Skip to main content
Top
Published in: Cancer Cell International 1/2018

Open Access 01-12-2018 | Primary research

BC094916 suppressed SP 2/0 xenograft tumor by down-regulating Creb1 and Bcl2 transcription

Authors: Ruonan Xu, Ying Fang, Chunmei Hou, Bing Zhai, Zhenyu Jiang, Ning Ma, Liang Wang, Gencheng Han, Renxi Wang

Published in: Cancer Cell International | Issue 1/2018

Login to get access

Abstract

Background

Both multiple myeloma (MM) and systemic lupus erythematosus (SLE) are associated with abnormal production of plasma cells, although their pathological mechanism of each disease is different. The main characteristic of both diseases is uncontrolled differentiation of B cells into plasmablast/plasma cells. Despite continuous research on prognostic factors and the introduction of new agents for MM and SLE, treatments still do not exist for controlling plasmablast/plasma cells. Thus, it is necessary to identify novel therapeutic targets of plasmablast/plasma cells. Because of its plasmablast-like characteristics, the mus musculus myeloma SP 2/0 cell line was used in this study to test the effect of a novel therapeutic agent (BC094916 overexpression) on plasmablast/plasma cells.

Methods

We first determined gene expression profiles of plasma cells using Affymetrix microarrays and RNA-sequencing. The effect of BC094916 on SP 2/0 cell proliferation, cell cycle, and apoptosis was determined by CCK8 and fluorescence-activated cell sorting. The SP 2/0 xenograft mouse model was used to assess the impact of BC094916 on tumor progression. The luciferase reporter system was used to evaluate the effect of BC094916 on Creb1 and Bcl2 transcription.

Results

We found that BC094916 mRNA was decreased in plasma cells. The mouse myeloma cell line SP 2/0 expressed low levels of BC094916 mRNA, whereas BC094916 overexpression suppressed SP 2/0 cell proliferation by inducing apoptosis. BC094916 overexpression suppressed tumor progression in the SP 2/0 xenograft mouse model. We also found that BC094916 mediate apoptosis by suppressing transcription of the Creb1 and Bcl2 genes, which promote the transcription of eukaryotic translation initiation and elongation factor genes.

