Skip to main content
Top
Published in: BMC Medical Research Methodology 1/2017

Open Access 01-12-2017 | Research article

Bayesian hierarchical piecewise regression models: a tool to detect trajectory divergence between groups in long-term observational studies

Authors: Marie-jeanne Buscot, Simon S. Wotherspoon, Costan G. Magnussen, Markus Juonala, Matthew A. Sabin, David P. Burgner, Terho Lehtimäki, Jorma S. A. Viikari, Nina Hutri-Kähönen, Olli T. Raitakari, Russell J. Thomson

Published in: BMC Medical Research Methodology | Issue 1/2017

Login to get access

Abstract

Background

Bayesian hierarchical piecewise regression (BHPR) modeling has not been previously formulated to detect and characterise the mechanism of trajectory divergence between groups of participants that have longitudinal responses with distinct developmental phases. These models are useful when participants in a prospective cohort study are grouped according to a distal dichotomous health outcome. Indeed, a refined understanding of how deleterious risk factor profiles develop across the life-course may help inform early-life interventions. Previous techniques to determine between-group differences in risk factors at each age may result in biased estimate of the age at divergence.

Methods

We demonstrate the use of Bayesian hierarchical piecewise regression (BHPR) to generate a point estimate and credible interval for the age at which trajectories diverge between groups for continuous outcome measures that exhibit non-linear within-person response profiles over time. We illustrate our approach by modeling the divergence in childhood-to-adulthood body mass index (BMI) trajectories between two groups of adults with/without type 2 diabetes mellitus (T2DM) in the Cardiovascular Risk in Young Finns Study (YFS).

Results

Using the proposed BHPR approach, we estimated the BMI profiles of participants with T2DM diverged from healthy participants at age 16 years for males (95% credible interval (CI):13.5–18 years) and 21 years for females (95% CI: 19.5–23 years). These data suggest that a critical window for weight management intervention in preventing T2DM might exist before the age when BMI growth rate is naturally expected to decrease. Simulation showed that when using pairwise comparison of least-square means from categorical mixed models, smaller sample sizes tended to conclude a later age of divergence. In contrast, the point estimate of the divergence time is not biased by sample size when using the proposed BHPR method.

