Skip to main content
Top
Published in: Brain Structure and Function 4/2017

01-05-2017 | Original Article

Awake whole-brain functional connectivity alterations in the adolescent spontaneously hypertensive rat feature visual streams and striatal networks

Authors: G. L. Poirier, W. Huang, K. Tam, J. R. DiFranza, Jean A. King

Published in: Brain Structure and Function | Issue 4/2017

Login to get access

Abstract

Brain mechanisms underpinning attention deficit/hyperactivity disorder (ADHD) are incompletely understood. The adolescent spontaneously hypertensive rat (SHR) is a widely studied preclinical model that expresses several of the key behavioral features associated with ADHD. Yet, little is known about large-scale functional connectivity patterns in the SHR, and their potential similarity to those of humans with ADHD. Using an approach comparable to human studies, magnetic resonance imaging in the awake animal was performed to identify whole-brain intrinsic neural connectivity patterns. An independent components analysis of resting-state functional connectivity demonstrated many common components between the SHR and both Wistar Kyoto and Sprague–Dawley control strains, but there was a divergence in other networks. In the SHR, three functional networks involving the striatum had only weak correlations with networks in the two control strains. Conversely, networks involving the visual cortex that was present in both control strains had only weak correlations with networks in the SHR. The implication is that the patterns of brain activity differ between the SHR and the other strains, suggesting that brain connectivity patterns in this animal model of ADHD may provide insights into the neural basis of ADHD. Brain connectivity patterns might also serve to identify brain circuits that could be targeted for the manipulation and evaluation of potential therapeutic options.
Appendix
Available only for authorised users
Literature
go back to reference Alexander GE, Crutcher MD (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 13:266–271CrossRefPubMed Alexander GE, Crutcher MD (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 13:266–271CrossRefPubMed
go back to reference Atanur Santosh S, Diaz Ana G, Maratou K, Sarkis A, Rotival M, Game L, Tschannen Michael R, Kaisaki Pamela J, Otto Georg W, Ma Man Chun J, Keane Thomas M, Hummel O, Saar K, Chen W, Guryev V, Gopalakrishnan K, Garrett Michael R, Joe B, Citterio L, Bianchi G, McBride M, Dominiczak A, Adams David J, Serikawa T, Flicek P, Cuppen E, Hubner N, Petretto E, Gauguier D, Kwitek A, Jacob H, Aitman Timothy J (2013) Genome sequencing reveals loci under artificial selection that underlie disease phenotypes in the laboratory rat. Cell 154:691–703CrossRefPubMedPubMedCentral Atanur Santosh S, Diaz Ana G, Maratou K, Sarkis A, Rotival M, Game L, Tschannen Michael R, Kaisaki Pamela J, Otto Georg W, Ma Man Chun J, Keane Thomas M, Hummel O, Saar K, Chen W, Guryev V, Gopalakrishnan K, Garrett Michael R, Joe B, Citterio L, Bianchi G, McBride M, Dominiczak A, Adams David J, Serikawa T, Flicek P, Cuppen E, Hubner N, Petretto E, Gauguier D, Kwitek A, Jacob H, Aitman Timothy J (2013) Genome sequencing reveals loci under artificial selection that underlie disease phenotypes in the laboratory rat. Cell 154:691–703CrossRefPubMedPubMedCentral
go back to reference Balleine BW, O’Doherty JP (2010) Human and rodent homologies in action control: corticostriatal determinants of goal-directed and habitual action. Neuropsychopharmacol: Off Publ Am Coll Neuropsychopharmacol 35:48–69CrossRef Balleine BW, O’Doherty JP (2010) Human and rodent homologies in action control: corticostriatal determinants of goal-directed and habitual action. Neuropsychopharmacol: Off Publ Am Coll Neuropsychopharmacol 35:48–69CrossRef
go back to reference Berendse HW, Galis-de Graaf Y, Groenewegen HJ (1992) Topographical organization and relationship with ventral striatal compartments of prefrontal corticostriatal projections in the rat. J Comp Neurol 316:314–347CrossRefPubMed Berendse HW, Galis-de Graaf Y, Groenewegen HJ (1992) Topographical organization and relationship with ventral striatal compartments of prefrontal corticostriatal projections in the rat. J Comp Neurol 316:314–347CrossRefPubMed
go back to reference Bettinardi RG, Tort-Colet N, Ruiz-Mejias M, Sanchez-Vives MV, Deco G (2015) Gradual emergence of spontaneous correlated brain activity during fading of general anesthesia in rats: Evidences from fMRI and local field potentials. Neuroimage 114:185–198CrossRefPubMedPubMedCentral Bettinardi RG, Tort-Colet N, Ruiz-Mejias M, Sanchez-Vives MV, Deco G (2015) Gradual emergence of spontaneous correlated brain activity during fading of general anesthesia in rats: Evidences from fMRI and local field potentials. Neuroimage 114:185–198CrossRefPubMedPubMedCentral