Conclusions

BC094916 overexpression suppressed Creb1 and Bcl2 transcription to induce cell apoptosis, which suppressed SP 2/0 proliferation and xenograft tumor progression. Thus, BC094916 overexpression may be a potential therapeutic agent for treatment of MM and autoimmune diseases such as SLE.
Literature
1.
go back to reference Jacob J, Kelsoe G, Rajewsky K, Weiss U. Intraclonal generation of antibody mutants in germinal centres. Nature. 1991;354:389–92.CrossRefPubMed Jacob J, Kelsoe G, Rajewsky K, Weiss U. Intraclonal generation of antibody mutants in germinal centres. Nature. 1991;354:389–92.CrossRefPubMed
2.
go back to reference Vazquez MI, Catalan-Dibene J, Zlotnik A. B cells responses and cytokine production are regulated by their immune microenvironment. Cytokine. 2015;74:318–26.CrossRefPubMedPubMedCentral Vazquez MI, Catalan-Dibene J, Zlotnik A. B cells responses and cytokine production are regulated by their immune microenvironment. Cytokine. 2015;74:318–26.CrossRefPubMedPubMedCentral
3.
go back to reference Illera VA, Perandones CE, Stunz LL. Mower DAJr, Ashman RF. Apoptosis in splenic B lymphocytes. Regulation by protein kinase C and IL-4. J Immunol. 1993;151:2965–73.PubMed Illera VA, Perandones CE, Stunz LL. Mower DAJr, Ashman RF. Apoptosis in splenic B lymphocytes. Regulation by protein kinase C and IL-4. J Immunol. 1993;151:2965–73.PubMed
4.
go back to reference Nutt SL, Taubenheim N, Hasbold J, Corcoran LM, Hodgkin PD. The genetic network controlling plasma cell differentiation. Semin Immunol. 2011;23:341–9.CrossRef Nutt SL, Taubenheim N, Hasbold J, Corcoran LM, Hodgkin PD. The genetic network controlling plasma cell differentiation. Semin Immunol. 2011;23:341–9.CrossRef
8.
go back to reference Mackay F, Schneider P. Cracking the BAFF code. Nat Rev Immunol. 2009;9:491–502.CrossRef Mackay F, Schneider P. Cracking the BAFF code. Nat Rev Immunol. 2009;9:491–502.CrossRef
9.
go back to reference Nestorov I, Munafo A, Papasouliotis O, Visich J. Pharmacokinetics and biological activity of atacicept in patients with rheumatoid arthritis. J Clin Pharmacol. 2008;48:406–17.CrossRefPubMed Nestorov I, Munafo A, Papasouliotis O, Visich J. Pharmacokinetics and biological activity of atacicept in patients with rheumatoid arthritis. J Clin Pharmacol. 2008;48:406–17.CrossRefPubMed
10.
go back to reference Ma N, Xing C, Xiao H, et al. BAFF suppresses IL-15 expression in B Cells. J Immunol. 2014;192:4192–201.CrossRefPubMed Ma N, Xing C, Xiao H, et al. BAFF suppresses IL-15 expression in B Cells. J Immunol. 2014;192:4192–201.CrossRefPubMed
11.
go back to reference Carbonatto M, Yu P, Bertolinom M, et al. Nonclinical safety, pharmacokinetics, and pharmacodynamics of atacicept. Toxicol Sci. 2008;105:200–10.CrossRefPubMed Carbonatto M, Yu P, Bertolinom M, et al. Nonclinical safety, pharmacokinetics, and pharmacodynamics of atacicept. Toxicol Sci. 2008;105:200–10.CrossRefPubMed
12.
14.
go back to reference Tremblay-LeMay R, Rastgoo N, Chang H. Modulating PD-L1 expression in multiple myeloma: an alternative strategy to target the PD-1/PD-L1 pathway. J Hematol Oncol. 2018;11:46.CrossRefPubMedPubMedCentral Tremblay-LeMay R, Rastgoo N, Chang H. Modulating PD-L1 expression in multiple myeloma: an alternative strategy to target the PD-1/PD-L1 pathway. J Hematol Oncol. 2018;11:46.CrossRefPubMedPubMedCentral
15.
go back to reference Nijhof IS, van de Donk NWCJ, Zweegman S, Lokhorst HM. Current and new therapeutic strategies for relapsed and refractory multiple myeloma: an update. Drugs. 2018;78:19–37.CrossRefPubMed Nijhof IS, van de Donk NWCJ, Zweegman S, Lokhorst HM. Current and new therapeutic strategies for relapsed and refractory multiple myeloma: an update. Drugs. 2018;78:19–37.CrossRefPubMed
16.
go back to reference Vogel H, Scherneck S, Kanzleiter T, et al. Loss of function of Ifi202b by a microdeletion on chromosome 1 of C57BL/6 J mice suppresses 11b-hydroxysteroid dehydrogenase type 1 expression and development of obesity. Hum Mol Genet. 2012;21:3845–57.CrossRefPubMed Vogel H, Scherneck S, Kanzleiter T, et al. Loss of function of Ifi202b by a microdeletion on chromosome 1 of C57BL/6 J mice suppresses 11b-hydroxysteroid dehydrogenase type 1 expression and development of obesity. Hum Mol Genet. 2012;21:3845–57.CrossRefPubMed
18.