Conclusions

BHPR is a powerful analytic tool to model long-term non-linear longitudinal outcomes, enabling the identification of the age at which risk factor trajectories diverge between groups of participants. The method is suitable for the analysis of unbalanced longitudinal data, with only a limited number of repeated measures per participants and where the time-related outcome is typically marked by transitional changes or by distinct phases of change over time.
Appendix
Available only for authorised users
Literature
1.
go back to reference Power C, Kuh D, Morton S. From Developmental Origins of Adult Disease to Life Course Research on Adult Disease and Aging: Insights from Birth Cohort Studies. Annu Rev Public Health. 2013;34:7–28.PubMedCrossRef Power C, Kuh D, Morton S. From Developmental Origins of Adult Disease to Life Course Research on Adult Disease and Aging: Insights from Birth Cohort Studies. Annu Rev Public Health. 2013;34:7–28.PubMedCrossRef
2.
go back to reference Færch K, Witte DR, Tabák AG, Perreault L, Herder C, Brunner EJ, Kivimäki M, Vistisen D. Trajectories of cardiometabolic risk factors before diagnosis of three subtypes of type 2 diabetes: a post-hoc analysis of the longitudinal Whitehall II cohort study. Lancet Diabetes Endocrinol.1:43–51. Færch K, Witte DR, Tabák AG, Perreault L, Herder C, Brunner EJ, Kivimäki M, Vistisen D. Trajectories of cardiometabolic risk factors before diagnosis of three subtypes of type 2 diabetes: a post-hoc analysis of the longitudinal Whitehall II cohort study. Lancet Diabetes Endocrinol.1:43–51.
4.
go back to reference Narayan KMV, Boyle JP, Thompson TJ, Gregg EW, Williamson DF. Effect of BMI on Lifetime Risk for Diabetes in the U.S. Diabetes Care. 2007;30:1562–6.PubMedCrossRef Narayan KMV, Boyle JP, Thompson TJ, Gregg EW, Williamson DF. Effect of BMI on Lifetime Risk for Diabetes in the U.S. Diabetes Care. 2007;30:1562–6.PubMedCrossRef
5.
go back to reference Ben-Shlomo Y, Kuh D. A life course approach to chronic disease epidemiology: conceptual models, empirical challenges and interdisciplinary perspectives. Int J Epidemiol. 2002;31:285–93.PubMedCrossRef Ben-Shlomo Y, Kuh D. A life course approach to chronic disease epidemiology: conceptual models, empirical challenges and interdisciplinary perspectives. Int J Epidemiol. 2002;31:285–93.PubMedCrossRef
6.
go back to reference Dudina A, Cooney MT, Bacquer DD, Backer GD, Ducimetiere P, Jousilahti P, Keil U, Menotti A, Njolstad I, Oganov R, et al. Relationships between body mass index, cardiovascular mortality, and risk factors: a report from the SCORE investigators. Eur J Cardiovasc Prev Rehabil. 2011;18:731–42.PubMedCrossRef Dudina A, Cooney MT, Bacquer DD, Backer GD, Ducimetiere P, Jousilahti P, Keil U, Menotti A, Njolstad I, Oganov R, et al. Relationships between body mass index, cardiovascular mortality, and risk factors: a report from the SCORE investigators. Eur J Cardiovasc Prev Rehabil. 2011;18:731–42.PubMedCrossRef
7.
go back to reference Chen Y, Copeland WK, Vedanthan R. Association between body mass index and cardiovascular disease mortality in east Asians and south Asians: pooled analysis of prospective data from the Asia Cohort Consortium. BMJ. 2013;347:f5446.PubMedCrossRefPubMedCentral Chen Y, Copeland WK, Vedanthan R. Association between body mass index and cardiovascular disease mortality in east Asians and south Asians: pooled analysis of prospective data from the Asia Cohort Consortium. BMJ. 2013;347:f5446.PubMedCrossRefPubMedCentral
8.
go back to reference Freedman DS, Khan LK, Dietz WH, Srinivasan SR, Berenson GS. Relationship of childhood obesity to coronary heart disease risk factors in adulthood: the Bogalusa Heart Study. Pediatrics. 2001;108:712–8.PubMedCrossRef Freedman DS, Khan LK, Dietz WH, Srinivasan SR, Berenson GS. Relationship of childhood obesity to coronary heart disease risk factors in adulthood: the Bogalusa Heart Study. Pediatrics. 2001;108:712–8.PubMedCrossRef
9.
go back to reference Twisk JWR. Applied Longitudinal Data Analysis for Epidemiology: A Practical Guide. 2nd ed. Cambridge: Cambridge medicine; 2013.CrossRef Twisk JWR. Applied Longitudinal Data Analysis for Epidemiology: A Practical Guide. 2nd ed. Cambridge: Cambridge medicine; 2013.CrossRef
10.
go back to reference Diggle PJ, Heagerty P, Liang KY, Zeger SL. Analysis of Longitudinal Data, Oxford Statistical Science Series. 2002. ISBN 978-0-19-852484-7. Diggle PJ, Heagerty P, Liang KY, Zeger SL. Analysis of Longitudinal Data, Oxford Statistical Science Series. 2002. ISBN 978-0-19-852484-7.
11.
go back to reference Mattsson N, Ronnemaa T, Juonala M, Viikari JS, Raitakari OT. Childhood predictors of the metabolic syndrome in adulthood. The Cardiovascular Risk in Young Finns Study. Ann Med. 2008;40:542–52.PubMedCrossRef Mattsson N, Ronnemaa T, Juonala M, Viikari JS, Raitakari OT. Childhood predictors of the metabolic syndrome in adulthood. The Cardiovascular Risk in Young Finns Study. Ann Med. 2008;40:542–52.PubMedCrossRef
12.
go back to reference Verbeke G, Molenberghs G. Linear Mixed Models for Longitudinal Data. New York: Springer; 2000. Verbeke G, Molenberghs G. Linear Mixed Models for Longitudinal Data. New York: Springer; 2000.
13.
go back to reference Fitzmaurice G, Davidian M, Verbeke G, Molenberghs G. Longitudinal data analysis. Boca Raton: Chapman and Hall/CRC; 2008. Fitzmaurice G, Davidian M, Verbeke G, Molenberghs G. Longitudinal data analysis. Boca Raton: Chapman and Hall/CRC; 2008.
14.
go back to reference Tu YK, Tilling K, Sterne JA, Gilthorpe MS. A critical evaluation of statistical approaches to examining the role of growth trajectories in the developmental origins of health and disease. Int J Epidemiol. 2013;42:1327–39.PubMedCrossRef Tu YK, Tilling K, Sterne JA, Gilthorpe MS. A critical evaluation of statistical approaches to examining the role of growth trajectories in the developmental origins of health and disease. Int J Epidemiol. 2013;42:1327–39.PubMedCrossRef
15.
go back to reference Raitakari OT, Juonala M, Ronnemaa T, Keltikangas-Jarvinen L, Rasanen L, Pietikainen M, Hutri-Kahonen N, Taittonen L, Jokinen E, Marniemi J, et al. Cohort profile: the cardiovascular risk in Young Finns Study. Int J Epidemiol. 2008;37:1220–6.PubMedCrossRef Raitakari OT, Juonala M, Ronnemaa T, Keltikangas-Jarvinen L, Rasanen L, Pietikainen M, Hutri-Kahonen N, Taittonen L, Jokinen E, Marniemi J, et al. Cohort profile: the cardiovascular risk in Young Finns Study. Int J Epidemiol. 2008;37:1220–6.PubMedCrossRef
