Skip to main content
Top
Published in: Digestive Diseases and Sciences 11/2023

Open Access 27-09-2023 | Autoimmune Hepatitis | Review

Introducing Molecular Chaperones into the Causality and Prospective Management of Autoimmune Hepatitis

Author: Albert J. Czaja

Published in: Digestive Diseases and Sciences | Issue 11/2023

Login to get access

Abstract

Molecular chaperones influence the immunogenicity of peptides and the activation of effector T cells, and their pathogenic roles in autoimmune hepatitis are unclear. Heat shock proteins are pivotal in the processing and presentation of peptides that activate CD8+ T cells. They can also induce regulatory B and T cells and promote immune tolerance. Tapasin and the transporter associated with antigen processing-binding protein influence the editing and loading of high-affinity peptides for presentation by class I molecules of the major histocompatibility complex. Their over-expression could enhance the autoimmune response, and their deficiency could weaken it. The lysosome-associated membrane protein-2a isoform in conjunction with heat shock cognate 70 supports the importation of cytosolic proteins into lysosomes. Chaperone-mediated autophagy can then process the peptides for activation of CD4+ T cells. Over-expression of autophagy in T cells may also eliminate negative regulators of their activity. The human leukocyte antigen B-associated transcript three facilitates the expression of class II peptide receptors, inhibits T cell apoptosis, prevents T cell exhaustion, and sustains the immune response. Immunization with heat shock proteins has induced immune tolerance in experimental models and humans with autoimmune disease by inducing regulatory T cells. Therapeutic manipulation of other molecular chaperones may promote T cell exhaustion and induce tolerogenic dendritic cells. In conclusion, molecular chaperones constitute an under-evaluated family of ancillary proteins that could affect the occurrence, severity, and outcome of autoimmune hepatitis. Clarification of their contributions to the immune mechanisms and clinical activity of autoimmune hepatitis could have therapeutic implications.
Literature
1.
go back to reference Ichiki Y, Aoki CA, Bowlus CL et al. T cell immunity in autoimmune hepatitis. Autoimmun Rev. 2005;4:315–321.PubMedCrossRef Ichiki Y, Aoki CA, Bowlus CL et al. T cell immunity in autoimmune hepatitis. Autoimmun Rev. 2005;4:315–321.PubMedCrossRef
3.
go back to reference Czaja AJ. Transitioning from idiopathic to explainable autoimmune hepatitis. Dig Dis Sci. 2015;60:2881–2900.PubMedCrossRef Czaja AJ. Transitioning from idiopathic to explainable autoimmune hepatitis. Dig Dis Sci. 2015;60:2881–2900.PubMedCrossRef
4.
go back to reference Webb GJ, Hirschfield GM, Krawitt EL, Gershwin ME. Cellular and molecular mechanisms of autoimmune hepatitis. Annu Rev Pathol. 2018;13:247–292.PubMedCrossRef Webb GJ, Hirschfield GM, Krawitt EL, Gershwin ME. Cellular and molecular mechanisms of autoimmune hepatitis. Annu Rev Pathol. 2018;13:247–292.PubMedCrossRef
5.
8.
go back to reference Hashimoto E, Lindor KD, Homburger HA et al. Immunohistochemical characterization of hepatic lymphocytes in primary biliary cirrhosis in comparison with primary sclerosing cholangitis and autoimmune chronic active hepatitis. Mayo Clin Proc. 1993;68:1049–1055.PubMedCrossRef Hashimoto E, Lindor KD, Homburger HA et al. Immunohistochemical characterization of hepatic lymphocytes in primary biliary cirrhosis in comparison with primary sclerosing cholangitis and autoimmune chronic active hepatitis. Mayo Clin Proc. 1993;68:1049–1055.PubMedCrossRef
9.
go back to reference Longhi MS, Ma Y, Mitry RR et al. Effect of CD4+ CD25+ regulatory T-cells on CD8 T-cell function in patients with autoimmune hepatitis. J Autoimmun. 2005;25:63–71.PubMedCrossRef Longhi MS, Ma Y, Mitry RR et al. Effect of CD4+ CD25+ regulatory T-cells on CD8 T-cell function in patients with autoimmune hepatitis. J Autoimmun. 2005;25:63–71.PubMedCrossRef
10.