go back to reference Biederman J, Petty CR, Clarke A, Lomedico A, Faraone SV (2011) Predictors of persistent ADHD: an 11-year follow-up study. J Psychiatr Res 45:150–155CrossRefPubMed Biederman J, Petty CR, Clarke A, Lomedico A, Faraone SV (2011) Predictors of persistent ADHD: an 11-year follow-up study. J Psychiatr Res 45:150–155CrossRefPubMed
go back to reference Bull E, Reavill C, Hagan JJ, Overend P, Jones DNC (2000) Evaluation of the spontaneously hypertensive rat as a model of attention deficit hyperactivity disorder: acquisition and performance of the DRL-60s test. Behav Brain Res 109:27–35CrossRefPubMed Bull E, Reavill C, Hagan JJ, Overend P, Jones DNC (2000) Evaluation of the spontaneously hypertensive rat as a model of attention deficit hyperactivity disorder: acquisition and performance of the DRL-60s test. Behav Brain Res 109:27–35CrossRefPubMed
go back to reference Cao X, Cao Q, Long X, Sun L, Sui M, Zhu C, Zuo X, Zang Y, Wang Y (2009) Abnormal resting-state functional connectivity patterns of the putamen in medication-naïve children with attention deficit hyperactivity disorder. Brain Res 1303:195–206CrossRefPubMed Cao X, Cao Q, Long X, Sun L, Sui M, Zhu C, Zuo X, Zang Y, Wang Y (2009) Abnormal resting-state functional connectivity patterns of the putamen in medication-naïve children with attention deficit hyperactivity disorder. Brain Res 1303:195–206CrossRefPubMed
go back to reference Castellanos FX, Proal E (2012) Large-scale brain systems in ADHD: beyond the prefrontal-striatal model. Trends in cognitive sciences 16:17–26CrossRefPubMed Castellanos FX, Proal E (2012) Large-scale brain systems in ADHD: beyond the prefrontal-striatal model. Trends in cognitive sciences 16:17–26CrossRefPubMed
go back to reference Castellanos FX, Tannock R (2002) Neuroscience of attention-deficit/hyperactivity disorder: the search for endophenotypes. Nat Rev Neurosci 3:617–628CrossRefPubMed Castellanos FX, Tannock R (2002) Neuroscience of attention-deficit/hyperactivity disorder: the search for endophenotypes. Nat Rev Neurosci 3:617–628CrossRefPubMed
go back to reference Chabernaud C, Mennes M, Kelly C, Nooner K, Di Martino A, Castellanos FX, Milham MP (2012) Dimensional brain-behavior relationships in children with attention-deficit/hyperactivity disorder. Biol Psychiatry 71:434–442CrossRefPubMed Chabernaud C, Mennes M, Kelly C, Nooner K, Di Martino A, Castellanos FX, Milham MP (2012) Dimensional brain-behavior relationships in children with attention-deficit/hyperactivity disorder. Biol Psychiatry 71:434–442CrossRefPubMed
go back to reference Chen G, Buck KJ (2010) Rostroventral caudate putamen involvement in ethanol withdrawal is influenced by a chromosome 4 locus. Genes Brain Behav 9:768–776CrossRefPubMedPubMedCentral Chen G, Buck KJ (2010) Rostroventral caudate putamen involvement in ethanol withdrawal is influenced by a chromosome 4 locus. Genes Brain Behav 9:768–776CrossRefPubMedPubMedCentral
go back to reference Chess AC, Green JT (2008) Abnormal topography and altered acquisition of conditioned eyeblink responses in a rodent model of attention-deficit/hyperactivity disorder. Behav Neurosci 122:63–74CrossRefPubMed Chess AC, Green JT (2008) Abnormal topography and altered acquisition of conditioned eyeblink responses in a rodent model of attention-deficit/hyperactivity disorder. Behav Neurosci 122:63–74CrossRefPubMed
go back to reference Costa Dias TG, Wilson VB, Bathula DR, Iyer SP, Mills KL, Thurlow BL, Stevens CA, Musser ED, Carpenter SD, Grayson DS, Mitchell SH, Nigg JT, Fair DA (2013) Reward circuit connectivity relates to delay discounting in children with attention-deficit/hyperactivity disorder. Eur Neuropsychopharmacol 23:33–45CrossRefPubMed Costa Dias TG, Wilson VB, Bathula DR, Iyer SP, Mills KL, Thurlow BL, Stevens CA, Musser ED, Carpenter SD, Grayson DS, Mitchell SH, Nigg JT, Fair DA (2013) Reward circuit connectivity relates to delay discounting in children with attention-deficit/hyperactivity disorder. Eur Neuropsychopharmacol 23:33–45CrossRefPubMed
go back to reference Costa Dias TG, Iyer SP, Carpenter SD, Cary RP, Wilson VB, Mitchell SH, Nigg JT, Fair DA (2015) Characterizing heterogeneity in children with and without ADHD based on reward system connectivity. Dev Cogn Neurosci 11:155–174CrossRefPubMedPubMedCentral Costa Dias TG, Iyer SP, Carpenter SD, Cary RP, Wilson VB, Mitchell SH, Nigg JT, Fair DA (2015) Characterizing heterogeneity in children with and without ADHD based on reward system connectivity. Dev Cogn Neurosci 11:155–174CrossRefPubMedPubMedCentral
go back to reference Danker JF, Duong TQ (2007) Quantitative regional cerebral blood flow MRI of animal model of attention-deficit/hyperactivity disorder. Brain Res 1150:217–224CrossRefPubMedPubMedCentral Danker JF, Duong TQ (2007) Quantitative regional cerebral blood flow MRI of animal model of attention-deficit/hyperactivity disorder. Brain Res 1150:217–224CrossRefPubMedPubMedCentral
