Skip to main content
Top
Published in: BMC Medical Research Methodology 1/2021

Open Access 01-12-2021 | Azithromycin | Research article

A Bayesian latent class mixture model with censoring for correlation analysis in antimicrobial resistance across populations

Authors: Min Zhang, Chong Wang, Annette M. O’Connor

Published in: BMC Medical Research Methodology | Issue 1/2021

Login to get access

Abstract

Background

The emergence of antimicrobial resistance across populations is a global threat to public health. Surveillance programs often monitor human and animal populations to evaluate trends of emergence in these populations. Many national level antibiotic resistance surveillance programs quantify the proportion of resistant bacteria as a means of monitoring emergence and control measures. The reason for monitoring these different populations are many, including interest in similar changes in resistance which might provide insight into emergence and control options.

Methods

In this research, we developed a method to quantify the correlation in antimicrobial resistance across populations, for the conventionally unnoticed mean shift of the susceptible bacteria. With the proposed Bayesian latent class mixture model with censoring and multivariate normal hierarchy, we address several challenges associated with analyzing the minimum inhibitory concentration data.

Results

Application of this approach to the surveillance data from National Antimicrobial Resistance Monitoring System led to a detection of positive correlation in the central tendency of azithromycin resistance of the susceptible populations from Salmonella serotype Typhimurium across food animal and human populations.

Conclusions

Our proposed approach has been shown to be accurate and superior to the commonly used naïve estimation by simulation studies. Further implementation of this Bayesian model could serve as a useful tool to indicate the co-existence of antimicrobial resistance, and potentially a need of clinical intervention.
Literature
3.
go back to reference Karp B, Tate H, Plumblee J, Dessai U, Whichard J, Thacker E, Hale K, Wilson W, Friedman C, Griffin P, et al. National Antimicrobial Resistance Monitoring System: two decades of advancing public health through integrated surveillance of antimicrobial resistance. Foodborne Pathog Dis. 2017; 14(10):545–57.CrossRef Karp B, Tate H, Plumblee J, Dessai U, Whichard J, Thacker E, Hale K, Wilson W, Friedman C, Griffin P, et al. National Antimicrobial Resistance Monitoring System: two decades of advancing public health through integrated surveillance of antimicrobial resistance. Foodborne Pathog Dis. 2017; 14(10):545–57.CrossRef
4.
go back to reference Nguyen M, Long S, McDermott P, Olsen R, Olson R, Stevens R, Tyson G, Zhao S, Davis J. Using machine learning to predict antimicrobial MICs and associated genomic features for nontyphoidal Salmonella. J Clin Microbiol. 2019; 57(2):01260–18.CrossRef Nguyen M, Long S, McDermott P, Olsen R, Olson R, Stevens R, Tyson G, Zhao S, Davis J. Using machine learning to predict antimicrobial MICs and associated genomic features for nontyphoidal Salmonella. J Clin Microbiol. 2019; 57(2):01260–18.CrossRef
6.
go back to reference Gupta A, Nelson J, Barrett T, Tauxe R, Rossiter S, Friedman C, Joyce K, Smith K, Jones T, Hawkins M, et al. Antimicrobial resistance among campylobacter strains, United States, 1997–2001. Emerg Infect Dis. 2004; 10(6):1102–9.CrossRef Gupta A, Nelson J, Barrett T, Tauxe R, Rossiter S, Friedman C, Joyce K, Smith K, Jones T, Hawkins M, et al. Antimicrobial resistance among campylobacter strains, United States, 1997–2001. Emerg Infect Dis. 2004; 10(6):1102–9.CrossRef
7.
go back to reference Hur J, Jawale C, Lee J. Antimicrobial resistance of Salmonella isolated from food animals: A review. Food Res Int. 2012; 45(2):819–30.CrossRef Hur J, Jawale C, Lee J. Antimicrobial resistance of Salmonella isolated from food animals: A review. Food Res Int. 2012; 45(2):819–30.CrossRef
8.
go back to reference Williamson D, Lane C, Easton M, Valcanis M, Strachan J, Veitch M, Kirk M, Howden B. Increasing antimicrobial resistance in nontyphoidal Salmonella isolates in Australia from 1979 to 2015. Antimicrob Agents Chemother. 2018; 62(2):02012–17.CrossRef Williamson D, Lane C, Easton M, Valcanis M, Strachan J, Veitch M, Kirk M, Howden B. Increasing antimicrobial resistance in nontyphoidal Salmonella isolates in Australia from 1979 to 2015. Antimicrob Agents Chemother. 2018; 62(2):02012–17.CrossRef
9.
go back to reference Angulo F, Baker N, Olsen S, Anderson A, Barrett T. Antimicrobial use in agriculture: controlling the transfer of antimicrobial resistance to humans. Semin Pediatr Infect Dis. 2004; 15(2):78–85.CrossRef Angulo F, Baker N, Olsen S, Anderson A, Barrett T. Antimicrobial use in agriculture: controlling the transfer of antimicrobial resistance to humans. Semin Pediatr Infect Dis. 2004; 15(2):78–85.CrossRef
11.
go back to reference Rabatsky-Ehr T, Whichard J, Rossiter S, Holland B, Stamey K, Headrick M, Barrett T, Angulo F, et al. Multidrug-resistant Strains of Salmonella enterica Typhimurium, United States, 1997–1998. Emerg Infect Dis. 2004; 10(5):795–801.CrossRef Rabatsky-Ehr T, Whichard J, Rossiter S, Holland B, Stamey K, Headrick M, Barrett T, Angulo F, et al. Multidrug-resistant Strains of Salmonella enterica Typhimurium, United States, 1997–1998. Emerg Infect Dis. 2004; 10(5):795–801.CrossRef
12.
go back to reference Wegener H. Antibiotic resistance—linking human and animal health In: Choffnes E, Relman D, Olsen L, Hutton R, Mack A, editors. Improving Food Safety Through a One Health Approach: Workshop Summary. Washington, DC: National Academies Press: 2012. p. 331–49. Wegener H. Antibiotic resistance—linking human and animal health In: Choffnes E, Relman D, Olsen L, Hutton R, Mack A, editors. Improving Food Safety Through a One Health Approach: Workshop Summary. Washington, DC: National Academies Press: 2012. p. 331–49.
13.
go back to reference Iwamoto M, Reynolds J, Karp B, Tate H, Fedorka-Cray P, Plumblee J, Hoekstra R, Whichard J, Mahon B. Ceftriaxone-resistant nontyphoidal Salmonella from humans, retail meats, and food animals in the United States, 1996–2013. Foodborne Pathog Dis. 2017; 14(2):74–83.CrossRef Iwamoto M, Reynolds J, Karp B, Tate H, Fedorka-Cray P, Plumblee J, Hoekstra R, Whichard J, Mahon B. Ceftriaxone-resistant nontyphoidal Salmonella from humans, retail meats, and food animals in the United States, 1996–2013. Foodborne Pathog Dis. 2017; 14(2):74–83.CrossRef
14.
go back to reference Mazloom R, Jaberi-Douraki M, Comer J, Volkova V. Potential information loss due to categorization of Minimum Inhibitory Concentration frequency distributions. Foodborne Pathog Dis. 2018; 15(1):44–54.CrossRef Mazloom R, Jaberi-Douraki M, Comer J, Volkova V. Potential information loss due to categorization of Minimum Inhibitory Concentration frequency distributions. Foodborne Pathog Dis. 2018; 15(1):44–54.CrossRef
15.
go back to reference Sader H, Fey P, Fish D, Limaye A, Pankey G, Rahal J, Rybak M, Snydman D, Steed L, Waites K, et al. Evaluation of vancomycin and daptomycin potency trends (MIC creep) against methicillin-resistant Staphylococcus aureus isolates collected in nine US medical centers from 2002 to 2006. Antimicrob Agents Chemother. 2009; 53(10):4127–32.CrossRef Sader H, Fey P, Fish D, Limaye A, Pankey G, Rahal J, Rybak M, Snydman D, Steed L, Waites K, et al. Evaluation of vancomycin and daptomycin potency trends (MIC creep) against methicillin-resistant Staphylococcus aureus isolates collected in nine US medical centers from 2002 to 2006. Antimicrob Agents Chemother. 2009; 53(10):4127–32.CrossRef
16.
go back to reference Annis D, Craig B. Statistical properties and inference of the antimicrobial MIC test. Stat Med. 2005; 24(23):3631–44.CrossRef Annis D, Craig B. Statistical properties and inference of the antimicrobial MIC test. Stat Med. 2005; 24(23):3631–44.CrossRef
17.
go back to reference Craig B. Modeling approach to diameter breakpoint determination. Diagn Microbiol Infect Dis. 2000; 36(3):193–202.CrossRef Craig B. Modeling approach to diameter breakpoint determination. Diagn Microbiol Infect Dis. 2000; 36(3):193–202.CrossRef
18.
go back to reference Jaspers S, Lambert P, Aerts M, et al. A Bayesian approach to the semiparametric estimation of a minimum inhibitory concentration distribution. Ann Appl Stat. 2016; 10(2):906–24.CrossRef Jaspers S, Lambert P, Aerts M, et al. A Bayesian approach to the semiparametric estimation of a minimum inhibitory concentration distribution. Ann Appl Stat. 2016; 10(2):906–24.CrossRef
19.
go back to reference Zhang M, Wang C, O’Connor A. A hierarchical Bayesian latent class mixture model with censorship for detection of linear temporal changes in antibiotic resistance. PLOS ONE. 2020; 15(1):0220427. Zhang M, Wang C, O’Connor A. A hierarchical Bayesian latent class mixture model with censorship for detection of linear temporal changes in antibiotic resistance. PLOS ONE. 2020; 15(1):0220427.
20.
go back to reference Jaspers S, Komárek A, Aerts M. Bayesian estimation of multivariate normal mixtures with covariate-dependent mixing weights, with an application in antimicrobial resistance monitoring. Biom J. 2018; 60(1):7–19.CrossRef Jaspers S, Komárek A, Aerts M. Bayesian estimation of multivariate normal mixtures with covariate-dependent mixing weights, with an application in antimicrobial resistance monitoring. Biom J. 2018; 60(1):7–19.CrossRef
21.
go back to reference Vieira A, Collignon P, Aarestrup F, McEwen S, Hendriksen R, Hald T, Wegener H. Association between antimicrobial resistance in Escherichia coli isolates from food animals and blood stream isolates from humans in Europe: an ecological study. Foodborne Pathog Dis. 2011; 8(12):1295–301.CrossRef Vieira A, Collignon P, Aarestrup F, McEwen S, Hendriksen R, Hald T, Wegener H. Association between antimicrobial resistance in Escherichia coli isolates from food animals and blood stream isolates from humans in Europe: an ecological study. Foodborne Pathog Dis. 2011; 8(12):1295–301.CrossRef
22.
go back to reference Barnard J, McCulloch R, Meng X-L. Modeling covariance matrices in terms of standard deviations and correlations, with application to shrinkage. Stat Sin. 2000:1281–311. Barnard J, McCulloch R, Meng X-L. Modeling covariance matrices in terms of standard deviations and correlations, with application to shrinkage. Stat Sin. 2000:1281–311.
25.
go back to reference Lewandowski D, Kurowicka D, Joe H. Generating random correlation matrices based on vines and extended onion method. J Multivar Anal. 2009; 100(9):1989–2001.CrossRef Lewandowski D, Kurowicka D, Joe H. Generating random correlation matrices based on vines and extended onion method. J Multivar Anal. 2009; 100(9):1989–2001.CrossRef
26.
go back to reference Oggioni M, Coelho J, Furi L, Knight D, Viti C, Orefici G, Martinez J, Freitas A, Coque T, Morrissey I, et al. Significant differences characterise the correlation coefficients between biocide and antibiotic susceptibility profiles in Staphylococcus aureus. Curr Pharm Des. 2015; 21(16):2054.CrossRef Oggioni M, Coelho J, Furi L, Knight D, Viti C, Orefici G, Martinez J, Freitas A, Coque T, Morrissey I, et al. Significant differences characterise the correlation coefficients between biocide and antibiotic susceptibility profiles in Staphylococcus aureus. Curr Pharm Des. 2015; 21(16):2054.CrossRef
27.
go back to reference Patel N, Lubanski P, Ferro S, Bonafede M, Harrington S, Evans A, Stellrecht K, Lodise T. Correlation between vancomycin MIC values and those of other agents against gram-positive bacteria among patients with bloodstream infections caused by methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2009; 53(12):5141–4.CrossRef Patel N, Lubanski P, Ferro S, Bonafede M, Harrington S, Evans A, Stellrecht K, Lodise T. Correlation between vancomycin MIC values and those of other agents against gram-positive bacteria among patients with bloodstream infections caused by methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2009; 53(12):5141–4.CrossRef
28.
go back to reference Chew K, La M-V, Lin R, Teo J. Colistin and polymyxin B susceptibility testing for carbapenem-resistant and mcr-positive Enterobacteriaceae: comparison of Sensititre, MicroScan, Vitek 2, and Etest with broth microdilution. J Clin Microbiol. 2017; 55(9):2609–16.CrossRef Chew K, La M-V, Lin R, Teo J. Colistin and polymyxin B susceptibility testing for carbapenem-resistant and mcr-positive Enterobacteriaceae: comparison of Sensititre, MicroScan, Vitek 2, and Etest with broth microdilution. J Clin Microbiol. 2017; 55(9):2609–16.CrossRef
29.
go back to reference Yang F, Yan J, Zhang J, van der Veen S. Evaluation of alternative antibiotics for susceptibility of gonococcal isolates from China. Int J Antimicrob Agents. 2020; 55(2):105846.CrossRef Yang F, Yan J, Zhang J, van der Veen S. Evaluation of alternative antibiotics for susceptibility of gonococcal isolates from China. Int J Antimicrob Agents. 2020; 55(2):105846.CrossRef
31.
33.
go back to reference Sjölund-Karlsson M, Joyce K, Blickenstaff K, Ball T, Haro J, Medalla F, Fedorka-Cray P, Zhao S, Crump J, Whichard J. Antimicrobial susceptibility to azithromycin among Salmonella enterica isolates from the United States. Antimicrob Agents Chemother. 2011; 55(9):3985–9.CrossRef Sjölund-Karlsson M, Joyce K, Blickenstaff K, Ball T, Haro J, Medalla F, Fedorka-Cray P, Zhao S, Crump J, Whichard J. Antimicrobial susceptibility to azithromycin among Salmonella enterica isolates from the United States. Antimicrob Agents Chemother. 2011; 55(9):3985–9.CrossRef
35.
go back to reference Hoffman M, Gelman A. The No-U-Turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo,. J Mach Learn Res. 2014; 15(1):1593–623. Hoffman M, Gelman A. The No-U-Turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo,. J Mach Learn Res. 2014; 15(1):1593–623.
37.
go back to reference Gelman A, Rubin D. Inference from iterative simulation using multiple sequences. Stat Sci. 1992; 7(4):457–72. Gelman A, Rubin D. Inference from iterative simulation using multiple sequences. Stat Sci. 1992; 7(4):457–72.
38.
go back to reference Mouton J. Breakpoints: current practice and future perspectives. Int J Antimicrob Agents. 2002; 19(4):323–31.CrossRef Mouton J. Breakpoints: current practice and future perspectives. Int J Antimicrob Agents. 2002; 19(4):323–31.CrossRef
39.
go back to reference Nylund K, Asparouhov T, Muthén B. Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study. Struct Equ Model A Multidiscip J. 2007; 14(4):535–69.CrossRef Nylund K, Asparouhov T, Muthén B. Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study. Struct Equ Model A Multidiscip J. 2007; 14(4):535–69.CrossRef
Metadata
Title
A Bayesian latent class mixture model with censoring for correlation analysis in antimicrobial resistance across populations
Authors
Min Zhang
Chong Wang
Annette M. O’Connor
Publication date
01-12-2021
Publisher
BioMed Central
Keyword
Azithromycin
Published in
BMC Medical Research Methodology / Issue 1/2021
Electronic ISSN: 1471-2288
DOI
https://doi.org/10.1186/s12874-021-01384-w

Other articles of this Issue 1/2021

BMC Medical Research Methodology 1/2021 Go to the issue