16.
go back to reference Li L, Hardy R, Kuh D, Lo Conte R, Power C. Child-to-adult body mass index and height trajectories: a comparison of 2 British birth cohorts. Am J Epidemiol. 2008;168:1008–15.PubMedCrossRefPubMedCentral Li L, Hardy R, Kuh D, Lo Conte R, Power C. Child-to-adult body mass index and height trajectories: a comparison of 2 British birth cohorts. Am J Epidemiol. 2008;168:1008–15.PubMedCrossRefPubMedCentral
17.
go back to reference Stuart B, Panico L. Early-childhood BMI trajectories: evidence from a prospective, nationally representative British cohort study. Nutr Diabetes. 2016;6:e198.PubMedCrossRefPubMedCentral Stuart B, Panico L. Early-childhood BMI trajectories: evidence from a prospective, nationally representative British cohort study. Nutr Diabetes. 2016;6:e198.PubMedCrossRefPubMedCentral
18.
go back to reference Finkel D, Reynolds CA, McArdle JJ, Pedersen NL. Cohort differences in trajectories of cognitive aging. J Gerontol B Psychol Sci Soc Sci. 2007;62:P286–294.PubMedCrossRef Finkel D, Reynolds CA, McArdle JJ, Pedersen NL. Cohort differences in trajectories of cognitive aging. J Gerontol B Psychol Sci Soc Sci. 2007;62:P286–294.PubMedCrossRef
19.
go back to reference Gimeno D, Ferrie JE, Elovainio M, Pulkki-Raback L, Keltikangas-Jarvinen L, Eklund C, Hurme M, Lehtimaki T, Marniemi J, Viikari JS, et al. When do social inequalities in C-reactive protein start? A life course perspective from conception to adulthood in the Cardiovascular Risk in Young Finns Study. Int J Epidemiol. 2008;37:290–8.PubMedCrossRef Gimeno D, Ferrie JE, Elovainio M, Pulkki-Raback L, Keltikangas-Jarvinen L, Eklund C, Hurme M, Lehtimaki T, Marniemi J, Viikari JS, et al. When do social inequalities in C-reactive protein start? A life course perspective from conception to adulthood in the Cardiovascular Risk in Young Finns Study. Int J Epidemiol. 2008;37:290–8.PubMedCrossRef
20.
go back to reference Howe LD, Tilling K, Galobardes B, Smith GD, Gunnell D, Lawlor DA. Socioeconomic differences in childhood growth trajectories: at what age do height inequalities emerge? J Epidemiol Community Health. 2012;66:143–8.PubMedCrossRef Howe LD, Tilling K, Galobardes B, Smith GD, Gunnell D, Lawlor DA. Socioeconomic differences in childhood growth trajectories: at what age do height inequalities emerge? J Epidemiol Community Health. 2012;66:143–8.PubMedCrossRef
21.
go back to reference Carles S, Charles M-A, Forhan A, Slama R, Heude B, Botton J, group Emcs. A Novel Method to Describe Early Offspring Body Mass Index (BMI) Trajectories and to Study Its Determinants. PLoS One. 2016;11:e0157766.PubMedCrossRefPubMedCentral Carles S, Charles M-A, Forhan A, Slama R, Heude B, Botton J, group Emcs. A Novel Method to Describe Early Offspring Body Mass Index (BMI) Trajectories and to Study Its Determinants. PLoS One. 2016;11:e0157766.PubMedCrossRefPubMedCentral
22.
go back to reference Grajeda LM, Ivanescu A, Saito M, Crainiceanu C, Jaganath D, Gilman RH, Crabtree JE, Kelleher D, Cabrera L, Cama V, Checkley W. Modeling subject-specific childhood growth using linear mixed-effect models with cubic regression splines. Emerging Themes in Epidemiology. 2016;13:1.PubMedCrossRefPubMedCentral Grajeda LM, Ivanescu A, Saito M, Crainiceanu C, Jaganath D, Gilman RH, Crabtree JE, Kelleher D, Cabrera L, Cama V, Checkley W. Modeling subject-specific childhood growth using linear mixed-effect models with cubic regression splines. Emerging Themes in Epidemiology. 2016;13:1.PubMedCrossRefPubMedCentral
23.
24.
go back to reference Lenth RV. Least-Squares Means.R package version 2.22. In: Book Least-Squares Means.R package version 2.22. 2016. Lenth RV. Least-Squares Means.R package version 2.22. In: Book Least-Squares Means.R package version 2.22. 2016.
25.
go back to reference Goodnight JH, Harvey WR. Least-Squares Means in the Fixed-Effects General Linear Models.Technical Report R-103, Book Least-Squares Means in the Fixed-Effects General Linear Models.Technical Report R-103. NC: SAS Institute Inc; 1978. Goodnight JH, Harvey WR. Least-Squares Means in the Fixed-Effects General Linear Models.Technical Report R-103, Book Least-Squares Means in the Fixed-Effects General Linear Models.Technical Report R-103. NC: SAS Institute Inc; 1978.
26.
go back to reference Harvey WR. Use of the HARVEY Procedure, Book Use of the HARVEY Procedure. NC: SAS Institute Inc; 1976. Harvey WR. Use of the HARVEY Procedure, Book Use of the HARVEY Procedure. NC: SAS Institute Inc; 1976.
27.
go back to reference Liu C, Cripe TP, Kim MO. Statistical issues in longitudinal data analysis for treatment efficacy studies in the biomedical sciences. Mol Ther. 2010;18:1724–30.PubMedCrossRefPubMedCentral Liu C, Cripe TP, Kim MO. Statistical issues in longitudinal data analysis for treatment efficacy studies in the biomedical sciences. Mol Ther. 2010;18:1724–30.PubMedCrossRefPubMedCentral
28.
go back to reference Diggle PJ, Heagerty P, L K-Y, Zeger SLO. Analysis of Longitudinal Data. 2nd ed. Oxford: Oxford University Press; 2002. Diggle PJ, Heagerty P, L K-Y, Zeger SLO. Analysis of Longitudinal Data. 2nd ed. Oxford: Oxford University Press; 2002.
29.
go back to reference Kreft IGG. Are multilevel techniques necessary? An overview, including simulation studies, Book Are multilevel techniques necessary? An overview, including simulation studies. Los Angeles: California State University at Los Angeles; 1996. Kreft IGG. Are multilevel techniques necessary? An overview, including simulation studies, Book Are multilevel techniques necessary? An overview, including simulation studies. Los Angeles: California State University at Los Angeles; 1996.
30.
go back to reference Kowalchuk RK, Keselman HJ. Mixed-model pairwise multiple comparisons of repeated measures means. Psychol Methods. 2001;6:282–96.PubMedCrossRef Kowalchuk RK, Keselman HJ. Mixed-model pairwise multiple comparisons of repeated measures means. Psychol Methods. 2001;6:282–96.PubMedCrossRef
32.
go back to reference Greenhouse SW, Geisser S. On methods in the analysis of profile data. Psychometrika. 1959;24:95–112.CrossRef Greenhouse SW, Geisser S. On methods in the analysis of profile data. Psychometrika. 1959;24:95–112.CrossRef
