Skip to main content
Top
Published in: Cancer Cell International 1/2018

Open Access 01-12-2018 | Primary research

Arenobufagin induces MCF-7 cell apoptosis by promoting JNK-mediated multisite phosphorylation of Yes-associated protein

Authors: Li-Juan Deng, Ming Qi, Qun-Long Peng, Min-Feng Chen, Qi Qi, Jia-Yan Zhang, Nan Yao, Mao-Hua Huang, Xiao-Bo Li, Yin-Hui Peng, Jun-Shan Liu, Deng-Rui Fu, Jia-Xu Chen, Wen-Cai Ye, Dong-Mei Zhang

Published in: Cancer Cell International | Issue 1/2018

Login to get access

Abstract

Background

It has been demonstrated that bufadienolides exert potent anti-cancer activity in various tumor types. However, the mechanisms that underlie their anti-cancer properties remain unclear. Yes-associated protein, a key effector of Hippo signaling, functions as a transcription coactivator, plays oncogenic and tumor suppressor roles under different conditions. Here, we report that arenobufagin (ABF), a representative bufadienolide, induced breast cancer MCF-7 cells to undergo apoptosis, which occurred through the JNK-mediated multisite phosphorylation of YAP.

Methods

Cytotoxicity was examined using an MTT assay. ABF-induced apoptosis was measured with a TUNEL assay and Annexin V-FITC/PI double staining assay. Western blotting, immunofluorescence, qRT-PCR and coimmunoprecipitation were employed to assess the expression levels of the indicated molecules. Lose-of-function experiments were carried out with siRNA transfection and pharmacological inhibitors. ABF-induced phosphopeptides were enriched with Ti4+-IMAC chromatography and further subjected to reverse-phase nano-LC–MS/MS analysis.

Results

ABF significantly reduced the viability of MCF-7 cells and increased the percentage of early and late apoptotic cells in a concentration- and time-dependent manner. Following ABF treatment, YAP accumulated in the nucleus and bound to p73, which enhanced the transcription of the pro-apoptotic genes Bax and p53AIP1. YAP knock-down significantly attenuated ABF-induced apoptotic cell death. Importantly, we found that the mobility shift of YAP was derived from its phosphorylation at multiple sites, including Tyr357. Moreover, mass spectrometry analysis identified 19 potential phosphorylation sites in YAP, with a distribution of 14 phosphoserine and 5 phosphothreonine residues. Furthermore, we found that the JNK inhibitor SP600125 completely diminished the mobility shift of YAP and its phosphorylation at Tyr357, the binding of YAP and p73, the transcription of Bax and p53AIP1 as well as the apoptosis induced by ABF. These data indicate that ABF induced YAP multisite phosphorylation, which was associated with p73 binding, and that apoptosis was mediated by the JNK signaling pathway.