go back to reference Elton A, Alcauter S, Gao W (2014) Network connectivity abnormality profile supports a categorical-dimensional hybrid model of ADHD. Hum Brain Mapp 35:4531–4543CrossRefPubMedPubMedCentral Elton A, Alcauter S, Gao W (2014) Network connectivity abnormality profile supports a categorical-dimensional hybrid model of ADHD. Hum Brain Mapp 35:4531–4543CrossRefPubMedPubMedCentral
go back to reference Fair DA, Bathula D, Nikolas MA, Nigg JT (2012a) Distinct neuropsychological subgroups in typically developing youth inform heterogeneity in children with ADHD. Proc Natl Acad Sci 109:6769–6774CrossRefPubMedPubMedCentral Fair DA, Bathula D, Nikolas MA, Nigg JT (2012a) Distinct neuropsychological subgroups in typically developing youth inform heterogeneity in children with ADHD. Proc Natl Acad Sci 109:6769–6774CrossRefPubMedPubMedCentral
go back to reference Fair DA, Nigg JT, Iyer S, Bathula D, Mills KL, Dosenbach NU, Schlaggar BL, Mennes M, Gutman D, Bangaru S, Buitelaar JK, Dickstein DP, Di Martino A, Kennedy DN, Kelly C, Luna B, Schweitzer JB, Velanova K, Wang YF, Mostofsky S, Castellanos FX, Milham MP (2012b) Distinct neural signatures detected for ADHD subtypes after controlling for micro-movements in resting state functional connectivity MRI data. Front Syst Neurosci 6:80PubMed Fair DA, Nigg JT, Iyer S, Bathula D, Mills KL, Dosenbach NU, Schlaggar BL, Mennes M, Gutman D, Bangaru S, Buitelaar JK, Dickstein DP, Di Martino A, Kennedy DN, Kelly C, Luna B, Schweitzer JB, Velanova K, Wang YF, Mostofsky S, Castellanos FX, Milham MP (2012b) Distinct neural signatures detected for ADHD subtypes after controlling for micro-movements in resting state functional connectivity MRI data. Front Syst Neurosci 6:80PubMed
go back to reference Faraone SV, Perlis RH, Doyle AE, Smoller JW, Goralnick JJ, Holmgren MA, Sklar P (2005) Molecular Genetics of attention-deficit/hyperactivity disorder. Biol Psychiatry 57:1313–1323CrossRefPubMed Faraone SV, Perlis RH, Doyle AE, Smoller JW, Goralnick JJ, Holmgren MA, Sklar P (2005) Molecular Genetics of attention-deficit/hyperactivity disorder. Biol Psychiatry 57:1313–1323CrossRefPubMed
go back to reference Faure A, Haberland U, Condé F, Massioui NE (2005) Lesion to the nigrostriatal dopamine system disrupts stimulus-response habit formation. J Neurosci 25:2771–2780CrossRefPubMed Faure A, Haberland U, Condé F, Massioui NE (2005) Lesion to the nigrostriatal dopamine system disrupts stimulus-response habit formation. J Neurosci 25:2771–2780CrossRefPubMed
go back to reference Ferguson SA, Cada AM (2003) A longitudinal study of short- and long-term activity levels in male and female spontaneously hypertensive, Wistar–Kyoto, and Sprague–Dawley rats. Behav Neurosci 117:271–282CrossRefPubMed Ferguson SA, Cada AM (2003) A longitudinal study of short- and long-term activity levels in male and female spontaneously hypertensive, Wistar–Kyoto, and Sprague–Dawley rats. Behav Neurosci 117:271–282CrossRefPubMed
go back to reference Ferguson SA, Paule MG, Cada A, Fogle CM, Gray EP, Berry KJ (2007) Baseline behavior, but not sensitivity to stimulant drugs, differs among spontaneously hypertensive, Wistar–Kyoto, and Sprague–Dawley rat strains. Neurotoxicol Teratol 29:547–561CrossRefPubMed Ferguson SA, Paule MG, Cada A, Fogle CM, Gray EP, Berry KJ (2007) Baseline behavior, but not sensitivity to stimulant drugs, differs among spontaneously hypertensive, Wistar–Kyoto, and Sprague–Dawley rat strains. Neurotoxicol Teratol 29:547–561CrossRefPubMed
go back to reference Galeno TM, Van Hoesen GW, Brody MJ (1984) Central amygdaloid nucleus lesion attenuates exaggerated hemodynamic responses to noise stress in the spontaneously hypertensive rat. Brain Res 291:249–259CrossRefPubMed Galeno TM, Van Hoesen GW, Brody MJ (1984) Central amygdaloid nucleus lesion attenuates exaggerated hemodynamic responses to noise stress in the spontaneously hypertensive rat. Brain Res 291:249–259CrossRefPubMed
go back to reference Gerfen CR, Herkenham M, Thibault J (1987) The neostriatal mosaic: II. Patch- and matrix-directed mesostriatal dopaminergic and non-dopaminergic systems. J Neurosci: Off J Soc Neurosci 7:3915–3934 Gerfen CR, Herkenham M, Thibault J (1987) The neostriatal mosaic: II. Patch- and matrix-directed mesostriatal dopaminergic and non-dopaminergic systems. J Neurosci: Off J Soc Neurosci 7:3915–3934
go back to reference Glahn DC, Winkler AM, Kochunov P, Almasy L, Duggirala R, Carless MA, Curran JC, Olvera RL, Laird AR, Smith SM, Beckmann CF, Fox PT, Blangero J (2010) Genetic control over the resting brain. Proc Natl Acad Sci 107:1223–1228CrossRefPubMedPubMedCentral Glahn DC, Winkler AM, Kochunov P, Almasy L, Duggirala R, Carless MA, Curran JC, Olvera RL, Laird AR, Smith SM, Beckmann CF, Fox PT, Blangero J (2010) Genetic control over the resting brain. Proc Natl Acad Sci 107:1223–1228CrossRefPubMedPubMedCentral
go back to reference Graybiel AM (1998) The basal ganglia and chunking of action repertoires. Neurobiol Learn Mem 70:119–136CrossRefPubMed Graybiel AM (1998) The basal ganglia and chunking of action repertoires. Neurobiol Learn Mem 70:119–136CrossRefPubMed
go back to reference Graybiel A, Aosaki T, Flaherty A, Kimura M (1994) The basal ganglia and adaptive motor control. Science 265:1826–1831CrossRefPubMed Graybiel A, Aosaki T, Flaherty A, Kimura M (1994) The basal ganglia and adaptive motor control. Science 265:1826–1831CrossRefPubMed
go back to reference Green JT, Chess AC, Conquest CJ, Yegla BA (2011) Conditioned inhibition in a rodent model of attention-deficit/hyperactivity disorder. Behav Neurosci 125:979–987CrossRefPubMedPubMedCentral Green JT, Chess AC, Conquest CJ, Yegla BA (2011) Conditioned inhibition in a rodent model of attention-deficit/hyperactivity disorder. Behav Neurosci 125:979–987CrossRefPubMedPubMedCentral
go back to reference Haber S (2011) Neuroanatomy of Reward: a view from the ventral striatum. In: Gottfried J (ed) Neurobiology of sensation and reward. CRC Press, Boca Raton Haber S (2011) Neuroanatomy of Reward: a view from the ventral striatum. In: Gottfried J (ed) Neurobiology of sensation and reward. CRC Press, Boca Raton
go back to reference Heijtz RD, Castellanos F (2006) Differential effects of a selective dopamine D1-like receptor agonist on motor activity and c-fos expression in the frontal-striatal circuitry of SHR and Wistar-Kyoto rats. Behav Brain Funct 2:1–10CrossRef Heijtz RD, Castellanos F (2006) Differential effects of a selective dopamine D1-like receptor agonist on motor activity and c-fos expression in the frontal-striatal circuitry of SHR and Wistar-Kyoto rats. Behav Brain Funct 2:1–10CrossRef
go back to reference Hong LE, Hodgkinson CA, Yang Y, Sampath H, Ross TJ, Buchholz B, Salmeron BJ, Srivastava V, Thaker GK, Goldman D, Stein EA (2010) A genetically modulated, intrinsic cingulate circuit supports human nicotine addiction. Proc Natl Acad Sci USA 107:13509–13514CrossRefPubMedPubMedCentral Hong LE, Hodgkinson CA, Yang Y, Sampath H, Ross TJ, Buchholz B, Salmeron BJ, Srivastava V, Thaker GK, Goldman D, Stein EA (2010) A genetically modulated, intrinsic cingulate circuit supports human nicotine addiction. Proc Natl Acad Sci USA 107:13509–13514CrossRefPubMedPubMedCentral
go back to reference Huang SM, Wu YL, Peng SL, Peng HH, Huang TY, Ho KC, Wang FN (2016) Inter-strain differences in default mode network: a resting state fmri study on spontaneously hypertensive Rat and Wistar Kyoto Rat. Sci Rep 6:21697CrossRefPubMedPubMedCentral Huang SM, Wu YL, Peng SL, Peng HH, Huang TY, Ho KC, Wang FN (2016) Inter-strain differences in default mode network: a resting state fmri study on spontaneously hypertensive Rat and Wistar Kyoto Rat. Sci Rep 6:21697CrossRefPubMedPubMedCentral
go back to reference Hutchison RM, Mirsattari SM, Jones CK, Gati JS, Leung LS (2010) Functional networks in the anesthetized rat brain revealed by independent component analysis of resting-state fMRI. J Neurophysiol 103(6):3398–3406CrossRefPubMed Hutchison RM, Mirsattari SM, Jones CK, Gati JS, Leung LS (2010) Functional networks in the anesthetized rat brain revealed by independent component analysis of resting-state fMRI. J Neurophysiol 103(6):3398–3406CrossRefPubMed
go back to reference Hutchison RM, Leung LS, Mirsattari SM, Gati JS, Menon RS, Everling S (2011) Resting-state networks in the macaque at 7T. Neuroimage 56:1546–1555CrossRefPubMed Hutchison RM, Leung LS, Mirsattari SM, Gati JS, Menon RS, Everling S (2011) Resting-state networks in the macaque at 7T. Neuroimage 56:1546–1555CrossRefPubMed
go back to reference Jentsch JD (2005) Impaired visuospatial divided attention in the spontaneously hypertensive rat. Behav Brain Res 157:323–330CrossRefPubMed Jentsch JD (2005) Impaired visuospatial divided attention in the spontaneously hypertensive rat. Behav Brain Res 157:323–330CrossRefPubMed
go back to reference Jonckers E, Van Audekerke J, De Visscher G, Van der Linden A, Verhoye M (2011) Functional connectivity fMRI of the rodent brain: comparison of functional connectivity networks in rat and mouse. PLoS One 6:e18876CrossRefPubMedPubMedCentral Jonckers E, Van Audekerke J, De Visscher G, Van der Linden A, Verhoye M (2011) Functional connectivity fMRI of the rodent brain: comparison of functional connectivity networks in rat and mouse. PLoS One 6:e18876CrossRefPubMedPubMedCentral
go back to reference Jonckers E, Delgado y Palacios R, Shah D, Guglielmetti C, Verhoye M, Van der Linden A (2014) Different anesthesia regimes modulate the functional connectivity outcome in mice. Magn Reson Med 72:1103–1112CrossRefPubMed Jonckers E, Delgado y Palacios R, Shah D, Guglielmetti C, Verhoye M, Van der Linden A (2014) Different anesthesia regimes modulate the functional connectivity outcome in mice. Magn Reson Med 72:1103–1112CrossRefPubMed
go back to reference Karalunas SL, Fair D, Musser ED, Aykes K, Iyer SP, Nigg JT (2014) Subtyping attention-deficit/hyperactivity disorder using temperament dimensions: toward biologically based nosologic criteria. JAMA Psychiatry 71:1015–1024CrossRefPubMedPubMedCentral Karalunas SL, Fair D, Musser ED, Aykes K, Iyer SP, Nigg JT (2014) Subtyping attention-deficit/hyperactivity disorder using temperament dimensions: toward biologically based nosologic criteria. JAMA Psychiatry 71:1015–1024CrossRefPubMedPubMedCentral
go back to reference Kaymaz N, van Os J (2009) Heritability of structural brain traits an endophenotype approach to deconstruct schizophrenia. Int Rev Neurobiol 89:85–130CrossRefPubMed Kaymaz N, van Os J (2009) Heritability of structural brain traits an endophenotype approach to deconstruct schizophrenia. Int Rev Neurobiol 89:85–130CrossRefPubMed
go back to reference Kessler D, Angstadt M, Welsh R, Sripada C (2014) Modality-spanning deficits in attention-deficit/hyperactivity disorder in functional networks, gray matter, and white matter. J Neurosci 34:16555–16566CrossRefPubMedPubMedCentral Kessler D, Angstadt M, Welsh R, Sripada C (2014) Modality-spanning deficits in attention-deficit/hyperactivity disorder in functional networks, gray matter, and white matter. J Neurosci 34:16555–16566CrossRefPubMedPubMedCentral
go back to reference King JA, Garelick TS, Brevard ME, Chen W, Messenger TL, Duong TQ, Ferris CF (2005) Procedure for minimizing stress for fMRI studies in conscious rats. J Neurosci Methods 148:154–160CrossRefPubMedPubMedCentral King JA, Garelick TS, Brevard ME, Chen W, Messenger TL, Duong TQ, Ferris CF (2005) Procedure for minimizing stress for fMRI studies in conscious rats. J Neurosci Methods 148:154–160CrossRefPubMedPubMedCentral
go back to reference Kirouac GJ, Ganguly PK (1993) Up-regulation of dopamine receptors in the brain of the spontaneously hypertensive rat: an autoradiographic analysis. Neuroscience 52:135–141CrossRefPubMed Kirouac GJ, Ganguly PK (1993) Up-regulation of dopamine receptors in the brain of the spontaneously hypertensive rat: an autoradiographic analysis. Neuroscience 52:135–141CrossRefPubMed
go back to reference Kishikawa Y, Kawahara Y, Yamada M, Kaneko F, Kawahara H, Nishi A (2014) The spontaneously hypertensive rat/Izm (SHR/Izm) shows attention deficit/hyperactivity disorder-like behaviors but without impulsive behavior: therapeutic implications of low-dose methylphenidate. Behav Brain Res 274:235–242CrossRefPubMed Kishikawa Y, Kawahara Y, Yamada M, Kaneko F, Kawahara H, Nishi A (2014) The spontaneously hypertensive rat/Izm (SHR/Izm) shows attention deficit/hyperactivity disorder-like behaviors but without impulsive behavior: therapeutic implications of low-dose methylphenidate. Behav Brain Res 274:235–242CrossRefPubMed
go back to reference Kochunov P, Glahn DC, Lancaster JL, Winkler AM, Smith S, Thompson PM, Almasy L, Duggirala R, Fox PT, Blangero J (2010) Genetics of microstructure of cerebral white matter using diffusion tensor imaging. Neuroimage 53:1109–1116CrossRefPubMedPubMedCentral Kochunov P, Glahn DC, Lancaster JL, Winkler AM, Smith S, Thompson PM, Almasy L, Duggirala R, Fox PT, Blangero J (2010) Genetics of microstructure of cerebral white matter using diffusion tensor imaging. Neuroimage 53:1109–1116CrossRefPubMedPubMedCentral
go back to reference Kremen WS, Prom-Wormley E, Panizzon MS, Eyler LT, Fischl B, Neale MC, Franz CE, Lyons MJ, Pacheco J, Perry ME, Stevens A, Schmitt JE, Grant MD, Seidman LJ, Thermenos HW, Tsuang MT, Eisen SA, Dale AM, Fennema-Notestine C (2010) Genetic and environmental influences on the size of specific brain regions in midlife: the VETSA MRI study. Neuroimage 49:1213–1223CrossRefPubMed Kremen WS, Prom-Wormley E, Panizzon MS, Eyler LT, Fischl B, Neale MC, Franz CE, Lyons MJ, Pacheco J, Perry ME, Stevens A, Schmitt JE, Grant MD, Seidman LJ, Thermenos HW, Tsuang MT, Eisen SA, Dale AM, Fennema-Notestine C (2010) Genetic and environmental influences on the size of specific brain regions in midlife: the VETSA MRI study. Neuroimage 49:1213–1223CrossRefPubMed
go back to reference Laycock R, Crewther SG, Crewther DP (2007) A role for the ‘magnocellular advantage’ in visual impairments in neurodevelopmental and psychiatric disorders. Neurosci Biobehav Rev 31:363–376CrossRefPubMed Laycock R, Crewther SG, Crewther DP (2007) A role for the ‘magnocellular advantage’ in visual impairments in neurodevelopmental and psychiatric disorders. Neurosci Biobehav Rev 31:363–376CrossRefPubMed
go back to reference Li Q, Lu G, Antonio GE, Mak YT, Rudd JA, Fan M, Yew DT (2007) The usefulness of the spontaneously hypertensive rat to model attention-deficit/hyperactivity disorder (ADHD) may be explained by the differential expression of dopamine-related genes in the brain. Neurochem Int 50:848–857CrossRefPubMed Li Q, Lu G, Antonio GE, Mak YT, Rudd JA, Fan M, Yew DT (2007) The usefulness of the spontaneously hypertensive rat to model attention-deficit/hyperactivity disorder (ADHD) may be explained by the differential expression of dopamine-related genes in the brain. Neurochem Int 50:848–857CrossRefPubMed
go back to reference Li Q, Wong JH, Lu G, Antonio GE, Yeung DK, Ng TB, Forster LE, Yew DT (2009) Gene expression of synaptosomal-associated protein 25 (SNAP-25) in the prefrontal cortex of the spontaneously hypertensive rat (SHR). Biochimica et Biophysica Acta (BBA)-Mol Basis Dis 1792:766–776CrossRef Li Q, Wong JH, Lu G, Antonio GE, Yeung DK, Ng TB, Forster LE, Yew DT (2009) Gene expression of synaptosomal-associated protein 25 (SNAP-25) in the prefrontal cortex of the spontaneously hypertensive rat (SHR). Biochimica et Biophysica Acta (BBA)-Mol Basis Dis 1792:766–776CrossRef
go back to reference Liang Z, King J, Zhang N (2011) Uncovering intrinsic connectional architecture of functional networks in awake rat brain. J Neurosci: Off J Soc Neurosci 31:3776–3783CrossRef Liang Z, King J, Zhang N (2011) Uncovering intrinsic connectional architecture of functional networks in awake rat brain. J Neurosci: Off J Soc Neurosci 31:3776–3783CrossRef
go back to reference Liang Z, King J, Zhang N (2012a) Anticorrelated resting-state functional connectivity in awake rat brain. Neuroimage 59:1190–1199CrossRefPubMed Liang Z, King J, Zhang N (2012a) Anticorrelated resting-state functional connectivity in awake rat brain. Neuroimage 59:1190–1199CrossRefPubMed
go back to reference Liang Z, King J, Zhang N (2012b) Intrinsic organization of the anesthetized brain. J Neurosci: Off J Soc Neurosci 32:10183–10191CrossRef Liang Z, King J, Zhang N (2012b) Intrinsic organization of the anesthetized brain. J Neurosci: Off J Soc Neurosci 32:10183–10191CrossRef
go back to reference Liang Z, Li T, King J, Zhang N (2013) Mapping thalamocortical networks in rat brain using resting-state functional connectivity. Neuroimage 83C:237–244CrossRef Liang Z, Li T, King J, Zhang N (2013) Mapping thalamocortical networks in rat brain using resting-state functional connectivity. Neuroimage 83C:237–244CrossRef
go back to reference Lobo MK, Nestler EJ (2011) The striatal balancing act in drug addiction: distinct roles of direct and indirect pathway medium spiny neurons. Front Neuroanat 5:41CrossRefPubMedPubMedCentral Lobo MK, Nestler EJ (2011) The striatal balancing act in drug addiction: distinct roles of direct and indirect pathway medium spiny neurons. Front Neuroanat 5:41CrossRefPubMedPubMedCentral
go back to reference Lopez-Gil X, Amat-Roldan I, Tudela R, Castane A, Prats-Galino A, Planas AM, Farr TD, Soria G (2014) DWI and complex brain network analysis predicts vascular cognitive impairment in spontaneous hypertensive rats undergoing executive function tests. Front Aging Neurosci 6:167PubMedPubMedCentral Lopez-Gil X, Amat-Roldan I, Tudela R, Castane A, Prats-Galino A, Planas AM, Farr TD, Soria G (2014) DWI and complex brain network analysis predicts vascular cognitive impairment in spontaneous hypertensive rats undergoing executive function tests. Front Aging Neurosci 6:167PubMedPubMedCentral
go back to reference McDougall SJ, Paull JRA, Widdop RE, Lawrence AJ (2000) Restraint stress: differential cardiovascular responses in Wistar–Kyoto and spontaneously hypertensive rats. Hypertension 35:126–129CrossRefPubMed McDougall SJ, Paull JRA, Widdop RE, Lawrence AJ (2000) Restraint stress: differential cardiovascular responses in Wistar–Kyoto and spontaneously hypertensive rats. Hypertension 35:126–129CrossRefPubMed
go back to reference McGeorge AJ, Faull RLM (1989) The organization of the projection from the cerebral cortex to the striatum in the rat. Neuroscience 29:503–537CrossRefPubMed McGeorge AJ, Faull RLM (1989) The organization of the projection from the cerebral cortex to the striatum in the rat. Neuroscience 29:503–537CrossRefPubMed
go back to reference O’Doherty J, Dayan P, Schultz J, Deichmann R, Friston K, Dolan RJ (2004) Dissociable roles of ventral and dorsal striatum in instrumental conditioning. Science 304:452–454CrossRefPubMed O’Doherty J, Dayan P, Schultz J, Deichmann R, Friston K, Dolan RJ (2004) Dissociable roles of ventral and dorsal striatum in instrumental conditioning. Science 304:452–454CrossRefPubMed
go back to reference Papa M, Diewald L, Carey MP, Esposito FJ, Gironi Carnevale UA, Sadile AG (2002) A rostro-caudal dissociation in the dorsal and ventral striatum of the juvenile SHR suggests an anterior hypo- and a posterior hyperfunctioning mesocorticolimbic system. Behav Brain Res 130:171–179CrossRefPubMed Papa M, Diewald L, Carey MP, Esposito FJ, Gironi Carnevale UA, Sadile AG (2002) A rostro-caudal dissociation in the dorsal and ventral striatum of the juvenile SHR suggests an anterior hypo- and a posterior hyperfunctioning mesocorticolimbic system. Behav Brain Res 130:171–179CrossRefPubMed
go back to reference Paxinos G, Watson C (2005) The rat brain in stereotaxic coordinates. Academic Press, New York Paxinos G, Watson C (2005) The rat brain in stereotaxic coordinates. Academic Press, New York
go back to reference Polanczyk G, de Lima MS, Horta BL, Biederman J, Rohde LA (2007) The worldwide prevalence of ADHD: a systematic review and metaregression analysis. Am J Psychiatry 164:942–948CrossRefPubMed Polanczyk G, de Lima MS, Horta BL, Biederman J, Rohde LA (2007) The worldwide prevalence of ADHD: a systematic review and metaregression analysis. Am J Psychiatry 164:942–948CrossRefPubMed
go back to reference Posner J, Park C, Wang Z (2014) Connecting the dots: a review of resting connectivity MRI studies in attention-deficit/hyperactivity disorder. Neuropsychol Rev 24:3–15CrossRefPubMedPubMedCentral Posner J, Park C, Wang Z (2014) Connecting the dots: a review of resting connectivity MRI studies in attention-deficit/hyperactivity disorder. Neuropsychol Rev 24:3–15CrossRefPubMedPubMedCentral
go back to reference Robinson AM, Hopkins ME, Bucci DJ (2011) Effects of physical exercise on ADHD-like behavior in male and female adolescent spontaneously hypertensive rats. Dev Psychobiol 53:383–390CrossRefPubMed Robinson AM, Hopkins ME, Bucci DJ (2011) Effects of physical exercise on ADHD-like behavior in male and female adolescent spontaneously hypertensive rats. Dev Psychobiol 53:383–390CrossRefPubMed
go back to reference Sagvolden T, Johansen EB, Wøien G, Walaas SI, Storm-Mathisen J, Bergersen LH, Hvalby Ø, Jensen V, Aase H, Russell VA, Killeen PR, DasBanerjee T, Middleton FA, Faraone SV (2009) The spontaneously hypertensive rat model of ADHD—the importance of selecting the appropriate reference strain. Neuropharmacology 57:619–626CrossRefPubMedPubMedCentral Sagvolden T, Johansen EB, Wøien G, Walaas SI, Storm-Mathisen J, Bergersen LH, Hvalby Ø, Jensen V, Aase H, Russell VA, Killeen PR, DasBanerjee T, Middleton FA, Faraone SV (2009) The spontaneously hypertensive rat model of ADHD—the importance of selecting the appropriate reference strain. Neuropharmacology 57:619–626CrossRefPubMedPubMedCentral
go back to reference Sakata JT, Crews D, Gonzalez-Lima F (2005) Behavioral correlates of differences in neural metabolic capacity. Brain Res Rev 48:1–15CrossRefPubMed Sakata JT, Crews D, Gonzalez-Lima F (2005) Behavioral correlates of differences in neural metabolic capacity. Brain Res Rev 48:1–15CrossRefPubMed
go back to reference Shaw M, Hodgkins P, Caci H, Young S, Kahle J, Woods AG, Arnold LE (2012) A systematic review and analysis of long-term outcomes in attention deficit hyperactivity disorder: effects of treatment and non-treatment. BMC Med 10:99CrossRefPubMedPubMedCentral Shaw M, Hodgkins P, Caci H, Young S, Kahle J, Woods AG, Arnold LE (2012) A systematic review and analysis of long-term outcomes in attention deficit hyperactivity disorder: effects of treatment and non-treatment. BMC Med 10:99CrossRefPubMedPubMedCentral
go back to reference Subcommittee on Attention-Deficit/Hyperactivity Disorder SCoQI, Management (2011) ADHD: Clinical practice guideline for the diagnosis, evaluation, and treatment of attention-deficit/hyperactivity disorder in children and adolescents. Pediatrics 128:1007–1022CrossRef Subcommittee on Attention-Deficit/Hyperactivity Disorder SCoQI, Management (2011) ADHD: Clinical practice guideline for the diagnosis, evaluation, and treatment of attention-deficit/hyperactivity disorder in children and adolescents. Pediatrics 128:1007–1022CrossRef
go back to reference Thapar A, Langley K, Asherson P, Gill M (2007) Gene–environment interplay in attention-deficit hyperactivity disorder and the importance of a developmental perspective. Br J Psychiatry 190:1–3CrossRefPubMed Thapar A, Langley K, Asherson P, Gill M (2007) Gene–environment interplay in attention-deficit hyperactivity disorder and the importance of a developmental perspective. Br J Psychiatry 190:1–3CrossRefPubMed
go back to reference Thompson PM, Cannon TD, Narr KL, van Erp T, Poutanen VP, Huttunen M, Lonnqvist J, Standertskjold-Nordenstam CG, Kaprio J, Khaledy M, Dail R, Zoumalan CI, Toga AW (2001) Genetic influences on brain structure. Nat Neurosci 4:1253–1258CrossRefPubMed Thompson PM, Cannon TD, Narr KL, van Erp T, Poutanen VP, Huttunen M, Lonnqvist J, Standertskjold-Nordenstam CG, Kaprio J, Khaledy M, Dail R, Zoumalan CI, Toga AW (2001) Genetic influences on brain structure. Nat Neurosci 4:1253–1258CrossRefPubMed
go back to reference Tomasi D, Volkow ND (2012) Abnormal functional connectivity in children with attention-deficit/hyperactivity disorder. Biol Psychiatry 71:443–450CrossRefPubMed Tomasi D, Volkow ND (2012) Abnormal functional connectivity in children with attention-deficit/hyperactivity disorder. Biol Psychiatry 71:443–450CrossRefPubMed
go back to reference Uddin LQ, Kelly AMC, Biswal BB, Margulies DS, Shehzad Z, Shaw D, Ghaffari M, Rotrosen J, Adler LA, Castellanos FX, Milham MP (2008) Network homogeneity reveals decreased integrity of default-mode network in ADHD. J Neurosci Methods 169:249–254CrossRefPubMed Uddin LQ, Kelly AMC, Biswal BB, Margulies DS, Shehzad Z, Shaw D, Ghaffari M, Rotrosen J, Adler LA, Castellanos FX, Milham MP (2008) Network homogeneity reveals decreased integrity of default-mode network in ADHD. J Neurosci Methods 169:249–254CrossRefPubMed
go back to reference van den Bergh FS, Bloemarts E, Chan JSW, Groenink L, Olivier B, Oosting RS (2006) Spontaneously hypertensive rats do not predict symptoms of attention-deficit hyperactivity disorder. Pharmacol Biochem Behav 83:380–390CrossRefPubMed van den Bergh FS, Bloemarts E, Chan JSW, Groenink L, Olivier B, Oosting RS (2006) Spontaneously hypertensive rats do not predict symptoms of attention-deficit hyperactivity disorder. Pharmacol Biochem Behav 83:380–390CrossRefPubMed
go back to reference van den Heuvel MP, van Soelen ILC, Stam CJ, Kahn RS, Boomsma DI, Hulshoff Pol HE (2013) Genetic control of functional brain network efficiency in children. Eur Neuropsychopharmacol 23:19–23CrossRefPubMed van den Heuvel MP, van Soelen ILC, Stam CJ, Kahn RS, Boomsma DI, Hulshoff Pol HE (2013) Genetic control of functional brain network efficiency in children. Eur Neuropsychopharmacol 23:19–23CrossRefPubMed
go back to reference Vendruscolo LF, Izidio GS, Takahashi RN (2009) Drug reinforcement in a rat model of attention deficit/hyperactivity disorder—the spontaneously hypertensive Rat (SHR). Curr Drug Abuse Rev 2:177–183CrossRefPubMed Vendruscolo LF, Izidio GS, Takahashi RN (2009) Drug reinforcement in a rat model of attention deficit/hyperactivity disorder—the spontaneously hypertensive Rat (SHR). Curr Drug Abuse Rev 2:177–183CrossRefPubMed
go back to reference Vincent JL, Patel GH, Fox MD, Snyder AZ, Baker JT, Van Essen DC, Zempel JM, Snyder LH, Corbetta M, Raichle ME (2007) Intrinsic functional architecture in the anaesthetized monkey brain. Nature 447:83–86CrossRefPubMed Vincent JL, Patel GH, Fox MD, Snyder AZ, Baker JT, Van Essen DC, Zempel JM, Snyder LH, Corbetta M, Raichle ME (2007) Intrinsic functional architecture in the anaesthetized monkey brain. Nature 447:83–86CrossRefPubMed
go back to reference Voorn P, Vanderschuren LJMJ, Groenewegen HJ, Robbins TW, Pennartz CMA (2004) Putting a spin on the dorsal–ventral divide of the striatum. Trends Neurosci 27:468–474CrossRefPubMed Voorn P, Vanderschuren LJMJ, Groenewegen HJ, Robbins TW, Pennartz CMA (2004) Putting a spin on the dorsal–ventral divide of the striatum. Trends Neurosci 27:468–474CrossRefPubMed
go back to reference Watanabe Y, Fujita M, Ito Y, Okada T, Kusuoka H, Nishimura T (1997) Brain dopamine transporter in spontaneously hypertensive rats. J Nucl Med 38:470–474PubMed Watanabe Y, Fujita M, Ito Y, Okada T, Kusuoka H, Nishimura T (1997) Brain dopamine transporter in spontaneously hypertensive rats. J Nucl Med 38:470–474PubMed
go back to reference Whitfield-Gabrieli S, Ford JM (2012) Default mode network activity and connectivity in psychopathology. Annu Rev Clin Psychol 8:49–76CrossRefPubMed Whitfield-Gabrieli S, Ford JM (2012) Default mode network activity and connectivity in psychopathology. Annu Rev Clin Psychol 8:49–76CrossRefPubMed
go back to reference Zhang N, Rane P, Huang W, Liang Z, Kennedy D, Frazier JA, King J (2010) Mapping resting-state brain networks in conscious animals. J Neurosci Methods 189:186–196CrossRefPubMedPubMedCentral Zhang N, Rane P, Huang W, Liang Z, Kennedy D, Frazier JA, King J (2010) Mapping resting-state brain networks in conscious animals. J Neurosci Methods 189:186–196CrossRefPubMedPubMedCentral
go back to reference Zhou IY, Liang YX, Chan RW, Gao PP, Cheng JS, Hu Y, So KF, Wu EX (2014) Brain resting-state functional MRI connectivity: morphological foundation and plasticity. Neuroimage 84:1–10CrossRefPubMed Zhou IY, Liang YX, Chan RW, Gao PP, Cheng JS, Hu Y, So KF, Wu EX (2014) Brain resting-state functional MRI connectivity: morphological foundation and plasticity. Neuroimage 84:1–10CrossRefPubMed
Metadata
Title
Awake whole-brain functional connectivity alterations in the adolescent spontaneously hypertensive rat feature visual streams and striatal networks
Authors
G. L. Poirier
W. Huang
K. Tam
J. R. DiFranza
Jean A. King
Publication date
01-05-2017
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 4/2017
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-016-1301-2

Other articles of this Issue 4/2017

Brain Structure and Function 4/2017 Go to the issue