go back to reference Ando K, Guidotti LG, Wirth S et al. Class I-restricted cytotoxic T lymphocytes are directly cytopathic for their target cells in vivo. J Immunol. 1994;152:3245–3253.PubMedCrossRef Ando K, Guidotti LG, Wirth S et al. Class I-restricted cytotoxic T lymphocytes are directly cytopathic for their target cells in vivo. J Immunol. 1994;152:3245–3253.PubMedCrossRef
11.
go back to reference Longhi MS, Hussain MJ, Bogdanos DP et al. Cytochrome P450IID6-specific CD8 T cell immune responses mirror disease activity in autoimmune hepatitis type 2. Hepatology. 2007;46:472–484.PubMedCrossRef Longhi MS, Hussain MJ, Bogdanos DP et al. Cytochrome P450IID6-specific CD8 T cell immune responses mirror disease activity in autoimmune hepatitis type 2. Hepatology. 2007;46:472–484.PubMedCrossRef
12.
go back to reference Neefjes J, Jongsma ML, Paul P, Bakke O. Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat Rev Immunol. 2011;11:823–836.PubMedCrossRef Neefjes J, Jongsma ML, Paul P, Bakke O. Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat Rev Immunol. 2011;11:823–836.PubMedCrossRef
15.
go back to reference Czaja AJ. Missing causality and heritability of autoimmune hepatitis. Dig Dis Sci. 2023;68:1585–1604.PubMedCrossRef Czaja AJ. Missing causality and heritability of autoimmune hepatitis. Dig Dis Sci. 2023;68:1585–1604.PubMedCrossRef
16.
go back to reference Natarajan K, Li H, Mariuzza RA, Margulies DH. MHC class I molecules, structure and function. Rev Immunogenet. 1999;1:32–46.PubMed Natarajan K, Li H, Mariuzza RA, Margulies DH. MHC class I molecules, structure and function. Rev Immunogenet. 1999;1:32–46.PubMed
17.
go back to reference Jongsma MLM, Guarda G, Spaapen RM. The regulatory network behind MHC class I expression. Mol Immunol. 2019;113:16–21.PubMedCrossRef Jongsma MLM, Guarda G, Spaapen RM. The regulatory network behind MHC class I expression. Mol Immunol. 2019;113:16–21.PubMedCrossRef
18.
go back to reference Pishesha N, Harmand TJ, Ploegh HL. A guide to antigen processing and presentation. Nat Rev Immunol. 2022;22:751–764.PubMedCrossRef Pishesha N, Harmand TJ, Ploegh HL. A guide to antigen processing and presentation. Nat Rev Immunol. 2022;22:751–764.PubMedCrossRef
19.
20.
go back to reference Zhang Y, Zhang Y, Gu W, He L, Sun B. Th1/Th2 cell’s function in immune system. Adv Exp Med Biol. 2014;841:45–65.PubMedCrossRef Zhang Y, Zhang Y, Gu W, He L, Sun B. Th1/Th2 cell’s function in immune system. Adv Exp Med Biol. 2014;841:45–65.PubMedCrossRef
21.
go back to reference Kidd P. Th1/Th2 balance: the hypothesis, its limitations, and implications for health and disease. Altern Med Rev. 2003;8:223–246.PubMed Kidd P. Th1/Th2 balance: the hypothesis, its limitations, and implications for health and disease. Altern Med Rev. 2003;8:223–246.PubMed
22.
go back to reference Van Eden W, Van Der Zee R, Van Kooten P et al. Balancing the immune system: Th1 and Th2. Ann Rheum Dis. 2002;61:ii25-28.PubMedCrossRef Van Eden W, Van Der Zee R, Van Kooten P et al. Balancing the immune system: Th1 and Th2. Ann Rheum Dis. 2002;61:ii25-28.PubMedCrossRef
23.
go back to reference Norbury CC, Malide D, Gibbs JS, Bennink JR, Yewdell JW. Visualizing priming of virus-specific CD8+ T cells by infected dendritic cells in vivo. Nat Immunol. 2002;3:265–271.PubMedCrossRef Norbury CC, Malide D, Gibbs JS, Bennink JR, Yewdell JW. Visualizing priming of virus-specific CD8+ T cells by infected dendritic cells in vivo. Nat Immunol. 2002;3:265–271.PubMedCrossRef
24.
go back to reference Strettell MD, Donaldson PT, Thomson LJ et al. Allelic basis for HLA-encoded susceptibility to type 1 autoimmune hepatitis. Gastroenterology. 1997;112:2028–2035.PubMedCrossRef Strettell MD, Donaldson PT, Thomson LJ et al. Allelic basis for HLA-encoded susceptibility to type 1 autoimmune hepatitis. Gastroenterology. 1997;112:2028–2035.PubMedCrossRef
25.
go back to reference Czaja AJ, Strettell MD, Thomson LJ et al. Associations between alleles of the major histocompatibility complex and type 1 autoimmune hepatitis. Hepatology. 1997;25:317–323.PubMedCrossRef Czaja AJ, Strettell MD, Thomson LJ et al. Associations between alleles of the major histocompatibility complex and type 1 autoimmune hepatitis. Hepatology. 1997;25:317–323.PubMedCrossRef
26.
go back to reference van Gerven NM, de Boer YS, Zwiers A et al. HLA-DRB1*03:01 and HLA-DRB1*04:01 modify the presentation and outcome in autoimmune hepatitis type-1. Genes Immun. 2015;16:247–252.PubMedCrossRef van Gerven NM, de Boer YS, Zwiers A et al. HLA-DRB1*03:01 and HLA-DRB1*04:01 modify the presentation and outcome in autoimmune hepatitis type-1. Genes Immun. 2015;16:247–252.PubMedCrossRef
27.
go back to reference Webb GJ, Hirschfield GM. Using GWAS to identify genetic predisposition in hepatic autoimmunity. J Autoimmun. 2016;66:25–39.PubMedCrossRef Webb GJ, Hirschfield GM. Using GWAS to identify genetic predisposition in hepatic autoimmunity. J Autoimmun. 2016;66:25–39.PubMedCrossRef
28.
go back to reference Ellis RJ. The general concept of molecular chaperones. Philos Trans R Soc Lond B Biol Sci. 1993;339:257–261.PubMedCrossRef Ellis RJ. The general concept of molecular chaperones. Philos Trans R Soc Lond B Biol Sci. 1993;339:257–261.PubMedCrossRef
29.
go back to reference Macario AJ. Heat-shock proteins and molecular chaperones: implications for pathogenesis, diagnostics, and therapeutics. Int J Clin Lab Res. 1995;25:59–70.PubMedCrossRef Macario AJ. Heat-shock proteins and molecular chaperones: implications for pathogenesis, diagnostics, and therapeutics. Int J Clin Lab Res. 1995;25:59–70.PubMedCrossRef
30.
go back to reference Dahiya V, Buchner J. Functional principles and regulation of molecular chaperones. Adv Protein Chem Struct Biol. 2019;114:1–60.PubMedCrossRef Dahiya V, Buchner J. Functional principles and regulation of molecular chaperones. Adv Protein Chem Struct Biol. 2019;114:1–60.PubMedCrossRef
31.
go back to reference Rajaiah R, Moudgil KD. Heat-shock proteins can promote as well as regulate autoimmunity. Autoimmun Rev. 2009;8:388–393.PubMedCrossRef Rajaiah R, Moudgil KD. Heat-shock proteins can promote as well as regulate autoimmunity. Autoimmun Rev. 2009;8:388–393.PubMedCrossRef
32.
go back to reference Androvitsanea A, Stylianou K, Drosataki E, Petrakis I. The pathophysiological role of heat shock response in autoimmunity: a literature review. Cells. 2021;10:2626.PubMedPubMedCentralCrossRef Androvitsanea A, Stylianou K, Drosataki E, Petrakis I. The pathophysiological role of heat shock response in autoimmunity: a literature review. Cells. 2021;10:2626.PubMedPubMedCentralCrossRef
33.
go back to reference Marino Gammazza A, Legare S, Lo Bosco G et al. Human molecular chaperones share with SARS-CoV-2 antigenic epitopes potentially capable of eliciting autoimmunity against endothelial cells: possible role of molecular mimicry in COVID-19. Cell Stress Chaperones. 2020;25:737–741.PubMedPubMedCentralCrossRef Marino Gammazza A, Legare S, Lo Bosco G et al. Human molecular chaperones share with SARS-CoV-2 antigenic epitopes potentially capable of eliciting autoimmunity against endothelial cells: possible role of molecular mimicry in COVID-19. Cell Stress Chaperones. 2020;25:737–741.PubMedPubMedCentralCrossRef
34.
35.
go back to reference Hiller S. Molecular chaperones and their denaturing effect on client proteins. J Biomol NMR. 2021;75:1–8.PubMedCrossRef Hiller S. Molecular chaperones and their denaturing effect on client proteins. J Biomol NMR. 2021;75:1–8.PubMedCrossRef
36.
go back to reference Macario AJ, de Conway Macario E. Sick chaperones, cellular stress, and disease. N Engl J Med. 2005;353:1489–1501.PubMedCrossRef Macario AJ, de Conway Macario E. Sick chaperones, cellular stress, and disease. N Engl J Med. 2005;353:1489–1501.PubMedCrossRef
37.
38.
go back to reference Hu C, Yang J, Qi Z et al. Heat shock proteins: biological functions, pathological roles, and therapeutic opportunities. MedComm 2020;2022:e161. Hu C, Yang J, Qi Z et al. Heat shock proteins: biological functions, pathological roles, and therapeutic opportunities. MedComm 2020;2022:e161.
39.
go back to reference Paladino L, Vitale AM, Caruso Bavisotto C et al. The role of molecular chaperones in virus infection and implications for understanding and treating COVID-19. J Clin Med. 2020;9:3518.PubMedPubMedCentralCrossRef Paladino L, Vitale AM, Caruso Bavisotto C et al. The role of molecular chaperones in virus infection and implications for understanding and treating COVID-19. J Clin Med. 2020;9:3518.PubMedPubMedCentralCrossRef
40.
go back to reference Frydman J. Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu Rev Biochem. 2001;70:603–647.PubMedCrossRef Frydman J. Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu Rev Biochem. 2001;70:603–647.PubMedCrossRef
41.
go back to reference Young JC, Agashe VR, Siegers K, Hartl FU. Pathways of chaperone-mediated protein folding in the cytosol. Nat Rev Mol Cell Biol. 2004;5:781–791.PubMedCrossRef Young JC, Agashe VR, Siegers K, Hartl FU. Pathways of chaperone-mediated protein folding in the cytosol. Nat Rev Mol Cell Biol. 2004;5:781–791.PubMedCrossRef
42.
go back to reference Minami R, Hayakawa A, Kagawa H et al. BAG-6 is essential for selective elimination of defective proteasomal substrates. J Cell Biol. 2010;190:637–650.PubMedPubMedCentralCrossRef Minami R, Hayakawa A, Kagawa H et al. BAG-6 is essential for selective elimination of defective proteasomal substrates. J Cell Biol. 2010;190:637–650.PubMedPubMedCentralCrossRef
43.
go back to reference Taipale M, Jarosz DF, Lindquist S. HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat Rev Mol Cell Biol. 2010;11:515–528.PubMedCrossRef Taipale M, Jarosz DF, Lindquist S. HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat Rev Mol Cell Biol. 2010;11:515–528.PubMedCrossRef
44.
go back to reference Hermann C, Strittmatter LM, Deane JE, Boyle LH. The binding of TAPBPR and Tapasin to MHC class I is mutually exclusive. J Immunol. 2013;191:5743–5750.PubMedCrossRef Hermann C, Strittmatter LM, Deane JE, Boyle LH. The binding of TAPBPR and Tapasin to MHC class I is mutually exclusive. J Immunol. 2013;191:5743–5750.PubMedCrossRef
45.
go back to reference Boyle LH, Hermann C, Boname JM et al. Tapasin-related protein TAPBPR is an additional component of the MHC class I presentation pathway. Proc Natl Acad Sci U S A. 2013;110:3465–3470.PubMedPubMedCentralCrossRef Boyle LH, Hermann C, Boname JM et al. Tapasin-related protein TAPBPR is an additional component of the MHC class I presentation pathway. Proc Natl Acad Sci U S A. 2013;110:3465–3470.PubMedPubMedCentralCrossRef
46.
go back to reference Hermann C, van Hateren A, Trautwein N et al. TAPBPR alters MHC class I peptide presentation by functioning as a peptide exchange catalyst. Elife. 2015;4:e09617.PubMedPubMedCentralCrossRef Hermann C, van Hateren A, Trautwein N et al. TAPBPR alters MHC class I peptide presentation by functioning as a peptide exchange catalyst. Elife. 2015;4:e09617.PubMedPubMedCentralCrossRef
47.
go back to reference Hermann C, Trowsdale J, Boyle LH. TAPBPR: a new player in the MHC class I presentation pathway. Tissue Antigens. 2015;85:155–166.PubMedCrossRef Hermann C, Trowsdale J, Boyle LH. TAPBPR: a new player in the MHC class I presentation pathway. Tissue Antigens. 2015;85:155–166.PubMedCrossRef
48.
go back to reference Morozov GI, Zhao H, Mage MG et al. Interaction of TAPBPR, a tapasin homolog, with MHC-I molecules promotes peptide editing. Proc Natl Acad Sci U S A. 2016;113:E1006-1015.PubMedPubMedCentralCrossRef Morozov GI, Zhao H, Mage MG et al. Interaction of TAPBPR, a tapasin homolog, with MHC-I molecules promotes peptide editing. Proc Natl Acad Sci U S A. 2016;113:E1006-1015.PubMedPubMedCentralCrossRef
49.
go back to reference Ilca FT, Drexhage LZ, Brewin G, Peacock S, Boyle LH. Distinct polymorphisms in HLA class I molecules govern their susceptibility to peptide editing by TAPBPR. Cell Rep. 2019;29:e1623.CrossRef Ilca FT, Drexhage LZ, Brewin G, Peacock S, Boyle LH. Distinct polymorphisms in HLA class I molecules govern their susceptibility to peptide editing by TAPBPR. Cell Rep. 2019;29:e1623.CrossRef
50.
go back to reference Sagert L, Hennig F, Thomas C, Tampe R. A loop structure allows TAPBPR to exert its dual function as MHC I chaperone and peptide editor. Elife. 2020;9:e55326.PubMedPubMedCentralCrossRef Sagert L, Hennig F, Thomas C, Tampe R. A loop structure allows TAPBPR to exert its dual function as MHC I chaperone and peptide editor. Elife. 2020;9:e55326.PubMedPubMedCentralCrossRef
52.
go back to reference McShan AC, Devlin CA, Papadaki GF et al. TAPBPR employs a ligand-independent docking mechanism to chaperone MR1 molecules. Nat Chem Biol. 2022;18:859–868.PubMedPubMedCentralCrossRef McShan AC, Devlin CA, Papadaki GF et al. TAPBPR employs a ligand-independent docking mechanism to chaperone MR1 molecules. Nat Chem Biol. 2022;18:859–868.PubMedPubMedCentralCrossRef
53.
go back to reference Cuervo AM, Dice JF. A receptor for the selective uptake and degradation of proteins by lysosomes. Science. 1996;273:501–503.PubMedCrossRef Cuervo AM, Dice JF. A receptor for the selective uptake and degradation of proteins by lysosomes. Science. 1996;273:501–503.PubMedCrossRef
54.
go back to reference Gough NR, Fambrough DM. Different steady state subcellular distributions of the three splice variants of lysosome-associated membrane protein LAMP-2 are determined largely by the COOH-terminal amino acid residue. J Cell Biol. 1997;137:1161–1169.PubMedPubMedCentralCrossRef Gough NR, Fambrough DM. Different steady state subcellular distributions of the three splice variants of lysosome-associated membrane protein LAMP-2 are determined largely by the COOH-terminal amino acid residue. J Cell Biol. 1997;137:1161–1169.PubMedPubMedCentralCrossRef
55.
go back to reference Cuervo AM, Dice JF. Unique properties of lamp2a compared to other lamp2 isoforms. J Cell Sci. 2000;113:4441–4450.PubMedCrossRef Cuervo AM, Dice JF. Unique properties of lamp2a compared to other lamp2 isoforms. J Cell Sci. 2000;113:4441–4450.PubMedCrossRef
56.
go back to reference Zhou D, Li P, Lin Y et al. Lamp-2a facilitates MHC class II presentation of cytoplasmic antigens. Immunity. 2005;22:571–581.PubMedCrossRef Zhou D, Li P, Lin Y et al. Lamp-2a facilitates MHC class II presentation of cytoplasmic antigens. Immunity. 2005;22:571–581.PubMedCrossRef
57.
go back to reference Kamper N, Franken S, Temme S et al. gamma-Interferon-regulated chaperone governs human lymphocyte antigen class II expression. FASEB J. 2012;26:104–116.PubMedCrossRef Kamper N, Franken S, Temme S et al. gamma-Interferon-regulated chaperone governs human lymphocyte antigen class II expression. FASEB J. 2012;26:104–116.PubMedCrossRef
58.
go back to reference Tang R, Acharya N, Subramanian A et al. Tim-3 adapter protein Bat3 acts as an endogenous regulator of tolerogenic dendritic cell function. Sci Immunol. 2022;7:eabm0631.PubMedPubMedCentralCrossRef Tang R, Acharya N, Subramanian A et al. Tim-3 adapter protein Bat3 acts as an endogenous regulator of tolerogenic dendritic cell function. Sci Immunol. 2022;7:eabm0631.PubMedPubMedCentralCrossRef
59.
go back to reference Li Z, Menoret A, Srivastava P. Roles of heat-shock proteins in antigen presentation and cross-presentation. Curr Opin Immunol. 2002;14:45–51.PubMedCrossRef Li Z, Menoret A, Srivastava P. Roles of heat-shock proteins in antigen presentation and cross-presentation. Curr Opin Immunol. 2002;14:45–51.PubMedCrossRef
60.
go back to reference Norbury CC, Basta S, Donohue KB et al. CD8+ T cell cross-priming via transfer of proteasome substrates. Science. 2004;304:1318–1321.PubMedCrossRef Norbury CC, Basta S, Donohue KB et al. CD8+ T cell cross-priming via transfer of proteasome substrates. Science. 2004;304:1318–1321.PubMedCrossRef
61.
go back to reference Rock KL, Shen L. Cross-presentation: underlying mechanisms and role in immune surveillance. Immunol Rev. 2005;207:166–183.PubMedCrossRef Rock KL, Shen L. Cross-presentation: underlying mechanisms and role in immune surveillance. Immunol Rev. 2005;207:166–183.PubMedCrossRef
62.
go back to reference Ichiyanagi T, Imai T, Kajiwara C et al. Essential role of endogenous heat shock protein 90 of dendritic cells in antigen cross-presentation. J Immunol. 2010;185:2693–2700.PubMedCrossRef Ichiyanagi T, Imai T, Kajiwara C et al. Essential role of endogenous heat shock protein 90 of dendritic cells in antigen cross-presentation. J Immunol. 2010;185:2693–2700.PubMedCrossRef
63.
go back to reference Imai T, Kato Y, Kajiwara C et al. Heat shock protein 90 (HSP90) contributes to cytosolic translocation of extracellular antigen for cross-presentation by dendritic cells. Proc Natl Acad Sci U S A. 2011;108:16363–16368.PubMedPubMedCentralCrossRef Imai T, Kato Y, Kajiwara C et al. Heat shock protein 90 (HSP90) contributes to cytosolic translocation of extracellular antigen for cross-presentation by dendritic cells. Proc Natl Acad Sci U S A. 2011;108:16363–16368.PubMedPubMedCentralCrossRef
64.
go back to reference Zachova K, Krupka M, Raska M. Antigen cross-presentation and heat shock protein-based vaccines. Arch Immunol Ther Exp (Warsz). 2016;64:1–18.PubMedCrossRef Zachova K, Krupka M, Raska M. Antigen cross-presentation and heat shock protein-based vaccines. Arch Immunol Ther Exp (Warsz). 2016;64:1–18.PubMedCrossRef
66.
go back to reference Rangachari M, Zhu C, Sakuishi K et al. Bat3 promotes T cell responses and autoimmunity by repressing Tim-3-mediated cell death and exhaustion. Nat Med. 2012;18:1394–1400.PubMedPubMedCentralCrossRef Rangachari M, Zhu C, Sakuishi K et al. Bat3 promotes T cell responses and autoimmunity by repressing Tim-3-mediated cell death and exhaustion. Nat Med. 2012;18:1394–1400.PubMedPubMedCentralCrossRef
68.
go back to reference van Eden W, Hauet-Broere F, Berlo S et al. Stress proteins as inducers and targets of regulatory T cells in arthritis. Int Rev Immunol. 2005;24:181–197.PubMedCrossRef van Eden W, Hauet-Broere F, Berlo S et al. Stress proteins as inducers and targets of regulatory T cells in arthritis. Int Rev Immunol. 2005;24:181–197.PubMedCrossRef
69.
go back to reference van Herwijnen MJ, Wieten L, van der Zee R et al. Regulatory T cells that recognize a ubiquitous stress-inducible self-antigen are long-lived suppressors of autoimmune arthritis. Proc Natl Acad Sci U S A. 2012;109:14134–14139.PubMedPubMedCentralCrossRef van Herwijnen MJ, Wieten L, van der Zee R et al. Regulatory T cells that recognize a ubiquitous stress-inducible self-antigen are long-lived suppressors of autoimmune arthritis. Proc Natl Acad Sci U S A. 2012;109:14134–14139.PubMedPubMedCentralCrossRef
70.