Conclusions

Our data demonstrate that ABF suppresses MCF-7 breast cancer proliferation by triggering the pro-apoptotic activity of YAP, which is mediated by JNK signaling-induced YAP multisite phosphorylation as well as its association with p73. The present work not only provides additional information on the use of ABF as an anti-breast cancer drug, but also offers evidence that the induction of the tumor suppressor role of YAP may be a therapeutic strategy.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.PubMedCrossRef Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.PubMedCrossRef
2.
go back to reference Gemignani ML, Hetzel DJ. Current advances in endocrine therapy options for premenopausal women with hormone receptor positive breast cancer. Gynecol Oncol. 2017;147(1):153–7.PubMedPubMedCentralCrossRef Gemignani ML, Hetzel DJ. Current advances in endocrine therapy options for premenopausal women with hormone receptor positive breast cancer. Gynecol Oncol. 2017;147(1):153–7.PubMedPubMedCentralCrossRef
3.
go back to reference Nagini S. Breast Cancer: current molecular therapeutic targets and new players. Anti Cancer Agent Med. 2017;17(2):152–63.CrossRef Nagini S. Breast Cancer: current molecular therapeutic targets and new players. Anti Cancer Agent Med. 2017;17(2):152–63.CrossRef
4.
go back to reference Liu CY, Wu CY, Petrossian K, Huang TT, Tseng LM, Chen S. Treatment for the endocrine resistant breast cancer: current options and future perspectives. J Steroid Biochem Mol Biol. 2017;172:166–75.PubMedCrossRef Liu CY, Wu CY, Petrossian K, Huang TT, Tseng LM, Chen S. Treatment for the endocrine resistant breast cancer: current options and future perspectives. J Steroid Biochem Mol Biol. 2017;172:166–75.PubMedCrossRef
5.
go back to reference Musgrove EA, Sutherland RL. Biological determinants of endocrine resistance in breast cancer. Nat Rev Cancer. 2009;9(9):631–43.PubMedCrossRef Musgrove EA, Sutherland RL. Biological determinants of endocrine resistance in breast cancer. Nat Rev Cancer. 2009;9(9):631–43.PubMedCrossRef
6.
8.
go back to reference Guo LW, Teng LS. YAP/TAZ for cancer therapy: opportunities and challenges. Int J Oncol. 2015;46(4):1444–52.PubMedCrossRef Guo LW, Teng LS. YAP/TAZ for cancer therapy: opportunities and challenges. Int J Oncol. 2015;46(4):1444–52.PubMedCrossRef
9.
go back to reference Zhao B, Kim J, Ye X, Lai ZC, Guan KL. Both TEAD-Binding and WW domains are required for the growth stimulation and oncogenic transformation activity of Yes-associated protein. Cancer Res. 2009;69(3):1089–98.PubMedCrossRef Zhao B, Kim J, Ye X, Lai ZC, Guan KL. Both TEAD-Binding and WW domains are required for the growth stimulation and oncogenic transformation activity of Yes-associated protein. Cancer Res. 2009;69(3):1089–98.PubMedCrossRef
10.
go back to reference Vassilev A, Kaneko KJ, Shu H, Zhao Y, DePamphilis ML. TEAD/TEF transcription factors utilize the activation domain of YAP65, a Src/Yes-associated protein localized in the cytoplasm. Genes Dev. 2001;15(10):1229–41.PubMedPubMedCentralCrossRef Vassilev A, Kaneko KJ, Shu H, Zhao Y, DePamphilis ML. TEAD/TEF transcription factors utilize the activation domain of YAP65, a Src/Yes-associated protein localized in the cytoplasm. Genes Dev. 2001;15(10):1229–41.PubMedPubMedCentralCrossRef