33.
go back to reference Huynh H, Feldt LS. Estimation of the Box Correction for Degrees of Freedom from Sample Data in Randomized Block and Split-Plot Designs. J Educ Behav Stat. 1976;1:69–82.CrossRef Huynh H, Feldt LS. Estimation of the Box Correction for Degrees of Freedom from Sample Data in Randomized Block and Split-Plot Designs. J Educ Behav Stat. 1976;1:69–82.CrossRef
34.
go back to reference Li D, Dye TD. Power and stability properties of resampling-based multiple testing procedures with applications to gene oncology studies. Comput Math Methods Med. 2013;2013:610297.PubMedPubMedCentral Li D, Dye TD. Power and stability properties of resampling-based multiple testing procedures with applications to gene oncology studies. Comput Math Methods Med. 2013;2013:610297.PubMedPubMedCentral
35.
go back to reference Westfall PJ, Young SS. Resampling-Based Multiple Testing. New York: Willey; 1993. Westfall PJ, Young SS. Resampling-Based Multiple Testing. New York: Willey; 1993.
36.
go back to reference Pe'er I, Yelensky R, Altshuler D, Daly MJ. Estimation of the multiple testing burden for genomewide association studies of nearly all common variants. Genet Epidemiol. 2008;32:381–5.PubMedCrossRef Pe'er I, Yelensky R, Altshuler D, Daly MJ. Estimation of the multiple testing burden for genomewide association studies of nearly all common variants. Genet Epidemiol. 2008;32:381–5.PubMedCrossRef
37.
go back to reference Westfall PH, Tobias RD, Rom D, Wolfinger RD, Hochberg Y. Multiple Comparisons and Multiple Tests Using the SAS System, Book Multiple Comparisons and Multiple Tests Using the SAS System. NC: SAS Institute Inc; 1999. Westfall PH, Tobias RD, Rom D, Wolfinger RD, Hochberg Y. Multiple Comparisons and Multiple Tests Using the SAS System, Book Multiple Comparisons and Multiple Tests Using the SAS System. NC: SAS Institute Inc; 1999.
38.
go back to reference Donohue MC, Aisen PS. Mixed model of repeated measures versus slope models in Alzheimer's disease clinical trials. J Nutr Health Aging. 2012;16:360–4.PubMedCrossRef Donohue MC, Aisen PS. Mixed model of repeated measures versus slope models in Alzheimer's disease clinical trials. J Nutr Health Aging. 2012;16:360–4.PubMedCrossRef
39.
go back to reference Goldstein H, Browne W, Rabash J. Multilevel modeling of medical data. Stat Med 2002: 21:3291–315. Stat Med. 2002;21:3291–315.PubMedCrossRef Goldstein H, Browne W, Rabash J. Multilevel modeling of medical data. Stat Med 2002: 21:3291–315. Stat Med. 2002;21:3291–315.PubMedCrossRef
40.
go back to reference Raudenbush SW, Bryk AS. Hierarchical linear models: Applications and data analysis methods. 2. Thousand Oaks: Sage Publications; 2002. Raudenbush SW, Bryk AS. Hierarchical linear models: Applications and data analysis methods. 2. Thousand Oaks: Sage Publications; 2002.
41.
go back to reference Gelman A, Hill J. Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge: Cambridge University Press; 2007. Gelman A, Hill J. Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge: Cambridge University Press; 2007.
42.
go back to reference Duncan TE, Duncan SC, Strycker LA. An Introduction to Latent Variable Growth Curve Modeling: Concepts, Issues, and Application, Second Edition. Mahwah: Lawrence Erlbaum Associates; 2006. Duncan TE, Duncan SC, Strycker LA. An Introduction to Latent Variable Growth Curve Modeling: Concepts, Issues, and Application, Second Edition. Mahwah: Lawrence Erlbaum Associates; 2006.
44.
go back to reference Hox J, Stoel RD. Multilevel and SEM approaches to Growth Curve modeling. In: Everitt BS, Howell DC, editors. Encyclopedia of Statistics in Behavioral Science, vol. 3. Chichester: John Wiley & Sons; 2005. Hox J, Stoel RD. Multilevel and SEM approaches to Growth Curve modeling. In: Everitt BS, Howell DC, editors. Encyclopedia of Statistics in Behavioral Science, vol. 3. Chichester: John Wiley & Sons; 2005.
45.
go back to reference Singer JD, Willett JB. Applied Longitudinal Data Analysis: Modeling change and event occurence. New York: Oxford University Press; 2003.CrossRef Singer JD, Willett JB. Applied Longitudinal Data Analysis: Modeling change and event occurence. New York: Oxford University Press; 2003.CrossRef
46.
go back to reference Fitzmaurice G, Laird NM, Ware JH. Applied Longitudinal Analysis. 2nd ed. New Jersey: John Wiley & Sons; 2011. Fitzmaurice G, Laird NM, Ware JH. Applied Longitudinal Analysis. 2nd ed. New Jersey: John Wiley & Sons; 2011.
47.
go back to reference Preacher KJ. Latent growth curve models. In: Muelle GRHRO, editor. The reviewer's guide to quantitative methods in the social sciences (pp 185–198). London: Routledge; 2010. p. 185–98. Preacher KJ. Latent growth curve models. In: Muelle GRHRO, editor. The reviewer's guide to quantitative methods in the social sciences (pp 185–198). London: Routledge; 2010. p. 185–98.
48.
go back to reference Mirman D. Growth Curve Analysis and Visualization Using R. Boca Raton: Chapman and Hall/CRC; 2014. Mirman D. Growth Curve Analysis and Visualization Using R. Boca Raton: Chapman and Hall/CRC; 2014.
49.
go back to reference Mirman D, Dixon JA, Magnuson JS. Statistical and computational models of the visual world paradigm: Growth curves and individual differences. J Mem Lang. 2008;59:475–94.PubMedCrossRefPubMedCentral Mirman D, Dixon JA, Magnuson JS. Statistical and computational models of the visual world paradigm: Growth curves and individual differences. J Mem Lang. 2008;59:475–94.PubMedCrossRefPubMedCentral
50.
go back to reference Heo M, Faith MS, Mott JW, Gorman BS, Redden DT, Allison DB. Hierarchical linear models for the development of growth curves: an example with body mass index in overweight/obese adults. Stat Med. 2003;22:1911–42.PubMedCrossRef Heo M, Faith MS, Mott JW, Gorman BS, Redden DT, Allison DB. Hierarchical linear models for the development of growth curves: an example with body mass index in overweight/obese adults. Stat Med. 2003;22:1911–42.PubMedCrossRef
51.
go back to reference Tilling K, Macdonald-Wallis C, Lawlor DA, Hughes RA, Howe LD. Modeling Childhood Growth Using Fractional Polynomials and Linear Splines. Ann Nutr Metab. 2014;65:129–38.PubMedCrossRefPubMedCentral Tilling K, Macdonald-Wallis C, Lawlor DA, Hughes RA, Howe LD. Modeling Childhood Growth Using Fractional Polynomials and Linear Splines. Ann Nutr Metab. 2014;65:129–38.PubMedCrossRefPubMedCentral
52.
go back to reference Sterba S. Fitting Non linear Latent growth Curve models with Inidvidually varying Time point. Struct Equ Model Multidiscip J. 2014;21:630–47.CrossRef Sterba S. Fitting Non linear Latent growth Curve models with Inidvidually varying Time point. Struct Equ Model Multidiscip J. 2014;21:630–47.CrossRef
53.
go back to reference Cudeck R, du Toit SHC. A nonlinear form of quadratic regression with interpretable parameters. Multivar Behav Res. 2002;37:501–19.CrossRef Cudeck R, du Toit SHC. A nonlinear form of quadratic regression with interpretable parameters. Multivar Behav Res. 2002;37:501–19.CrossRef
54.
go back to reference Harring JR, Cudeck R, du Toit SH. Fitting Partially Nonlinear Random Coefficient Models as SEMs. Multivariate Behav Res. 2006;41:579–96.PubMedCrossRef Harring JR, Cudeck R, du Toit SH. Fitting Partially Nonlinear Random Coefficient Models as SEMs. Multivariate Behav Res. 2006;41:579–96.PubMedCrossRef
55.
go back to reference Frenk SM, Yang YC, Land KC. Assessing the Significance of Cohort and Period Effects in Hierarchical Age-Period-Cohort Models: Applications to Verbal Test Scores and Voter Turnout in U.S. Presidential Elections. Soc Forces. 2013;92:221–48.PubMedCrossRefPubMedCentral Frenk SM, Yang YC, Land KC. Assessing the Significance of Cohort and Period Effects in Hierarchical Age-Period-Cohort Models: Applications to Verbal Test Scores and Voter Turnout in U.S. Presidential Elections. Soc Forces. 2013;92:221–48.PubMedCrossRefPubMedCentral
56.
go back to reference Raudenbush SW, Chan WS. Application of a hierarchical linear model to the study of adolescent deviance in an overlapping cohort design. J Clin Consulting Psychol. 1993;61:941–51.CrossRef Raudenbush SW, Chan WS. Application of a hierarchical linear model to the study of adolescent deviance in an overlapping cohort design. J Clin Consulting Psychol. 1993;61:941–51.CrossRef
57.
go back to reference Yang Y, Land KC. A mixed models approach to the age-period-cohort analysis of repeated cross-section surveys, with an application to data on trends in verbal test scores. Sociol Methodol. 2006;36:75–97.CrossRef Yang Y, Land KC. A mixed models approach to the age-period-cohort analysis of repeated cross-section surveys, with an application to data on trends in verbal test scores. Sociol Methodol. 2006;36:75–97.CrossRef
58.
go back to reference Raudenbush SW, Chan WS. Growth Curve Analysis in Accelerated Longitudinal Designs. Criminology Penology. 1992;29:387–411. Raudenbush SW, Chan WS. Growth Curve Analysis in Accelerated Longitudinal Designs. Criminology Penology. 1992;29:387–411.
59.
go back to reference Howe LD, Tilling K, Benfield L, Logue J, Sattar N, Ness AR, Smith GD, Lawlor DA. Changes in ponderal index and body mass index across childhood and their associations with fat mass and cardiovascular risk factors at age 15. PLoS One. 2010;5(12):e15186.PubMedCrossRefPubMedCentral Howe LD, Tilling K, Benfield L, Logue J, Sattar N, Ness AR, Smith GD, Lawlor DA. Changes in ponderal index and body mass index across childhood and their associations with fat mass and cardiovascular risk factors at age 15. PLoS One. 2010;5(12):e15186.PubMedCrossRefPubMedCentral
60.
go back to reference Long J, Ryoo J. Using fractional polynomials to model non-linear trends in longitudinal data. Br J Math Stat Psychol. 2010;63:177–203.PubMedCrossRef Long J, Ryoo J. Using fractional polynomials to model non-linear trends in longitudinal data. Br J Math Stat Psychol. 2010;63:177–203.PubMedCrossRef
61.
go back to reference Tilling K, Sterne JAC, Wolfe CDA. Multilevel growth curve models with covariate effects: application to recovery after stroke. Stat Med. 2001;20:685–704.PubMedCrossRef Tilling K, Sterne JAC, Wolfe CDA. Multilevel growth curve models with covariate effects: application to recovery after stroke. Stat Med. 2001;20:685–704.PubMedCrossRef
62.
go back to reference Liu X, Engel CE. Methods and Applications of Longitudinal Data Analysis. Elsevier Science Publishing Company Incorporated; 2015 Liu X, Engel CE. Methods and Applications of Longitudinal Data Analysis. Elsevier Science Publishing Company Incorporated; 2015
63.
go back to reference Royston P, Altman DG. Regression using fractional polynomials of continuous covariates: parsimonious parametric modeling. Appl Stat-J R Stat Soc. 1994;43:29–67. Royston P, Altman DG. Regression using fractional polynomials of continuous covariates: parsimonious parametric modeling. Appl Stat-J R Stat Soc. 1994;43:29–67.
64.
go back to reference Royston P, Ambler G, Sauerbrei W. The use of fractional polynomials to model continuous risk variables in epidemiology. Int J Epidemiol. 1999;28(5):964–74.PubMedCrossRef Royston P, Ambler G, Sauerbrei W. The use of fractional polynomials to model continuous risk variables in epidemiology. Int J Epidemiol. 1999;28(5):964–74.PubMedCrossRef
65.
go back to reference Verbeke G. Linear mixed models for longitudinal data, Book Linear mixed models in practice. New York: Springer; 1997.CrossRef Verbeke G. Linear mixed models for longitudinal data, Book Linear mixed models in practice. New York: Springer; 1997.CrossRef
66.
go back to reference Lawrence FR, Blair C. Factorial invariance in preventive intervention: modeling the development of intelligence in low birth weight, preterm infants. Prev Sci. 2003;4:249–61.PubMedCrossRef Lawrence FR, Blair C. Factorial invariance in preventive intervention: modeling the development of intelligence in low birth weight, preterm infants. Prev Sci. 2003;4:249–61.PubMedCrossRef
67.
go back to reference Howe LD, Tilling K, Matijasevich A, Petherick ES, Santos AC, Fairley L, Wright J, Santos IS, Barros AJ, Martin RM, et al. Linear spline multilevel models for summarising childhood growth trajectories: A guide to their application using examples from five birth cohorts. Stat Methods Med Res. 2013;4:249–61. Howe LD, Tilling K, Matijasevich A, Petherick ES, Santos AC, Fairley L, Wright J, Santos IS, Barros AJ, Martin RM, et al. Linear spline multilevel models for summarising childhood growth trajectories: A guide to their application using examples from five birth cohorts. Stat Methods Med Res. 2013;4:249–61.
68.
go back to reference Cudeck R, Klebe KJ. Multiphase mixed-effects models for repeated measures data. Psychol Methods. 2002;7:41–63.PubMedCrossRef Cudeck R, Klebe KJ. Multiphase mixed-effects models for repeated measures data. Psychol Methods. 2002;7:41–63.PubMedCrossRef
69.
go back to reference Muggeo MR, Atkins DC, Gallop RJ, Dimidjan S. Segmented mixed models with random changepoints: a maximum likelihood approach with application to treatment for depression study. Stat Model. 2014;14(4):293–313.CrossRef Muggeo MR, Atkins DC, Gallop RJ, Dimidjan S. Segmented mixed models with random changepoints: a maximum likelihood approach with application to treatment for depression study. Stat Model. 2014;14(4):293–313.CrossRef
70.
go back to reference Flora DB. Specifying piecewise latent trajectory models for longitudinal data. Struct Equ Model. 2008;15:513–33.CrossRef Flora DB. Specifying piecewise latent trajectory models for longitudinal data. Struct Equ Model. 2008;15:513–33.CrossRef
71.
go back to reference Kohli N, Harring JR. Modeling growth in latent variables using a piecewise function. Multivar Behav Res. 2013;48:370–97.CrossRef Kohli N, Harring JR. Modeling growth in latent variables using a piecewise function. Multivar Behav Res. 2013;48:370–97.CrossRef
72.
go back to reference Willett JB, Singer JD, Martin NC. The design and analysis of longtiduinal studies of development and psychopathology in context: statistical models and methodological recommendations. Dev Psychopathol. 1998;10:395–426.PubMedCrossRef Willett JB, Singer JD, Martin NC. The design and analysis of longtiduinal studies of development and psychopathology in context: statistical models and methodological recommendations. Dev Psychopathol. 1998;10:395–426.PubMedCrossRef
73.
go back to reference Li L, Hardy R, Kuh D, Lo Conte R, Power C. Child-to-Adult body mass index and height ttrajectories : A comparison of 2 british cohorts. 2008. Li L, Hardy R, Kuh D, Lo Conte R, Power C. Child-to-Adult body mass index and height ttrajectories : A comparison of 2 british cohorts. 2008.
74.
go back to reference Muggeo MR. Segmented mixed models with random changepoints in R. Working Paper. 2016. https://www.researchgate.net/publication/292629179_Segmented_mixed_models_with_random_changepoints_in_R. Muggeo MR. Segmented mixed models with random changepoints in R. Working Paper. 2016. https://​www.​researchgate.​net/​publication/​292629179_​Segmented_​mixed_​models_​with_​random_​changepoints_​in_​R.​
75.
go back to reference Muggeo MR. Modeling temperature effects on mortality: multiple segmented relationships with common break points. Biostatistics. 2008;9:613–20.PubMedCrossRef Muggeo MR. Modeling temperature effects on mortality: multiple segmented relationships with common break points. Biostatistics. 2008;9:613–20.PubMedCrossRef
76.
go back to reference Muthen B. Second-generation structural equation modeling with a combination of categorical and continuous latent variables: New opportunities for latent class–latent growth modeling. Washington: American Psychological Association; 2001. Muthen B. Second-generation structural equation modeling with a combination of categorical and continuous latent variables: New opportunities for latent class–latent growth modeling. Washington: American Psychological Association; 2001.
77.
go back to reference Congdon P. Bayesian statistical modeling. New York: Wiley; 2001. Congdon P. Bayesian statistical modeling. New York: Wiley; 2001.
78.
go back to reference Jacqmin-Gadda H, Commenges D, Dartigues JF. Random changepoint model for joint modeling of cognitive decline and dementia. Biometrics. 2006;62:254–60.PubMedCrossRefPubMedCentral Jacqmin-Gadda H, Commenges D, Dartigues JF. Random changepoint model for joint modeling of cognitive decline and dementia. Biometrics. 2006;62:254–60.PubMedCrossRefPubMedCentral
79.
go back to reference Lange N, Carlin BP, Gelfand AE. Hierarchical Bayes models for the progression of HIV infection using longitudinal CD4 T-cell numbers. J Am Stat Assoc. 1992;87:615–26.CrossRef Lange N, Carlin BP, Gelfand AE. Hierarchical Bayes models for the progression of HIV infection using longitudinal CD4 T-cell numbers. J Am Stat Assoc. 1992;87:615–26.CrossRef
80.
go back to reference Slate EH, Turnbull BW. Statistical models for longitudinal biomarkers of disease onset. Stat Med. 2000;19:617–37.PubMedCrossRef Slate EH, Turnbull BW. Statistical models for longitudinal biomarkers of disease onset. Stat Med. 2000;19:617–37.PubMedCrossRef
81.
go back to reference Ghosh P, Vaida F. Random changepoint modeling of HIV immunologic responses. Stat Med. 2007;26:2074–87.PubMedCrossRef Ghosh P, Vaida F. Random changepoint modeling of HIV immunologic responses. Stat Med. 2007;26:2074–87.PubMedCrossRef
82.
go back to reference Dominicus A, Ripatti S, Pedersen NL, Palmgren J. A random change point model for assessing variability in repeated measures of cognitive function. Stat Med. 2008;27:5786–98.PubMedCrossRefPubMedCentral Dominicus A, Ripatti S, Pedersen NL, Palmgren J. A random change point model for assessing variability in repeated measures of cognitive function. Stat Med. 2008;27:5786–98.PubMedCrossRefPubMedCentral
83.
go back to reference Hall CB, Lipton RB, Sliwinski M, Stewart WF. A change point model for estimating the onset of cognitive decline in preclinical Alzheimer's disease. Stat Med. 2000;19:1555–66.PubMedCrossRef Hall CB, Lipton RB, Sliwinski M, Stewart WF. A change point model for estimating the onset of cognitive decline in preclinical Alzheimer's disease. Stat Med. 2000;19:1555–66.PubMedCrossRef
84.
go back to reference Hall CB, Ying J, Kuo L, Lipton RB. Bayesian and profile likelihood change point methods for modeling cognitive function over time. Comput Stat Data Anal. 2003;42:91–109.CrossRef Hall CB, Ying J, Kuo L, Lipton RB. Bayesian and profile likelihood change point methods for modeling cognitive function over time. Comput Stat Data Anal. 2003;42:91–109.CrossRef
85.
go back to reference Kiuchi A, Hartigan JA, Holford TR. Change points in the series of T4 counts prior to AIDS. Biometrics. 1995;51:236–48.PubMedCrossRef Kiuchi A, Hartigan JA, Holford TR. Change points in the series of T4 counts prior to AIDS. Biometrics. 1995;51:236–48.PubMedCrossRef
86.
go back to reference Muniz-Terrera G, Van den Hout A, Matthews FE. Random change point models: investigating cognitive decline in the presence of missing data. J Appl Stat. 2011;38:705–16.CrossRef Muniz-Terrera G, Van den Hout A, Matthews FE. Random change point models: investigating cognitive decline in the presence of missing data. J Appl Stat. 2011;38:705–16.CrossRef
87.
go back to reference Sabin MA, Magnussen CG, Juonala M, Shield JPH, Kähönen M, Lehtimäki T, Rönnemaa T, Koskinen J, Loo B-M, Knip M, et al. Insulin and BMI as Predictors of Adult Type 2 Diabetes Mellitus. Pediatrics. 2015;135:e144–51.PubMedCrossRef Sabin MA, Magnussen CG, Juonala M, Shield JPH, Kähönen M, Lehtimäki T, Rönnemaa T, Koskinen J, Loo B-M, Knip M, et al. Insulin and BMI as Predictors of Adult Type 2 Diabetes Mellitus. Pediatrics. 2015;135:e144–51.PubMedCrossRef
88.
go back to reference McCoach DB, Kaniskan B. Using Time-Varying Covariates in Multilevel Growth Models. Front Psychol. 2010;1(17):1–12. McCoach DB, Kaniskan B. Using Time-Varying Covariates in Multilevel Growth Models. Front Psychol. 2010;1(17):1–12.
89.
go back to reference Miyazaki Y, Raudenbush SW. Tests for linkage of multiple cohorts in an accelerated longitudinal design. Psychol Methods. 2000;5:44–63.PubMedCrossRef Miyazaki Y, Raudenbush SW. Tests for linkage of multiple cohorts in an accelerated longitudinal design. Psychol Methods. 2000;5:44–63.PubMedCrossRef
90.
go back to reference Galbraith S, Bowden J, Mander A. Accelerated longitudinal designs: An overview of modeling, power, costs and handling missing data. Stat Methods Med Res. 2014;92:221–48. Galbraith S, Bowden J, Mander A. Accelerated longitudinal designs: An overview of modeling, power, costs and handling missing data. Stat Methods Med Res. 2014;92:221–48.
91.
go back to reference Mostafa AA, Ghorbal A. Bayesian and non-Bayesian analysis for random changepoint problem using standard computer packages. Int Mathematical Archive. 2011;2:1963–79. Mostafa AA, Ghorbal A. Bayesian and non-Bayesian analysis for random changepoint problem using standard computer packages. Int Mathematical Archive. 2011;2:1963–79.
92.
go back to reference Gelman A, Carlin JB, Stern HS, Rubin DB. Bayesian Data Analysis. 2. Boca Raton: Chapman & Hall/CRC; 2004. Gelman A, Carlin JB, Stern HS, Rubin DB. Bayesian Data Analysis. 2. Boca Raton: Chapman & Hall/CRC; 2004.
93.
go back to reference Gelman A. Prior distributions for variance parameters in hierarchical models. Bayesian Anal. 2006;1:515–33.CrossRef Gelman A. Prior distributions for variance parameters in hierarchical models. Bayesian Anal. 2006;1:515–33.CrossRef
94.
go back to reference Gelman A, Hill J. Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge: Cambridge University Press; 2006.CrossRef Gelman A, Hill J. Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge: Cambridge University Press; 2006.CrossRef
95.
go back to reference Spiegelhalter DJ, Best NG, Carlin BP. Bayesian measure of model complexity and fit. J R Stat Soc Ser B. 2002;64:583–639.CrossRef Spiegelhalter DJ, Best NG, Carlin BP. Bayesian measure of model complexity and fit. J R Stat Soc Ser B. 2002;64:583–639.CrossRef
96.
97.
go back to reference Burnham K, Anderson D. Model selection and multimodel inference: a practical information-theoretic approach. New York: Springer; 2002. Burnham K, Anderson D. Model selection and multimodel inference: a practical information-theoretic approach. New York: Springer; 2002.
98.
go back to reference Juonala M, Viikari JS, Raitakari OT. Main findings from the prospective Cardiovascular Risk in Young Finns Study. Curr Opin Lipidol. 2013;24:57–64.PubMedCrossRef Juonala M, Viikari JS, Raitakari OT. Main findings from the prospective Cardiovascular Risk in Young Finns Study. Curr Opin Lipidol. 2013;24:57–64.PubMedCrossRef
99.
go back to reference Chivers P, Hands BP, Parker H, Beilin L, Kendall G, Bulsara M. Longitudinal modeling of body mass index from birth to 14 years. Obes Facts. 2009;2:302–10.PubMedCrossRef Chivers P, Hands BP, Parker H, Beilin L, Kendall G, Bulsara M. Longitudinal modeling of body mass index from birth to 14 years. Obes Facts. 2009;2:302–10.PubMedCrossRef
100.
go back to reference Rolland-Cachera MF, Deheeger M, Maillot M, Bellisle F. Early adiposity rebound: causes and consequences for obesity in children and adults. Int J Obes (Lond). 2006;30 Suppl 4:S11–17.CrossRef Rolland-Cachera MF, Deheeger M, Maillot M, Bellisle F. Early adiposity rebound: causes and consequences for obesity in children and adults. Int J Obes (Lond). 2006;30 Suppl 4:S11–17.CrossRef
102.
go back to reference Silverwood RJ, De Stavola BL, Cole TJ, Leon DA. BMI peak in infancy as a predictor for later BMI in the Uppsala Family Study. Int J Obes (Lond). 2009;33:929–37.CrossRef Silverwood RJ, De Stavola BL, Cole TJ, Leon DA. BMI peak in infancy as a predictor for later BMI in the Uppsala Family Study. Int J Obes (Lond). 2009;33:929–37.CrossRef
103.
go back to reference Kuczmarski RJ. 2000 CDC Growth Charts for the United States: methods and development. Vital Health Statistics1. 2002;11:1–190. Kuczmarski RJ. 2000 CDC Growth Charts for the United States: methods and development. Vital Health Statistics1. 2002;11:1–190.
104.
go back to reference Lunn D, Jackson C, Best N, Thomas A, Spiegelhalter D. The BUGS Book: A Practical Introduction to Bayesian Analysis. Boca Raton: CRC press; 2012. Lunn D, Jackson C, Best N, Thomas A, Spiegelhalter D. The BUGS Book: A Practical Introduction to Bayesian Analysis. Boca Raton: CRC press; 2012.
105.
go back to reference Wood S. Generalized additive models: an introduction with R. Boca Raton: CRC press; 2006. Wood S. Generalized additive models: an introduction with R. Boca Raton: CRC press; 2006.
106.
go back to reference Dietz WH. Critical periods in childhood for the development of obesity. Am J Clin Nutr. 1994;59:955–9.PubMed Dietz WH. Critical periods in childhood for the development of obesity. Am J Clin Nutr. 1994;59:955–9.PubMed
107.
go back to reference Rogol AD, Clark PA, Roemmich JN. Growth and pubertal development in children and adolescents: effects of diet and physical activity. Am J Clin Nutr. 2000;72:521–8. Rogol AD, Clark PA, Roemmich JN. Growth and pubertal development in children and adolescents: effects of diet and physical activity. Am J Clin Nutr. 2000;72:521–8.
108.
go back to reference Ostbye T, Malhotra R, Landerman LR. Body mass trajectories through adulthood: results from the National Longitudinal Survey of Youth 1979 Cohort (1981–2006). Int J Epidemiol. 2011;40:240–50.PubMedCrossRef Ostbye T, Malhotra R, Landerman LR. Body mass trajectories through adulthood: results from the National Longitudinal Survey of Youth 1979 Cohort (1981–2006). Int J Epidemiol. 2011;40:240–50.PubMedCrossRef
109.
go back to reference Li L, Hardy R, Kuh D, Power C. Life-course body mass index trajectories and blood pressure in mid life in two British birth cohorts: stronger associations in the later-born generation. Int J Epidemiol. 2015;44:1018–26.PubMedCrossRefPubMedCentral Li L, Hardy R, Kuh D, Power C. Life-course body mass index trajectories and blood pressure in mid life in two British birth cohorts: stronger associations in the later-born generation. Int J Epidemiol. 2015;44:1018–26.PubMedCrossRefPubMedCentral
110.
go back to reference Guo SS, Huang C, Maynard LM, Demerath E, Towne B, Chumlea WC, Siervogel RM. Body mass index during childhood, adolescence and young adulthood in relation to adult overweight and adiposity: the Fels Longitudinal Study. Int J Obes Relat Metab Disord. 2000;24:1628–35.PubMedCrossRef Guo SS, Huang C, Maynard LM, Demerath E, Towne B, Chumlea WC, Siervogel RM. Body mass index during childhood, adolescence and young adulthood in relation to adult overweight and adiposity: the Fels Longitudinal Study. Int J Obes Relat Metab Disord. 2000;24:1628–35.PubMedCrossRef
111.
go back to reference Williams S, Davie G, Lam F. Predicting BMI in young adults from childhood data using two approaches to modeling adiposity rebound. Int J Obes Relat Metab Disord. 1999;23:348–54.PubMedCrossRef Williams S, Davie G, Lam F. Predicting BMI in young adults from childhood data using two approaches to modeling adiposity rebound. Int J Obes Relat Metab Disord. 1999;23:348–54.PubMedCrossRef
112.
go back to reference Wen X, Kleinman K, Gillman MW, Rifas-Shiman SL, Taveras EM. Childhood body mass index trajectories: modeling, characterizing, pairwise correlations and socio-demographic predictors of trajectory characteristics. BMC Med Res Methodol. 2012;29:12–38. Wen X, Kleinman K, Gillman MW, Rifas-Shiman SL, Taveras EM. Childhood body mass index trajectories: modeling, characterizing, pairwise correlations and socio-demographic predictors of trajectory characteristics. BMC Med Res Methodol. 2012;29:12–38.
113.
go back to reference Besharat Pour M, Bergstrom A, Bottai M, Magnusson J, Kull I, Moradi T. Age at adiposity rebound and body mass index trajectory from early childhood to adolescence; differences by breastfeeding and maternal immigration background. Pediatr Obes. 2016;30 Suppl 4:S11–17. Besharat Pour M, Bergstrom A, Bottai M, Magnusson J, Kull I, Moradi T. Age at adiposity rebound and body mass index trajectory from early childhood to adolescence; differences by breastfeeding and maternal immigration background. Pediatr Obes. 2016;30 Suppl 4:S11–17.
114.
go back to reference Royston P, Altman DG. Regression using fractional polynomials of continuous covariates: parsimonious parametric modeling. J R Stat Soc, Appl Stat. 1994;43:429–67. Royston P, Altman DG. Regression using fractional polynomials of continuous covariates: parsimonious parametric modeling. J R Stat Soc, Appl Stat. 1994;43:429–67.
115.
go back to reference McArdle JJ, Wang L. Modeling age-based turning points in longitudinal life-span growth curves of cognition. New York: Routledge/Taylor & Francis Group edn; 2008. McArdle JJ, Wang L. Modeling age-based turning points in longitudinal life-span growth curves of cognition. New York: Routledge/Taylor & Francis Group edn; 2008.
116.
go back to reference Ram N, Grimm K. Using simple and complex growth models to articulate developmental change: Matching theory to method. Int J Behav Dev. 2007;31:303–16.CrossRef Ram N, Grimm K. Using simple and complex growth models to articulate developmental change: Matching theory to method. Int J Behav Dev. 2007;31:303–16.CrossRef
117.
go back to reference Tilling K, Davies NM, Nicoli E. Associations of growth trajectories in infancy and early childhood with later childhood outcomes. Am J Clin Nutr 2011;94 Suppl 6:1808s-13s. Am J Clin Nutr. 2011;94:1808s–13s.PubMedCrossRefPubMedCentral Tilling K, Davies NM, Nicoli E. Associations of growth trajectories in infancy and early childhood with later childhood outcomes. Am J Clin Nutr 2011;94 Suppl 6:1808s-13s. Am J Clin Nutr. 2011;94:1808s–13s.PubMedCrossRefPubMedCentral
118.
go back to reference Magee CA, Caputi P, Iverson DC. Identification of distinct body mass index trajectories in Australian children. Pediatr Obes. 2013;8:189–98.PubMedCrossRef Magee CA, Caputi P, Iverson DC. Identification of distinct body mass index trajectories in Australian children. Pediatr Obes. 2013;8:189–98.PubMedCrossRef
119.
go back to reference Ekberg J, Angbratt M, Valter L, Nordvall M, Timpka T. History matters: childhood weight trajectories as a basis for planning community-based obesity prevention to adolescents. Int J Obes. 2012;36:524–8.CrossRef Ekberg J, Angbratt M, Valter L, Nordvall M, Timpka T. History matters: childhood weight trajectories as a basis for planning community-based obesity prevention to adolescents. Int J Obes. 2012;36:524–8.CrossRef
120.
go back to reference Huang DY, Lanza HI, Wright-Volel K, Anglin MD. Developmental trajectories of childhood obesity and risk behaviors in adolescence. J Adolesc. 2013;36:139–48.PubMedCrossRef Huang DY, Lanza HI, Wright-Volel K, Anglin MD. Developmental trajectories of childhood obesity and risk behaviors in adolescence. J Adolesc. 2013;36:139–48.PubMedCrossRef
Metadata
Title
Bayesian hierarchical piecewise regression models: a tool to detect trajectory divergence between groups in long-term observational studies
Authors
Marie-jeanne Buscot
Simon S. Wotherspoon
Costan G. Magnussen
Markus Juonala
Matthew A. Sabin
David P. Burgner
Terho Lehtimäki
Jorma S. A. Viikari
Nina Hutri-Kähönen
Olli T. Raitakari
Russell J. Thomson
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Medical Research Methodology / Issue 1/2017
Electronic ISSN: 1471-2288
DOI
https://doi.org/10.1186/s12874-017-0358-9

Other articles of this Issue 1/2017

BMC Medical Research Methodology 1/2017 Go to the issue