go back to reference Baranek T, Manh TV, Alexandre Y, et al. Differential responses of immune cells to type I interferon contribute to host resistance to viral infection. Cell Host Microb. 2012;12:571–84.CrossRef Baranek T, Manh TV, Alexandre Y, et al. Differential responses of immune cells to type I interferon contribute to host resistance to viral infection. Cell Host Microb. 2012;12:571–84.CrossRef
19.
go back to reference Chadwick JA, Bhattacharya S, Lowe J, Weisleder N, Rafael-Fortney JA. Renin-angiotensin-aldosterone system inhibitors improve membrane stability and change gene-expression profiles in dystrophic skeletal muscles. Am J Physiol Cell Physiol. 2017;312:155–68.CrossRef Chadwick JA, Bhattacharya S, Lowe J, Weisleder N, Rafael-Fortney JA. Renin-angiotensin-aldosterone system inhibitors improve membrane stability and change gene-expression profiles in dystrophic skeletal muscles. Am J Physiol Cell Physiol. 2017;312:155–68.CrossRef
20.
go back to reference Wang X, Wei Y, Xiao H, et al. Pre-existing CD19-independent GL7-Breg cells are expanded during inflammation and in mice with lupus-like disease. Mol Immunol. 2016;71:54–63.CrossRefPubMed Wang X, Wei Y, Xiao H, et al. Pre-existing CD19-independent GL7-Breg cells are expanded during inflammation and in mice with lupus-like disease. Mol Immunol. 2016;71:54–63.CrossRefPubMed
21.
go back to reference Liu X, Zhang Y, Wang Z, et al. Metabotropic glutamate receptor 3 is involved in B-cell-related tumor apoptosis. Int J Oncol. 2016;49:1469–78.CrossRefPubMed Liu X, Zhang Y, Wang Z, et al. Metabotropic glutamate receptor 3 is involved in B-cell-related tumor apoptosis. Int J Oncol. 2016;49:1469–78.CrossRefPubMed
22.
go back to reference Ma N, Liu X, Xing C, et al. Ligation of metabotropic glutamate receptor 3 (Grm3) ameliorates lupus-like disease by reducing B cells. Clin Immunol. 2015;160:142–54.CrossRefPubMed Ma N, Liu X, Xing C, et al. Ligation of metabotropic glutamate receptor 3 (Grm3) ameliorates lupus-like disease by reducing B cells. Clin Immunol. 2015;160:142–54.CrossRefPubMed
23.
go back to reference Zhu G, Liu X, Fang Y, et al. Increased mTOR cancels out the effect of reduced Xbp-1 on antibody secretion in IL-1a-deficient B cells. Cell Immunol. 2018;328:9–17.CrossRefPubMed Zhu G, Liu X, Fang Y, et al. Increased mTOR cancels out the effect of reduced Xbp-1 on antibody secretion in IL-1a-deficient B cells. Cell Immunol. 2018;328:9–17.CrossRefPubMed
24.
go back to reference Wang X, Wei Y, Xiao H, et al. A novel IL-23p19/Ebi3 (IL-39) cytokine mediates inflammation in lupus-like mice. Eur J Immunol. 2016;46:1340–50.CrossRef Wang X, Wei Y, Xiao H, et al. A novel IL-23p19/Ebi3 (IL-39) cytokine mediates inflammation in lupus-like mice. Eur J Immunol. 2016;46:1340–50.CrossRef
26.
go back to reference Shi W, Liao Y, Willis SN, et al. Transcriptional profiling of mouse B cell terminal differentiation defines a signature for antibody-secreting plasma cells. Nat Immunol. 2015;16:663–73.CrossRefPubMed Shi W, Liao Y, Willis SN, et al. Transcriptional profiling of mouse B cell terminal differentiation defines a signature for antibody-secreting plasma cells. Nat Immunol. 2015;16:663–73.CrossRefPubMed
27.
go back to reference Miller RA, Gralow J. The induction of Leu-1 antigen expression in human malignant and normal B cells by phorbol myristic acetate (PMA). J Immunol. 1984;133:3408–14.PubMed Miller RA, Gralow J. The induction of Leu-1 antigen expression in human malignant and normal B cells by phorbol myristic acetate (PMA). J Immunol. 1984;133:3408–14.PubMed
28.
go back to reference Ying-zi C, Rabin E, Wortis HH. Treatment of murine CD5-B cells with anti-Ig, but not LPS, induces surface CD5: two B-cell activation pathways. Int Immunol. 1991;3:467–76.CrossRef Ying-zi C, Rabin E, Wortis HH. Treatment of murine CD5-B cells with anti-Ig, but not LPS, induces surface CD5: two B-cell activation pathways. Int Immunol. 1991;3:467–76.CrossRef
29.
go back to reference Lalive PH, Molnarfi N, Benkhoucha M, Weber MS, Santiago-Raber ML. Antibody response in MOG35-55 induced EAE. J Neuroimmunol. 2011;240–241:28–33.CrossRefPubMed Lalive PH, Molnarfi N, Benkhoucha M, Weber MS, Santiago-Raber ML. Antibody response in MOG35-55 induced EAE. J Neuroimmunol. 2011;240–241:28–33.CrossRefPubMed
31.