12.
go back to reference Zhao B, Ye X, Yu J, Li L, Li W, Li S, Yu J, Lin JD, Wang CY, Chinnaiyan AM, et al. TEAD mediates YAP-dependent gene induction and growth control. Genes Dev. 2008;22(14):1962–71.PubMedPubMedCentralCrossRef Zhao B, Ye X, Yu J, Li L, Li W, Li S, Yu J, Lin JD, Wang CY, Chinnaiyan AM, et al. TEAD mediates YAP-dependent gene induction and growth control. Genes Dev. 2008;22(14):1962–71.PubMedPubMedCentralCrossRef
13.
go back to reference Chen LM, Loh PG, Song HW. Structural and functional insights into the TEAD-YAP complex in the Hippo signaling pathway. Protein Cell. 2010;1(12):1073–83.PubMedCrossRef Chen LM, Loh PG, Song HW. Structural and functional insights into the TEAD-YAP complex in the Hippo signaling pathway. Protein Cell. 2010;1(12):1073–83.PubMedCrossRef
14.
go back to reference Zhao B, Li L, Tumaneng K, Wang CY, Guan KL. A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF beta-TRCP. Gene Dev. 2010;24(1):72–85.PubMedCrossRef Zhao B, Li L, Tumaneng K, Wang CY, Guan KL. A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF beta-TRCP. Gene Dev. 2010;24(1):72–85.PubMedCrossRef
15.
go back to reference Levy D, Adamovich Y, Reuven N, Shaul Y. Yap1 phosphorylation by c-Abl is a critical step in selective activation of proapoptotic genes in response to DNA damage. Mol Cell. 2008;29(3):350–61.PubMedCrossRef Levy D, Adamovich Y, Reuven N, Shaul Y. Yap1 phosphorylation by c-Abl is a critical step in selective activation of proapoptotic genes in response to DNA damage. Mol Cell. 2008;29(3):350–61.PubMedCrossRef
16.
go back to reference Clarke BT. The natural history of amphibian skin secretions, their normal functioning and potential medical applications. Biol Rev Camb Philos Soc. 1997;72(3):365–79.PubMedCrossRef Clarke BT. The natural history of amphibian skin secretions, their normal functioning and potential medical applications. Biol Rev Camb Philos Soc. 1997;72(3):365–79.PubMedCrossRef
18.
go back to reference Borderud SP, Li Y, Burkhalter JE, Sheffer CE, Ostroff JS. Electronic cigarette use among patients with cancer: characteristics of electronic cigarette users and their smoking cessation outcomes. Cancer. 2014;120(22):3527–35.PubMedPubMedCentralCrossRef Borderud SP, Li Y, Burkhalter JE, Sheffer CE, Ostroff JS. Electronic cigarette use among patients with cancer: characteristics of electronic cigarette users and their smoking cessation outcomes. Cancer. 2014;120(22):3527–35.PubMedPubMedCentralCrossRef
19.
go back to reference Wang J, Chen C, Wang SY, Zhang Y, Yin PH, Gao ZX, Xu J, Feng DX, Zuo QS, Zhao RH, et al. Bufalin inhibits HCT116 colon cancer cells and its orthotopic xenograft tumor in mice model through genes related to apoptotic and PTEN/AKT pathways. Gastroent Res Pract. 2015;2015:457193. https://doi.org/10.1155/2015/457193.CrossRef Wang J, Chen C, Wang SY, Zhang Y, Yin PH, Gao ZX, Xu J, Feng DX, Zuo QS, Zhao RH, et al. Bufalin inhibits HCT116 colon cancer cells and its orthotopic xenograft tumor in mice model through genes related to apoptotic and PTEN/AKT pathways. Gastroent Res Pract. 2015;2015:457193. https://​doi.​org/​10.​1155/​2015/​457193.CrossRef
20.
go back to reference Zhang DM, Liu JS, Deng LJ, Chen MF, Yiu A, Cao HH, Tian HY, Fung KP, Kurihara H, Pan JX, et al. Arenobufagin, a natural bufadienolide from toad venom, induces apoptosis and autophagy in human hepatocellular carcinoma cells through inhibition of PI3 K/Akt/mTOR pathway. Carcinogenesis. 2013;34(6):1331–42.PubMedCrossRef Zhang DM, Liu JS, Deng LJ, Chen MF, Yiu A, Cao HH, Tian HY, Fung KP, Kurihara H, Pan JX, et al. Arenobufagin, a natural bufadienolide from toad venom, induces apoptosis and autophagy in human hepatocellular carcinoma cells through inhibition of PI3 K/Akt/mTOR pathway. Carcinogenesis. 2013;34(6):1331–42.PubMedCrossRef
21.
go back to reference Liu JS, Zhang DM, Li Y, Chen WM, Ruan ZX, Deng LJ, Wang LW, Tian HY, Yiu A, Fan CL, et al. Discovery of bufadienolides as a novel class of ClC-3 chloride channel activators with antitumor activities. J Med Chem. 2013;56(14):5734–43.PubMedCrossRef Liu JS, Zhang DM, Li Y, Chen WM, Ruan ZX, Deng LJ, Wang LW, Tian HY, Yiu A, Fan CL, et al. Discovery of bufadienolides as a novel class of ClC-3 chloride channel activators with antitumor activities. J Med Chem. 2013;56(14):5734–43.PubMedCrossRef
22.
go back to reference Deng LJ, Peng QL, Wang LH, Xu J, Liu JS, Li YJ, Zhuo ZJ, Bai LL, Hu LP, Chen WM, et al. Arenobufagin intercalates with DNA leading to G2 cell cycle arrest via ATM/ATR pathway. Oncotarget. 2015;6(33):34258–75.PubMedPubMedCentralCrossRef Deng LJ, Peng QL, Wang LH, Xu J, Liu JS, Li YJ, Zhuo ZJ, Bai LL, Hu LP, Chen WM, et al. Arenobufagin intercalates with DNA leading to G2 cell cycle arrest via ATM/ATR pathway. Oncotarget. 2015;6(33):34258–75.PubMedPubMedCentralCrossRef
23.
go back to reference Chen L, Mai W, Chen M, Hu J, Zhuo Z, Lei X, Deng L, Liu J, Yao N, Huang M, et al. Arenobufagin inhibits prostate cancer epithelial-mesenchymal transition and metastasis by down-regulating beta-catenin. Pharmacol Res. 2017;123:130–42.PubMedCrossRef Chen L, Mai W, Chen M, Hu J, Zhuo Z, Lei X, Deng L, Liu J, Yao N, Huang M, et al. Arenobufagin inhibits prostate cancer epithelial-mesenchymal transition and metastasis by down-regulating beta-catenin. Pharmacol Res. 2017;123:130–42.PubMedCrossRef
24.
go back to reference Chen L, Zhang D. Reflection on the selection of doses of arenobufagin in vivo anticancer study. Pharmacol Res. 2018;128:402.PubMedCrossRef Chen L, Zhang D. Reflection on the selection of doses of arenobufagin in vivo anticancer study. Pharmacol Res. 2018;128:402.PubMedCrossRef
25.
go back to reference Srinivas NR. Arenobufagin: a potential novel opportunity for prostate cancer treatment—intriguing mechanistic data but some questions on in vivo translatability. Pharmacol Res. 2018;128:400–1.PubMedCrossRef Srinivas NR. Arenobufagin: a potential novel opportunity for prostate cancer treatment—intriguing mechanistic data but some questions on in vivo translatability. Pharmacol Res. 2018;128:400–1.PubMedCrossRef
26.
go back to reference Li M, Wu S, Liu Z, Zhang W, Xu J, Wang Y, Liu J, Zhang D, Tian H, Li Y, et al. Arenobufagin, a bufadienolide compound from toad venom, inhibits VEGF-mediated angiogenesis through suppression of VEGFR-2 signaling pathway. Biochem Pharmacol. 2012;83(9):1251–60.PubMedCrossRef Li M, Wu S, Liu Z, Zhang W, Xu J, Wang Y, Liu J, Zhang D, Tian H, Li Y, et al. Arenobufagin, a bufadienolide compound from toad venom, inhibits VEGF-mediated angiogenesis through suppression of VEGFR-2 signaling pathway. Biochem Pharmacol. 2012;83(9):1251–60.PubMedCrossRef
27.
go back to reference Zhao Z, Jia Q, Wu MS, Xie X, Wang Y, Song G, Zou CY, Tang Q, Lu J, Huang G, et al. Degalactotigonin, a Natural Compound from Solanum nigrum L., Inhibits growth and metastasis of osteosarcoma through GSK3beta inactivation-mediated repression of the hedgehog/Gli1 pathway. Clini Cancer Res. 2018;24(1):130–44.CrossRef Zhao Z, Jia Q, Wu MS, Xie X, Wang Y, Song G, Zou CY, Tang Q, Lu J, Huang G, et al. Degalactotigonin, a Natural Compound from Solanum nigrum L., Inhibits growth and metastasis of osteosarcoma through GSK3beta inactivation-mediated repression of the hedgehog/Gli1 pathway. Clini Cancer Res. 2018;24(1):130–44.CrossRef
28.
go back to reference Zhu Y, Li M, Wang X, Jin H, Liu S, Xu J, Chen Q. Caspase cleavage of cytochrome c1 disrupts mitochondrial function and enhances cytochrome c release. Cell Res. 2012;22(1):127–41.PubMedCrossRef Zhu Y, Li M, Wang X, Jin H, Liu S, Xu J, Chen Q. Caspase cleavage of cytochrome c1 disrupts mitochondrial function and enhances cytochrome c release. Cell Res. 2012;22(1):127–41.PubMedCrossRef
29.
go back to reference de Graaf EL, Giansanti P, Altelaar AFM, Heck AJR. Single-step enrichment by Ti4(+)-IMAC and label-free quantitation enables in-depth monitoring of phosphorylation dynamics with high reproducibility and temporal resolution. Mol Cell Proteomics. 2014;13(9):2426–34.PubMedPubMedCentralCrossRef de Graaf EL, Giansanti P, Altelaar AFM, Heck AJR. Single-step enrichment by Ti4(+)-IMAC and label-free quantitation enables in-depth monitoring of phosphorylation dynamics with high reproducibility and temporal resolution. Mol Cell Proteomics. 2014;13(9):2426–34.PubMedPubMedCentralCrossRef
30.
go back to reference Strano S, Monti O, Pediconi N, Baccarini A, Fontemaggi G, Lapi E, Mantovani F, Damalas A, Citro G, Sacchi A, et al. The transcriptional coactivator yes-associated protein drives p73 gene-target specificity in response to DNA damage. Mol Cell. 2005;19(3):429.CrossRef Strano S, Monti O, Pediconi N, Baccarini A, Fontemaggi G, Lapi E, Mantovani F, Damalas A, Citro G, Sacchi A, et al. The transcriptional coactivator yes-associated protein drives p73 gene-target specificity in response to DNA damage. Mol Cell. 2005;19(3):429.CrossRef
31.
go back to reference Keshet R, Adler J, Lax IR, Shanzer M, Porat Z, Reuven N, Shaul Y. c-Abl antagonizes the YAP oncogenic function. Cell Death Differ. 2015;22(6):935–45.PubMedCrossRef Keshet R, Adler J, Lax IR, Shanzer M, Porat Z, Reuven N, Shaul Y. c-Abl antagonizes the YAP oncogenic function. Cell Death Differ. 2015;22(6):935–45.PubMedCrossRef
32.
go back to reference Lapi E, Di Agostino S, Donzelli S, Gal H, Domany E, Rechavi G, Pandolfi PP, Givol D, Strano S, Lu X, et al. PML, YAP, and p73 Are components of a proapoptotic autoregulatory feedback loop. Mol Cell. 2008;32(6):803–14.PubMedCrossRef Lapi E, Di Agostino S, Donzelli S, Gal H, Domany E, Rechavi G, Pandolfi PP, Givol D, Strano S, Lu X, et al. PML, YAP, and p73 Are components of a proapoptotic autoregulatory feedback loop. Mol Cell. 2008;32(6):803–14.PubMedCrossRef
33.
go back to reference Zhao B, Wei X, Li W, Udan RS, Yang Q, Kim J, Xie J, Ikenoue T, Yu J, Li L, et al. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Gene Dev. 2007;21(21):2747–61.PubMedCrossRef Zhao B, Wei X, Li W, Udan RS, Yang Q, Kim J, Xie J, Ikenoue T, Yu J, Li L, et al. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Gene Dev. 2007;21(21):2747–61.PubMedCrossRef
34.
go back to reference Zhao B, Li L, Tumaneng K, Wang CY, Guan KL. A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF(beta-TRCP). Genes Dev. 2010;24(1):72–85.PubMedPubMedCentralCrossRef Zhao B, Li L, Tumaneng K, Wang CY, Guan KL. A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF(beta-TRCP). Genes Dev. 2010;24(1):72–85.PubMedPubMedCentralCrossRef
35.
go back to reference Hao Y, Chun A, Cheung K, Rashidi B, Yang X. Tumor suppressor LATS1 is a negative regulator of oncogene YAP. J Biol Chem. 2008;283(9):5496–509.PubMedCrossRef Hao Y, Chun A, Cheung K, Rashidi B, Yang X. Tumor suppressor LATS1 is a negative regulator of oncogene YAP. J Biol Chem. 2008;283(9):5496–509.PubMedCrossRef
36.
go back to reference Lin KC, Moroishi T, Meng ZP, Jeong HS, Plouffe SW, Sekido Y, Han JH, Park HW, Guan KL. Regulation of Hippo pathway transcription factor TEAD by p38 MAPK-induced cytoplasmic translocation. Nat Cell Biol. 2017;19(8):996–1002.PubMedPubMedCentralCrossRef Lin KC, Moroishi T, Meng ZP, Jeong HS, Plouffe SW, Sekido Y, Han JH, Park HW, Guan KL. Regulation of Hippo pathway transcription factor TEAD by p38 MAPK-induced cytoplasmic translocation. Nat Cell Biol. 2017;19(8):996–1002.PubMedPubMedCentralCrossRef
37.
go back to reference Muranen T, Selfors LM, Hwang J, Gallegos LL, Coloff JL, Thoreen CC, Kang SA, Sabatini DM, Mills GB, Brugge JS. ERK and p38 MAPK activities determine sensitivity to PI3 K/mTOR inhibition via regulation of MYC and YAP. Cancer Res. 2016;76(24):7168–80.PubMedPubMedCentralCrossRef Muranen T, Selfors LM, Hwang J, Gallegos LL, Coloff JL, Thoreen CC, Kang SA, Sabatini DM, Mills GB, Brugge JS. ERK and p38 MAPK activities determine sensitivity to PI3 K/mTOR inhibition via regulation of MYC and YAP. Cancer Res. 2016;76(24):7168–80.PubMedPubMedCentralCrossRef
38.
go back to reference Tomlinson V, Gudmundsdottir K, Luong P, Leung KY, Knebel A, Basu S. JNK phosphorylates Yes-associated protein (YAP) to regulate apoptosis. Cell Death Dis. 2010;1:e29.PubMedPubMedCentralCrossRef Tomlinson V, Gudmundsdottir K, Luong P, Leung KY, Knebel A, Basu S. JNK phosphorylates Yes-associated protein (YAP) to regulate apoptosis. Cell Death Dis. 2010;1:e29.PubMedPubMedCentralCrossRef
39.
go back to reference Yan SC, Qu XJ, Xu L, Che XF, Ma YJ, Zhang LY, Teng YE, Zou HW, Liu YP. Bufalin enhances TRAIL-induced apoptosis by redistributing death receptors in lipid rafts in breast cancer cells. Anti-Cancer Drug. 2014;25(6):683–9. Yan SC, Qu XJ, Xu L, Che XF, Ma YJ, Zhang LY, Teng YE, Zou HW, Liu YP. Bufalin enhances TRAIL-induced apoptosis by redistributing death receptors in lipid rafts in breast cancer cells. Anti-Cancer Drug. 2014;25(6):683–9.
40.
go back to reference Yan S, Qu X, Xu C, Zhu Z, Zhang L, Xu L, Song N, Teng Y, Liu Y. Down-regulation of Cbl-b by bufalin results in up-regulation of DR4/DR5 and sensitization of TRAIL-induced apoptosis in breast cancer cells. J Cancer Res Clin. 2012;138(8):1279–89.CrossRef Yan S, Qu X, Xu C, Zhu Z, Zhang L, Xu L, Song N, Teng Y, Liu Y. Down-regulation of Cbl-b by bufalin results in up-regulation of DR4/DR5 and sensitization of TRAIL-induced apoptosis in breast cancer cells. J Cancer Res Clin. 2012;138(8):1279–89.CrossRef
41.
go back to reference Dong Y, Yin S, Li J, Jiang C, Ye M, Hu H. Bufadienolide compounds sensitize human breast cancer cells to TRAIL-induced apoptosis via inhibition of STAT3/Mcl-1 pathway. Apoptosis. 2011;16(4):394–403.PubMedCrossRef Dong Y, Yin S, Li J, Jiang C, Ye M, Hu H. Bufadienolide compounds sensitize human breast cancer cells to TRAIL-induced apoptosis via inhibition of STAT3/Mcl-1 pathway. Apoptosis. 2011;16(4):394–403.PubMedCrossRef
42.
go back to reference Wang T, Mu L, Jin H, Zhang P, Wang Y, Ma X, Pan J, Miao J, Yuan Y. The effects of bufadienolides on HER2 overexpressing breast cancer cells. Tumour Biol. 2016;37(6):7155–63.PubMedCrossRef Wang T, Mu L, Jin H, Zhang P, Wang Y, Ma X, Pan J, Miao J, Yuan Y. The effects of bufadienolides on HER2 overexpressing breast cancer cells. Tumour Biol. 2016;37(6):7155–63.PubMedCrossRef
43.
go back to reference Subik K, Lee JF, Baxter L, Strzepek T, Costello D, Crowley P, Xing L, Hung MC, Bonfiglio T, Hicks DG, et al. The expression patterns of ER, PR, HER2, CK5/6, EGFR, Ki-67 and AR by immunohistochemical analysis in breast cancer cell lines. Breast Cancer. 2010;4:35–41.PubMed Subik K, Lee JF, Baxter L, Strzepek T, Costello D, Crowley P, Xing L, Hung MC, Bonfiglio T, Hicks DG, et al. The expression patterns of ER, PR, HER2, CK5/6, EGFR, Ki-67 and AR by immunohistochemical analysis in breast cancer cell lines. Breast Cancer. 2010;4:35–41.PubMed
44.
go back to reference Dhananjayan SC, Ramamoorthy S, Khan OY, Ismail A, Sun J, Slingerland J, O’Malley BW, Nawaz Z. WW domain binding protein-2, an E6-associated protein interacting protein, acts as a coactivator of estrogen and progesterone receptors. Mol Endocrinol. 2006;20(10):2343–54.PubMedCrossRef Dhananjayan SC, Ramamoorthy S, Khan OY, Ismail A, Sun J, Slingerland J, O’Malley BW, Nawaz Z. WW domain binding protein-2, an E6-associated protein interacting protein, acts as a coactivator of estrogen and progesterone receptors. Mol Endocrinol. 2006;20(10):2343–54.PubMedCrossRef
45.
go back to reference Tufail R, Jorda M, Zhao W, Reis I, Nawaz Z. Loss of Yes-associated protein (YAP) expression is associated with estrogen and progesterone receptors negativity in invasive breast carcinomas. Breast Cancer Res Treat. 2012;131(3):743–50.PubMedCrossRef Tufail R, Jorda M, Zhao W, Reis I, Nawaz Z. Loss of Yes-associated protein (YAP) expression is associated with estrogen and progesterone receptors negativity in invasive breast carcinomas. Breast Cancer Res Treat. 2012;131(3):743–50.PubMedCrossRef
46.
go back to reference Basu S, Totty NF, Irwin MS, Sudol M, Downward J. Akt phosphorylates the Yes-associated protein, YAP, to induce interaction with 14-3-3 and attenuation of p73-mediated apoptosis. Mol Cell. 2003;11(1):11–23.PubMedCrossRef Basu S, Totty NF, Irwin MS, Sudol M, Downward J. Akt phosphorylates the Yes-associated protein, YAP, to induce interaction with 14-3-3 and attenuation of p73-mediated apoptosis. Mol Cell. 2003;11(1):11–23.PubMedCrossRef
47.
go back to reference Matallanas D, Romano D, Yee K, Meissl K, Kucerova L, Piazzolla D, Baccarini M, Vass JK, Kolch W, O’Neill E. RASSRA elicits apoptosis through an MST2 pathway directing proapoptotic transcription by the P73 tumor suppressor protein. Mol Cell. 2007;27(6):962–75.PubMedPubMedCentralCrossRef Matallanas D, Romano D, Yee K, Meissl K, Kucerova L, Piazzolla D, Baccarini M, Vass JK, Kolch W, O’Neill E. RASSRA elicits apoptosis through an MST2 pathway directing proapoptotic transcription by the P73 tumor suppressor protein. Mol Cell. 2007;27(6):962–75.PubMedPubMedCentralCrossRef
48.
go back to reference Llado V, Nakanishi Y, Duran A, Reina-Campos M, Shelton PM, Linares JF, Yajima T, Campos A, Aza-Blanc P, Leitges M, et al. Repression of intestinal stem cell function and tumorigenesis through direct phosphorylation of beta-catenin and Yap by PKC zeta. Cell Rep. 2015;10(5):740–54.CrossRef Llado V, Nakanishi Y, Duran A, Reina-Campos M, Shelton PM, Linares JF, Yajima T, Campos A, Aza-Blanc P, Leitges M, et al. Repression of intestinal stem cell function and tumorigenesis through direct phosphorylation of beta-catenin and Yap by PKC zeta. Cell Rep. 2015;10(5):740–54.CrossRef
49.
go back to reference Wang W, Xiao ZD, Li X, Aziz KE, Gan B, Johnson RL, Chen J. AMPK modulates Hippo pathway activity to regulate energy homeostasis. Nat Cell Biol. 2015;17(4):490–9.PubMedPubMedCentralCrossRef Wang W, Xiao ZD, Li X, Aziz KE, Gan B, Johnson RL, Chen J. AMPK modulates Hippo pathway activity to regulate energy homeostasis. Nat Cell Biol. 2015;17(4):490–9.PubMedPubMedCentralCrossRef
50.
go back to reference Yang SP, Zhang L, Liu M, Chong R, Ding SJ, Chen YH, Dong JX. CDK1 phosphorylation of YAP promotes mitotic defects and cell motility and is essential for neoplastic transformation. Cancer Res. 2013;73(22):6722–33.PubMedCrossRef Yang SP, Zhang L, Liu M, Chong R, Ding SJ, Chen YH, Dong JX. CDK1 phosphorylation of YAP promotes mitotic defects and cell motility and is essential for neoplastic transformation. Cancer Res. 2013;73(22):6722–33.PubMedCrossRef
51.
go back to reference Zhao YL, Khanal P, Savage P, She YM, Cyr TD, Yang XL. YAP-induced resistance of cancer cells to antitubulin drugs is modulated by a Hippo-independent pathway. Cancer Res. 2014;74(16):4493–503.PubMedCrossRef Zhao YL, Khanal P, Savage P, She YM, Cyr TD, Yang XL. YAP-induced resistance of cancer cells to antitubulin drugs is modulated by a Hippo-independent pathway. Cancer Res. 2014;74(16):4493–503.PubMedCrossRef
Metadata
Title
Arenobufagin induces MCF-7 cell apoptosis by promoting JNK-mediated multisite phosphorylation of Yes-associated protein
Authors
Li-Juan Deng
Ming Qi
Qun-Long Peng
Min-Feng Chen
Qi Qi
Jia-Yan Zhang
Nan Yao
Mao-Hua Huang
Xiao-Bo Li
Yin-Hui Peng
Jun-Shan Liu
Deng-Rui Fu
Jia-Xu Chen
Wen-Cai Ye
Dong-Mei Zhang
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2018
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-018-0706-9

Other articles of this Issue 1/2018

Cancer Cell International 1/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine