Skip to main content
Top
Published in: BMC Medical Imaging 1/2016

Open Access 01-12-2016 | Technical advance

Automatic segmentation of myocardium at risk from contrast enhanced SSFP CMR: validation against expert readers and SPECT

Authors: Jane Tufvesson, Marcus Carlsson, Anthony H. Aletras, Henrik Engblom, Jean-François Deux, Sasha Koul, Peder Sörensson, John Pernow, Dan Atar, David Erlinge, Håkan Arheden, Einar Heiberg

Published in: BMC Medical Imaging | Issue 1/2016

Login to get access

Abstract

Background

Efficacy of reperfusion therapy can be assessed as myocardial salvage index (MSI) by determining the size of myocardium at risk (MaR) and myocardial infarction (MI), (MSI = 1-MI/MaR). Cardiovascular magnetic resonance (CMR) can be used to assess MI by late gadolinium enhancement (LGE) and MaR by either T2-weighted imaging or contrast enhanced SSFP (CE-SSFP). Automatic segmentation algorithms have been developed and validated for MI by LGE as well as for MaR by T2-weighted imaging. There are, however, no algorithms available for CE-SSFP. Therefore, the aim of this study was to develop and validate automatic segmentation of MaR in CE-SSFP.

Methods

The automatic algorithm applies surface coil intensity correction and classifies myocardial intensities by Expectation Maximization to define a MaR region based on a priori regional criteria, and infarct region from LGE. Automatic segmentation was validated against manual delineation by expert readers in 183 patients with reperfused acute MI from two multi-center randomized clinical trials (RCT) (CHILL-MI and MITOCARE) and against myocardial perfusion SPECT in an additional set (n = 16). Endocardial and epicardial borders were manually delineated at end-diastole and end-systole. Manual delineation of MaR was used as reference and inter-observer variability was assessed for both manual delineation and automatic segmentation of MaR in a subset of patients (n = 15). MaR was expressed as percent of left ventricular mass (%LVM) and analyzed by bias (mean ± standard deviation). Regional agreement was analyzed by Dice Similarity Coefficient (DSC) (mean ± standard deviation).

Results

MaR assessed by manual and automatic segmentation were 36 ± 10 % and 37 ± 11 %LVM respectively with bias 1 ± 6 %LVM and regional agreement DSC 0.85 ± 0.08 (n = 183). MaR assessed by SPECT and CE-SSFP automatic segmentation were 27 ± 10 %LVM and 29 ± 7 %LVM respectively with bias 2 ± 7 %LVM. Inter-observer variability was 0 ± 3 %LVM for manual delineation and -1 ± 2 %LVM for automatic segmentation.

Conclusions

Automatic segmentation of MaR in CE-SSFP was validated against manual delineation in multi-center, multi-vendor studies with low bias and high regional agreement. Bias and variability was similar to inter-observer variability of manual delineation and inter-observer variability was decreased by automatic segmentation. Thus, the proposed automatic segmentation can be used to reduce subjectivity in quantification of MaR in RCT.

Clinical trial registration

Appendix
Available only for authorised users
Literature
1.
go back to reference Engblom H, et al. Sample size in clinical cardioprotection trials using myocardial salvage index, infarct size or biochemical markers as endpoint. J Am Heart Assoc. 2016. In Press. Engblom H, et al. Sample size in clinical cardioprotection trials using myocardial salvage index, infarct size or biochemical markers as endpoint. J Am Heart Assoc. 2016. In Press.
2.
go back to reference Kim RJ, et al. Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation. 1999;100(19):1992–2002.CrossRefPubMed Kim RJ, et al. Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation. 1999;100(19):1992–2002.CrossRefPubMed
3.
go back to reference Aletras AH, et al. Retrospective determination of the area at risk for reperfused acute myocardial infarction with T2-weighted cardiac magnetic resonance imaging: histopathological and displacement encoding with stimulated echoes (DENSE) functional validations. Circulation. 2006;113(15):1865–70.CrossRefPubMed Aletras AH, et al. Retrospective determination of the area at risk for reperfused acute myocardial infarction with T2-weighted cardiac magnetic resonance imaging: histopathological and displacement encoding with stimulated echoes (DENSE) functional validations. Circulation. 2006;113(15):1865–70.CrossRefPubMed
4.
go back to reference Sorensson P, et al. Assessment of myocardium at risk with contrast enhanced steady-state free precession cine cardiovascular magnetic resonance compared to single-photon emission computed tomography. J Cardiovasc Magn Reson. 2010;12(1):25.CrossRefPubMedPubMedCentral Sorensson P, et al. Assessment of myocardium at risk with contrast enhanced steady-state free precession cine cardiovascular magnetic resonance compared to single-photon emission computed tomography. J Cardiovasc Magn Reson. 2010;12(1):25.CrossRefPubMedPubMedCentral
5.
go back to reference Carlsson M, et al. Myocardium at risk after acute infarction in humans on cardiac magnetic resonance: quantitative assessment during follow-up and validation with single-photon emission computed tomography. JACC Cardiovasc Imaging. 2009;2(5):569–76.CrossRefPubMed Carlsson M, et al. Myocardium at risk after acute infarction in humans on cardiac magnetic resonance: quantitative assessment during follow-up and validation with single-photon emission computed tomography. JACC Cardiovasc Imaging. 2009;2(5):569–76.CrossRefPubMed
6.
go back to reference Erlinge D, et al. Rapid endovascular catheter core cooling combined with cold saline as an adjunct to percutaneous coronary intervention for the treatment of acute myocardial infarction. The CHILL-MI trial: a randomized controlled study of the use of central venous catheter core cooling combined with cold saline as an adjunct to percutaneous coronary intervention for the treatment of acute myocardial infarction. J Am Coll Cardiol. 2014;63(18):1857–65.CrossRefPubMed Erlinge D, et al. Rapid endovascular catheter core cooling combined with cold saline as an adjunct to percutaneous coronary intervention for the treatment of acute myocardial infarction. The CHILL-MI trial: a randomized controlled study of the use of central venous catheter core cooling combined with cold saline as an adjunct to percutaneous coronary intervention for the treatment of acute myocardial infarction. J Am Coll Cardiol. 2014;63(18):1857–65.CrossRefPubMed
7.
go back to reference Atar D, et al. Effect of intravenous TRO40303 as an adjunct to primary percutaneous coronary intervention for acute ST-elevation myocardial infarction: MITOCARE study results. Eur Heart J. 2015;36(2):112–9.CrossRefPubMed Atar D, et al. Effect of intravenous TRO40303 as an adjunct to primary percutaneous coronary intervention for acute ST-elevation myocardial infarction: MITOCARE study results. Eur Heart J. 2015;36(2):112–9.CrossRefPubMed
8.
go back to reference Nordlund D, et al. Multi-vendor, multicentre comparison of contrast-enhanced SSFP and T2-STIR CMR for determining myocardium at risk in ST-elevation myocardial infarction. Eur Heart J Cardiovasc Imaging. 2016. doi:10.1093/ehjci/jew027. Nordlund D, et al. Multi-vendor, multicentre comparison of contrast-enhanced SSFP and T2-STIR CMR for determining myocardium at risk in ST-elevation myocardial infarction. Eur Heart J Cardiovasc Imaging. 2016. doi:10.​1093/​ehjci/​jew027.
9.
go back to reference Heiberg E, et al. Automated quantification of myocardial infarction from MR images by accounting for partial volume effects: animal, phantom, and human study. Radiology. 2008;246(2):581–8.CrossRefPubMed Heiberg E, et al. Automated quantification of myocardial infarction from MR images by accounting for partial volume effects: animal, phantom, and human study. Radiology. 2008;246(2):581–8.CrossRefPubMed
10.
go back to reference Amado LC, et al. Accurate and objective infarct sizing by contrast-enhanced magnetic resonance imaging in a canine myocardial infarction model. J Am Coll Cardiol. 2004;44(12):2383–9.CrossRefPubMed Amado LC, et al. Accurate and objective infarct sizing by contrast-enhanced magnetic resonance imaging in a canine myocardial infarction model. J Am Coll Cardiol. 2004;44(12):2383–9.CrossRefPubMed
11.
go back to reference Sjogren J, et al. Semi-automatic segmentation of myocardium at risk in T2-weighted cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2012;14:10.CrossRefPubMedPubMedCentral Sjogren J, et al. Semi-automatic segmentation of myocardium at risk in T2-weighted cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2012;14:10.CrossRefPubMedPubMedCentral
12.
go back to reference Johnstone R.I, et al. Assessment of tissue edema in patients with acute myocardial infarction by computer-assisted quantification of triple inversion recovery prepared MRI of the myocardium. Magn Reson Med. 2011;66(2):564-73. Johnstone R.I, et al. Assessment of tissue edema in patients with acute myocardial infarction by computer-assisted quantification of triple inversion recovery prepared MRI of the myocardium. Magn Reson Med. 2011;66(2):564-73.
13.
go back to reference Atar D, Abitbol JL, Arheden H, Berdeaux A, Bonnet JL, Carlsson M, Clemmensen P, Cuvier V, Danchin N, Dubois-Randé JL, Engblom H, Erlinge D, Firat H, Eggert Jensen S, Halvorsen S, Hansen HS, Heiberg E, Larsen AI, Le Corvoisier P, Longlade P, Nordrehaug JE, Perez C, Pruss R, Sonou G, Schaller S, Tuseth V, Vicaut E. Rationale and design of the ‘MITOCARE’ Study: a phase II, multicenter, randomized, double-blind, placebo-controlled study to assess the safety and efficacy of TRO40303 for the reduction of reperfusion injury in patients undergoing percutaneous coronary intervention for acute myocardial infarction. Cardiology. 2012;123(4):201-7. Atar D, Abitbol JL, Arheden H, Berdeaux A, Bonnet JL, Carlsson M, Clemmensen P, Cuvier V, Danchin N, Dubois-Randé JL, Engblom H, Erlinge D, Firat H, Eggert Jensen S, Halvorsen S, Hansen HS, Heiberg E, Larsen AI, Le Corvoisier P, Longlade P, Nordrehaug JE, Perez C, Pruss R, Sonou G, Schaller S, Tuseth V, Vicaut E. Rationale and design of the ‘MITOCARE’ Study: a phase II, multicenter, randomized, double-blind, placebo-controlled study to assess the safety and efficacy of TRO40303 for the reduction of reperfusion injury in patients undergoing percutaneous coronary intervention for acute myocardial infarction. Cardiology. 2012;123(4):201-7.
14.
go back to reference Simonetti OP, et al. An improved MR imaging technique for the visualization of myocardial infarction. Radiology. 2001;218(1):215–23.CrossRefPubMed Simonetti OP, et al. An improved MR imaging technique for the visualization of myocardial infarction. Radiology. 2001;218(1):215–23.CrossRefPubMed
15.
16.
go back to reference Beek AM, Nijveldt R, van Rossum AC. Intramyocardial hemorrhage and microvascular obstruction after primary percutaneous coronary intervention. Int J Cardiovasc Imaging. 2010;26(1):49–55.CrossRefPubMedPubMedCentral Beek AM, Nijveldt R, van Rossum AC. Intramyocardial hemorrhage and microvascular obstruction after primary percutaneous coronary intervention. Int J Cardiovasc Imaging. 2010;26(1):49–55.CrossRefPubMedPubMedCentral
17.
go back to reference Ubachs JF, et al. Myocardium at risk by magnetic resonance imaging: head-to-head comparison of T2-weighted imaging and contrast-enhanced steady-state free precession. Eur Heart J Cardiovasc Imaging. 2012;13(12):1008–15.CrossRefPubMedPubMedCentral Ubachs JF, et al. Myocardium at risk by magnetic resonance imaging: head-to-head comparison of T2-weighted imaging and contrast-enhanced steady-state free precession. Eur Heart J Cardiovasc Imaging. 2012;13(12):1008–15.CrossRefPubMedPubMedCentral
18.
go back to reference Ugander M, et al. Quantification of myocardium at risk in myocardial perfusion SPECT by co-registration and fusion with delayed contrast-enhanced magnetic resonance imaging--an experimental ex vivo study. Clin Physiol Funct Imaging. 2012;32(1):33–8.CrossRefPubMed Ugander M, et al. Quantification of myocardium at risk in myocardial perfusion SPECT by co-registration and fusion with delayed contrast-enhanced magnetic resonance imaging--an experimental ex vivo study. Clin Physiol Funct Imaging. 2012;32(1):33–8.CrossRefPubMed
19.
go back to reference Soneson H, et al. An improved method for automatic segmentation of the left ventricle in myocardial perfusion SPECT. J Nucl Med. 2009;50(2):205–13.CrossRefPubMed Soneson H, et al. An improved method for automatic segmentation of the left ventricle in myocardial perfusion SPECT. J Nucl Med. 2009;50(2):205–13.CrossRefPubMed
20.
go back to reference Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete data via em algorithm. J R Stat Soc B-Methodol. 1977;39(1):1–38. Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete data via em algorithm. J R Stat Soc B-Methodol. 1977;39(1):1–38.
21.
go back to reference McAlindon E, et al. Quantification of infarct size and myocardium at risk: evaluation of different techniques and its implications. Eur Heart J Cardiovasc Imaging. 2015;16(7):738-46. McAlindon E, et al. Quantification of infarct size and myocardium at risk: evaluation of different techniques and its implications. Eur Heart J Cardiovasc Imaging. 2015;16(7):738-46.
22.
go back to reference Khan JN, et al. Comparison of semi-automated methods to quantify infarct size and area at risk by cardiovascular magnetic resonance imaging at 1.5T and 3.0T field strengths. BMC Res Notes. 2015;8(1):1007. Khan JN, et al. Comparison of semi-automated methods to quantify infarct size and area at risk by cardiovascular magnetic resonance imaging at 1.5T and 3.0T field strengths. BMC Res Notes. 2015;8(1):1007.
23.
go back to reference Friedrich MG, et al. The salvaged area at risk in reperfused acute myocardial infarction as visualized by cardiovascular magnetic resonance. J Am Coll Cardiol. 2008;51(16):1581–7.CrossRefPubMed Friedrich MG, et al. The salvaged area at risk in reperfused acute myocardial infarction as visualized by cardiovascular magnetic resonance. J Am Coll Cardiol. 2008;51(16):1581–7.CrossRefPubMed
24.
go back to reference Wright J, et al. Quantification of myocardial area at risk with T2-weighted CMR: comparison with contrast-enhanced CMR and coronary angiography. JACC Cardiovasc Imaging. 2009;2(7):825–31.CrossRefPubMed Wright J, et al. Quantification of myocardial area at risk with T2-weighted CMR: comparison with contrast-enhanced CMR and coronary angiography. JACC Cardiovasc Imaging. 2009;2(7):825–31.CrossRefPubMed
25.
go back to reference Tilak GS, et al. In vivo T2-weighted magnetic resonance imaging can accurately determine the ischemic area at risk for 2-day-old nonreperfused myocardial infarction. Invest Radiol. 2008;43(1):7–15.CrossRefPubMed Tilak GS, et al. In vivo T2-weighted magnetic resonance imaging can accurately determine the ischemic area at risk for 2-day-old nonreperfused myocardial infarction. Invest Radiol. 2008;43(1):7–15.CrossRefPubMed
26.
go back to reference Burchell T, et al. Comparing analysis methods for quantification of myocardial oedema in patients following reperfused ST-elevation MI. J Cardiovasc Magn Reson. 2011;13 Suppl 1:M11.CrossRefPubMedCentral Burchell T, et al. Comparing analysis methods for quantification of myocardial oedema in patients following reperfused ST-elevation MI. J Cardiovasc Magn Reson. 2011;13 Suppl 1:M11.CrossRefPubMedCentral
27.
go back to reference Hsu LY, et al. Quantitative myocardial infarction on delayed enhancement MRI. Part I: Animal validation of an automated feature analysis and combined thresholding infarct sizing algorithm. J Magn Reson Imaging. 2006;23(3):298–308.CrossRefPubMed Hsu LY, et al. Quantitative myocardial infarction on delayed enhancement MRI. Part I: Animal validation of an automated feature analysis and combined thresholding infarct sizing algorithm. J Magn Reson Imaging. 2006;23(3):298–308.CrossRefPubMed
28.
go back to reference Otsu N. Threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern. 1979;9(1):62–6.CrossRef Otsu N. Threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern. 1979;9(1):62–6.CrossRef
29.
go back to reference Dice LR. Measures of the amount of ecologic association between species. Ecology. 1945;26(3):297–302.CrossRef Dice LR. Measures of the amount of ecologic association between species. Ecology. 1945;26(3):297–302.CrossRef
30.
go back to reference Zijdenbos AP, et al. Morphometric Analysis of white-matter lesions in Mr-Images - method and validation. IEEE Trans Med Imaging. 1994;13(4):716–24.CrossRefPubMed Zijdenbos AP, et al. Morphometric Analysis of white-matter lesions in Mr-Images - method and validation. IEEE Trans Med Imaging. 1994;13(4):716–24.CrossRefPubMed
31.
go back to reference Gao H, et al. Highly automatic quantification of myocardial oedema in patients with acute myocardial infarction using bright blood T2-weighted CMR. J Cardiovasc Magn Reson. 2013;15:28.CrossRefPubMedPubMedCentral Gao H, et al. Highly automatic quantification of myocardial oedema in patients with acute myocardial infarction using bright blood T2-weighted CMR. J Cardiovasc Magn Reson. 2013;15:28.CrossRefPubMedPubMedCentral
32.
go back to reference Aletras AH, et al. ACUT2E TSE-SSFP: a hybrid method for T2-weighted imaging of edema in the heart. Magn Reson Med. 2008;59(2):229–35.CrossRefPubMed Aletras AH, et al. ACUT2E TSE-SSFP: a hybrid method for T2-weighted imaging of edema in the heart. Magn Reson Med. 2008;59(2):229–35.CrossRefPubMed
Metadata
Title
Automatic segmentation of myocardium at risk from contrast enhanced SSFP CMR: validation against expert readers and SPECT
Authors
Jane Tufvesson
Marcus Carlsson
Anthony H. Aletras
Henrik Engblom
Jean-François Deux
Sasha Koul
Peder Sörensson
John Pernow
Dan Atar
David Erlinge
Håkan Arheden
Einar Heiberg
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Medical Imaging / Issue 1/2016
Electronic ISSN: 1471-2342
DOI
https://doi.org/10.1186/s12880-016-0124-1

Other articles of this Issue 1/2016

BMC Medical Imaging 1/2016 Go to the issue