go back to reference Costello C, Mikhael JR. Therapy sequencing strategies in multiple myeloma: who, what and why? Future Oncol. 2018;14:95–9.CrossRefPubMed Costello C, Mikhael JR. Therapy sequencing strategies in multiple myeloma: who, what and why? Future Oncol. 2018;14:95–9.CrossRefPubMed
32.
go back to reference Amalou H, Wood BJ. Intratumoral gene therapy injections with a multipronged, multi-side hole needle for rectal carcinoma. Cardiovasc Intervent Radiol. 2013;36:561–2.CrossRefPubMed Amalou H, Wood BJ. Intratumoral gene therapy injections with a multipronged, multi-side hole needle for rectal carcinoma. Cardiovasc Intervent Radiol. 2013;36:561–2.CrossRefPubMed
33.
go back to reference Diner BA, Li T, Greco TM, et al. The functional interactome of PYHIN immune regulators reveals IFIX is a sensor of viral DNA. Mol Systems Biol. 2015;11:787.CrossRef Diner BA, Li T, Greco TM, et al. The functional interactome of PYHIN immune regulators reveals IFIX is a sensor of viral DNA. Mol Systems Biol. 2015;11:787.CrossRef
34.
go back to reference Veeranki S, Choubey D. Interferon-inducible p200-family protein IFI16, an innate immune sensor for cytosolic and nuclear double-stranded DNA: regulation of subcellular localization. Mol Immunol. 2012;49:567–71.CrossRefPubMed Veeranki S, Choubey D. Interferon-inducible p200-family protein IFI16, an innate immune sensor for cytosolic and nuclear double-stranded DNA: regulation of subcellular localization. Mol Immunol. 2012;49:567–71.CrossRefPubMed
35.
go back to reference Wilson BE, Mochon E, Boxer LM. Induction of bcl-2 expression by phosphorylated CREB proteins during B-cell activation and rescue from apoptosis. Mol Cell Biol. 1996;16:5546–56.CrossRefPubMedPubMedCentral Wilson BE, Mochon E, Boxer LM. Induction of bcl-2 expression by phosphorylated CREB proteins during B-cell activation and rescue from apoptosis. Mol Cell Biol. 1996;16:5546–56.CrossRefPubMedPubMedCentral
36.
go back to reference Pugazhenthi S, Miller E, Sable C, et al. Insulin-like growth factor-I induces bcl-2 promoter through the transcription factor cAMP-response element-binding protein. J Biol Chem. 1999;274:27529–35.CrossRefPubMed Pugazhenthi S, Miller E, Sable C, et al. Insulin-like growth factor-I induces bcl-2 promoter through the transcription factor cAMP-response element-binding protein. J Biol Chem. 1999;274:27529–35.CrossRefPubMed
37.
go back to reference Shankar E, Krishnamurthy S, Paranandi R, Basu A. PKCepsilon induces Bcl-2 by activating CREB. Int J Oncol. 2010;36:883–8.PubMed Shankar E, Krishnamurthy S, Paranandi R, Basu A. PKCepsilon induces Bcl-2 by activating CREB. Int J Oncol. 2010;36:883–8.PubMed
38.
go back to reference Dell’Oste V, Gatti D, Giorgio AG, Gariglio M, Landolfo S, De Andrea M. The interferon-inducible DNA-sensor protein IFI16: a key player in the antiviral response. New Microbiol. 2015;38:5–20.PubMed Dell’Oste V, Gatti D, Giorgio AG, Gariglio M, Landolfo S, De Andrea M. The interferon-inducible DNA-sensor protein IFI16: a key player in the antiviral response. New Microbiol. 2015;38:5–20.PubMed
39.
go back to reference Cristea IM, Moorman NJ, Terhune SS, et al. Human Cytomegalovirus pUL83 stimulates activity of the viral immediate-early promoter through its interaction with the cellular IFI16 protein. J Virol. 2010;84:7803–14.CrossRefPubMedPubMedCentral Cristea IM, Moorman NJ, Terhune SS, et al. Human Cytomegalovirus pUL83 stimulates activity of the viral immediate-early promoter through its interaction with the cellular IFI16 protein. J Virol. 2010;84:7803–14.CrossRefPubMedPubMedCentral
40.
41.
go back to reference Oltvai ZN, Milliman CL, Korsmeyer SJ. Bcl-2 heterodimerizes in vivo with a conserved homolog, bax, that accelerates programmed cell death. Cell. 1993;74:609–19.CrossRef Oltvai ZN, Milliman CL, Korsmeyer SJ. Bcl-2 heterodimerizes in vivo with a conserved homolog, bax, that accelerates programmed cell death. Cell. 1993;74:609–19.CrossRef
Metadata
Title
BC094916 suppressed SP 2/0 xenograft tumor by down-regulating Creb1 and Bcl2 transcription
Authors
Ruonan Xu
Ying Fang
Chunmei Hou
Bing Zhai
Zhenyu Jiang
Ning Ma
Liang Wang
Gencheng Han
Renxi Wang
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2018
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-018-0635-7

Other articles of this Issue 1/2018

Cancer Cell International 1/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine