. Chest 127:1784–1792PubMedCrossRef Battisti A, Tassaux D, Janssens JP, Michotte JB, Jaber S, Jolliet P (2005) Performance characteristics of 10 home mechanical ventilators in pressure-support mode: a comparative bench study. Chest 127:1784–1792PubMedCrossRef
11.
go back to reference Moerer O, Fischer S, Hartelt M, Kuvaki B, Quintel M, Neumann P (2006) Influence of two different interfaces for non-invasive ventilation compared to invasive ventilation on the mechanical properties and performance of a respiratory system: a lung model study. Chest 129:1424–1431PubMedCrossRef Moerer O, Fischer S, Hartelt M, Kuvaki B, Quintel M, Neumann P (2006) Influence of two different interfaces for non-invasive ventilation compared to invasive ventilation on the mechanical properties and performance of a respiratory system: a lung model study. Chest 129:1424–1431PubMedCrossRef
12.
go back to reference Jaber S, Tassaux D, Sebbane M, Pouzeratte Y, Battisti A, Capdevila X, Eledjam JJ, Jolliet P (2006) Performance characteristics of five new anesthesia ventilators and four intensive care ventilators in pressure-support mode: a comparative bench study. Anesthesiology 105:944–952PubMedCrossRef Jaber S, Tassaux D, Sebbane M, Pouzeratte Y, Battisti A, Capdevila X, Eledjam JJ, Jolliet P (2006) Performance characteristics of five new anesthesia ventilators and four intensive care ventilators in pressure-support mode: a comparative bench study. Anesthesiology 105:944–952PubMedCrossRef
13.
go back to reference Vignaux L, Tassaux D, Jolliet P (2007) Performance of non-invasive ventilation modes on ICU ventilators during pressure support: a bench model study. Intensive Care Med 33:1444–1451PubMedCrossRef Vignaux L, Tassaux D, Jolliet P (2007) Performance of non-invasive ventilation modes on ICU ventilators during pressure support: a bench model study. Intensive Care Med 33:1444–1451PubMedCrossRef
14.
go back to reference Fauroux B, Leroux K, Desmarais G, Isabey D, Clément A, Lofaso F, Louis B (2008) Performance of ventilators for non-invasive positive-pressure ventilation in children. Eur Respir J 31:1300–1307PubMedCrossRef Fauroux B, Leroux K, Desmarais G, Isabey D, Clément A, Lofaso F, Louis B (2008) Performance of ventilators for non-invasive positive-pressure ventilation in children. Eur Respir J 31:1300–1307PubMedCrossRef
15.
go back to reference Thille AW, Lyazidi A, Richard JC, Galia F, Brochard L (2009) A bench study of intensive-care-unit ventilators: new versus old and turbine-based versus compressed gas-based ventilators. Intensive Care Med 35:1368–1376PubMedCrossRef Thille AW, Lyazidi A, Richard JC, Galia F, Brochard L (2009) A bench study of intensive-care-unit ventilators: new versus old and turbine-based versus compressed gas-based ventilators. Intensive Care Med 35:1368–1376PubMedCrossRef
16.
go back to reference Louis B, Leroux K, Isabey D, Fauroux B, Lofaso F (2010) Effect of manufacturer-inserted mask leaks on ventilator performance. Eur Respir J 35:627–636PubMedCrossRef Louis B, Leroux K, Isabey D, Fauroux B, Lofaso F (2010) Effect of manufacturer-inserted mask leaks on ventilator performance. Eur Respir J 35:627–636PubMedCrossRef
17.
go back to reference Fauroux B, Leroux K, Pépin JL, Lofaso F, Louis B (2010) Are home ventilators able to guarantee a minimal tidal volume? Intensive Care Med 36:1008–1014PubMedCrossRef Fauroux B, Leroux K, Pépin JL, Lofaso F, Louis B (2010) Are home ventilators able to guarantee a minimal tidal volume? Intensive Care Med 36:1008–1014PubMedCrossRef
18.
go back to reference Chiumello D, Pelosi P, Carlesso E, Severgnini P, Aspesi M, Gamberoni C, Antonelli M, Conti G, Chiaranda M, Gattinoni L (2003) Non-invasive positive pressure ventilation delivered by helmet vs. standard face mask. Intensive Care Med 29:1671–1679PubMedCrossRef Chiumello D, Pelosi P, Carlesso E, Severgnini P, Aspesi M, Gamberoni C, Antonelli M, Conti G, Chiaranda M, Gattinoni L (2003) Non-invasive positive pressure ventilation delivered by helmet vs. standard face mask. Intensive Care Med 29:1671–1679PubMedCrossRef
19.
go back to reference Bunburaphong T, Imanaka H, Nishimura M, Hess D, Kacmarek RM (1997) Performance characteristics of bilevel pressure ventilators: a lung model study. Chest 111:1050–1060PubMedCrossRef Bunburaphong T, Imanaka H, Nishimura M, Hess D, Kacmarek RM (1997) Performance characteristics of bilevel pressure ventilators: a lung model study. Chest 111:1050–1060PubMedCrossRef
20.
go back to reference Miyoshi E, Fujino Y, Mashimo T, Nishimura M (2000) Performance of transport ventilator with patient-triggered ventilation. Chest 118:1109–1115PubMedCrossRef Miyoshi E, Fujino Y, Mashimo T, Nishimura M (2000) Performance of transport ventilator with patient-triggered ventilation. Chest 118:1109–1115PubMedCrossRef
21.
go back to reference Williams P, Kratohvil J, Ritz R, Hess DR, Kacmarek RM (2000) Pressure support and pressure assist/control: are there differences? An evaluation of the newest intensive care unit ventilators. Respir Care 45:1169–1181PubMed Williams P, Kratohvil J, Ritz R, Hess DR, Kacmarek RM (2000) Pressure support and pressure assist/control: are there differences? An evaluation of the newest intensive care unit ventilators. Respir Care 45:1169–1181PubMed
22.
go back to reference Chatmongkolchart S, Williams P, Hess DR, Kacmarek RM (2001) Evaluation of inspiratory rise time and inspiration termination criteria in new-generation mechanical ventilators: a lung model study. Respir Care 46:666–677PubMed Chatmongkolchart S, Williams P, Hess DR, Kacmarek RM (2001) Evaluation of inspiratory rise time and inspiration termination criteria in new-generation mechanical ventilators: a lung model study. Respir Care 46:666–677PubMed
23.
go back to reference Murata S, Yokoyama K, Sakamoto Y, Yamashita K, Oto J, Imanaka H, Nishimura M (2010) Effects of inspiratory rise time on triggering work load during pressure-support ventilation: a lung model study. Respir Care 55:878–884PubMed Murata S, Yokoyama K, Sakamoto Y, Yamashita K, Oto J, Imanaka H, Nishimura M (2010) Effects of inspiratory rise time on triggering work load during pressure-support ventilation: a lung model study. Respir Care 55:878–884PubMed
24.
go back to reference Smith IE, Shneerson JM (1996) A laboratory comparison of four positive pressure ventilators used in the home. Eur Respir J 9:2410–2415PubMedCrossRef Smith IE, Shneerson JM (1996) A laboratory comparison of four positive pressure ventilators used in the home. Eur Respir J 9:2410–2415PubMedCrossRef
25.
go back to reference Highcock MP, Shneerson JM, Smith IE (2001) Functional differences in bi-level pressure preset ventilators. Eur Respir J 17:268–273PubMedCrossRef Highcock MP, Shneerson JM, Smith IE (2001) Functional differences in bi-level pressure preset ventilators. Eur Respir J 17:268–273PubMedCrossRef
26.
go back to reference Miyoshi E, Fujino Y, Uchiyama A, Mashimo T, Nishimura M (2005) Effects of gas leak on triggering function, humidification, and inspiratory oxygen fraction during non-invasive positive airway pressure ventilation. Chest 128:3691–3698PubMedCrossRef Miyoshi E, Fujino Y, Uchiyama A, Mashimo T, Nishimura M (2005) Effects of gas leak on triggering function, humidification, and inspiratory oxygen fraction during non-invasive positive airway pressure ventilation. Chest 128:3691–3698PubMedCrossRef
27.
go back to reference Stell IM, Paul G, Lee KC, Ponte J, Moxham J (2001) Non-invasive ventilator triggering in chronic obstructive pulmonary disease. A test lung comparison. Am J Respir Crit Care Med 164:2092–2097PubMed Stell IM, Paul G, Lee KC, Ponte J, Moxham J (2001) Non-invasive ventilator triggering in chronic obstructive pulmonary disease. A test lung comparison. Am J Respir Crit Care Med 164:2092–2097PubMed
28.
go back to reference Costa R, Navalesi P, Spinazzola G, Rossi M, Cavaliere F, Antonelli M, Proietti R, Conti G (2008) Comparative evaluation of different helmets on patient-ventilator interaction during non-invasive ventilation. Intensive Care Med 34:1102–1108PubMedCrossRef Costa R, Navalesi P, Spinazzola G, Rossi M, Cavaliere F, Antonelli M, Proietti R, Conti G (2008) Comparative evaluation of different helmets on patient-ventilator interaction during non-invasive ventilation. Intensive Care Med 34:1102–1108PubMedCrossRef
29.
go back to reference Ferreira JC, Chipman DW, Kacmarek RM (2008) Trigger performance of mid-level ICU mechanical ventilators during assisted ventilation: a bench study. Intensive Care Med 34:1669–1675PubMedCrossRef Ferreira JC, Chipman DW, Kacmarek RM (2008) Trigger performance of mid-level ICU mechanical ventilators during assisted ventilation: a bench study. Intensive Care Med 34:1669–1675PubMedCrossRef
30.
go back to reference Borel JC, Sabil A, Janssens JP, Couteau M, Boulon L, Lévy P, Pépin JL (2009) Intentional leaks in industrial masks have a significant impact on efficacy of bilevel non-invasive ventilation: a bench test study. Chest 135:669–677PubMedCrossRef Borel JC, Sabil A, Janssens JP, Couteau M, Boulon L, Lévy P, Pépin JL (2009) Intentional leaks in industrial masks have a significant impact on efficacy of bilevel non-invasive ventilation: a bench test study. Chest 135:669–677PubMedCrossRef
31.
go back to reference Ferreira JC, Chipman DW, Hill NS, Kacmarek RM (2009) Bilevel vs ICU ventilators providing non-invasive ventilation: effect of system leaks: a COPD lung model comparison. Chest 136:448–456PubMedCrossRef Ferreira JC, Chipman DW, Hill NS, Kacmarek RM (2009) Bilevel vs ICU ventilators providing non-invasive ventilation: effect of system leaks: a COPD lung model comparison. Chest 136:448–456PubMedCrossRef
32.
go back to reference Costa R, Navalesi P, Spinazzola G, Ferrone G, Pellegrini A, Cavaliere F, Proietti R, Antonelli M, Conti G (2010) Influence of ventilator settings on patient-ventilator synchrony during pressure support ventilation with different interfaces. Intensive Care Med 36:1363–1370PubMedCrossRef Costa R, Navalesi P, Spinazzola G, Ferrone G, Pellegrini A, Cavaliere F, Proietti R, Antonelli M, Conti G (2010) Influence of ventilator settings on patient-ventilator synchrony during pressure support ventilation with different interfaces. Intensive Care Med 36:1363–1370PubMedCrossRef
33.
go back to reference Lofaso F, Fodil R, Lorino H, Leroux K, Quintel A, Leroy A, Harf A (2000) Inaccuracy of tidal volume delivered by home mechanical ventilators. Eur Respir J 15:338–341PubMedCrossRef Lofaso F, Fodil R, Lorino H, Leroux K, Quintel A, Leroy A, Harf A (2000) Inaccuracy of tidal volume delivered by home mechanical ventilators. Eur Respir J 15:338–341PubMedCrossRef
34.
go back to reference Oscroft NS, Smith IE (2010) A bench test to confirm the core features of volume-assured non-invasive ventilation. Respirology 15:361–364PubMedCrossRef Oscroft NS, Smith IE (2010) A bench test to confirm the core features of volume-assured non-invasive ventilation. Respirology 15:361–364PubMedCrossRef
35.
go back to reference Lyazidi A, Thille AW, Carteaux G, Galia F, Brochard L, Richard JC (2010) Bench test evaluation of volume delivered by modern ICU ventilators during volume-controlled ventilation. Intensive Care Med 36:2074–2080PubMedCrossRef Lyazidi A, Thille AW, Carteaux G, Galia F, Brochard L, Richard JC (2010) Bench test evaluation of volume delivered by modern ICU ventilators during volume-controlled ventilation. Intensive Care Med 36:2074–2080PubMedCrossRef
36.
go back to reference Schettino GP, Tucci MR, Sousa R, Valente Barbas CS, Passos Amato MB, Carvalho CR (2001) Mask mechanics and leak dynamics during non-invasive pressure support ventilation: a bench study. Intensive Care Med 27:1887–1891PubMedCrossRef Schettino GP, Tucci MR, Sousa R, Valente Barbas CS, Passos Amato MB, Carvalho CR (2001) Mask mechanics and leak dynamics during non-invasive pressure support ventilation: a bench study. Intensive Care Med 27:1887–1891PubMedCrossRef
37.
go back to reference Bonmarchand G, Chevron V, Chopin C, Jusserand D, Girault C, Moritz F, Leroy J, Pasquis P (1996) Increased initial flow rate reduces inspiratory work of breathing during pressure support ventilation in patients with exacerbation of chronic obstructive pulmonary disease. Intensive Care Med 22:1147–1154PubMedCrossRef Bonmarchand G, Chevron V, Chopin C, Jusserand D, Girault C, Moritz F, Leroy J, Pasquis P (1996) Increased initial flow rate reduces inspiratory work of breathing during pressure support ventilation in patients with exacerbation of chronic obstructive pulmonary disease. Intensive Care Med 22:1147–1154PubMedCrossRef
38.
go back to reference Bonmarchand G, Chevron V, Ménard JF, Girault C, Moritz-Berthelot F, Pasquis P, Leroy J (1999) Effects of pressure ramp slope values on the work of breathing during pressure support ventilation in restrictive patients. Crit Care Med 27:715–722PubMedCrossRef Bonmarchand G, Chevron V, Ménard JF, Girault C, Moritz-Berthelot F, Pasquis P, Leroy J (1999) Effects of pressure ramp slope values on the work of breathing during pressure support ventilation in restrictive patients. Crit Care Med 27:715–722PubMedCrossRef
Metadata
Title
Bench studies evaluating devices for non-invasive ventilation: critical analysis and future perspectives
Authors
Carlo Olivieri
Roberta Costa
Giorgio Conti
Paolo Navalesi
Publication date
01-01-2012
Publisher
Springer-Verlag
Published in
Intensive Care Medicine / Issue 1/2012
Print ISSN: 0342-4642
Electronic ISSN: 1432-1238
DOI
https://doi.org/10.1007/s00134-011-2416-9

Other articles of this Issue 1/2012

Intensive Care Medicine 1/2012 Go to the issue