go back to reference Feinstein DL, Galea E, Aquino DA et al. Heat shock protein 70 suppresses astroglial-inducible nitric-oxide synthase expression by decreasing NFkappaB activation. J Biol Chem. 1996;271:17724–17732.PubMedCrossRef Feinstein DL, Galea E, Aquino DA et al. Heat shock protein 70 suppresses astroglial-inducible nitric-oxide synthase expression by decreasing NFkappaB activation. J Biol Chem. 1996;271:17724–17732.PubMedCrossRef
71.
go back to reference Wieten L, Berlo SE, Ten Brink CB et al. IL-10 is critically involved in mycobacterial HSP70 induced suppression of proteoglycan-induced arthritis. PLoS One. 2009;4:e4186.PubMedPubMedCentralCrossRef Wieten L, Berlo SE, Ten Brink CB et al. IL-10 is critically involved in mycobacterial HSP70 induced suppression of proteoglycan-induced arthritis. PLoS One. 2009;4:e4186.PubMedPubMedCentralCrossRef
72.
go back to reference Chaudhuri TK, Paul S. Protein-misfolding diseases and chaperone-based therapeutic approaches. FEBS J. 2006;273:1331–1349.PubMedCrossRef Chaudhuri TK, Paul S. Protein-misfolding diseases and chaperone-based therapeutic approaches. FEBS J. 2006;273:1331–1349.PubMedCrossRef
73.
go back to reference Macario AJ, de Macario Conway E. Chaperonopathies by defect, excess, or mistake. Ann N Y Acad Sci. 2007;1113:178–1916.PubMedCrossRef Macario AJ, de Macario Conway E. Chaperonopathies by defect, excess, or mistake. Ann N Y Acad Sci. 2007;1113:178–1916.PubMedCrossRef
74.
go back to reference Macario AJ, de Macario Conway E. Chaperonopathies and chaperonotherapy. FEBS Lett. 2007;581:3681–3688.PubMedCrossRef Macario AJ, de Macario Conway E. Chaperonopathies and chaperonotherapy. FEBS Lett. 2007;581:3681–3688.PubMedCrossRef
75.
go back to reference Macario AJ, de Macario EC. Molecular mechanisms in chaperonopathies: clues to understanding the histopathological abnormalities and developing novel therapies. J Pathol. 2020;250:9–18.PubMedCrossRef Macario AJ, de Macario EC. Molecular mechanisms in chaperonopathies: clues to understanding the histopathological abnormalities and developing novel therapies. J Pathol. 2020;250:9–18.PubMedCrossRef
76.
go back to reference van Eden W. Immune tolerance therapies for autoimmune diseases based on heat shock protein T-cell epitopes. Philos Trans R Soc Lond B Biol Sci. 2018;373:20160531.PubMedCrossRef van Eden W. Immune tolerance therapies for autoimmune diseases based on heat shock protein T-cell epitopes. Philos Trans R Soc Lond B Biol Sci. 2018;373:20160531.PubMedCrossRef
77.
go back to reference Nardai G, Vegh EM, Prohaszka Z, Csermely P. Chaperone-related immune dysfunction: an emergent property of distorted chaperone networks. Trends Immunol. 2006;27:74–79.PubMedCrossRef Nardai G, Vegh EM, Prohaszka Z, Csermely P. Chaperone-related immune dysfunction: an emergent property of distorted chaperone networks. Trends Immunol. 2006;27:74–79.PubMedCrossRef
78.
go back to reference Srivastava P. Roles of heat-shock proteins in innate and adaptive immunity. Nat Rev Immunol. 2002;2:185–194.PubMedCrossRef Srivastava P. Roles of heat-shock proteins in innate and adaptive immunity. Nat Rev Immunol. 2002;2:185–194.PubMedCrossRef
79.
go back to reference Sadasivan B, Lehner PJ, Ortmann B, Spies T, Cresswell P. Roles for calreticulin and a novel glycoprotein, tapasin, in the interaction of MHC class I molecules with TAP. Immunity. 1996;5:103–114.PubMedCrossRef Sadasivan B, Lehner PJ, Ortmann B, Spies T, Cresswell P. Roles for calreticulin and a novel glycoprotein, tapasin, in the interaction of MHC class I molecules with TAP. Immunity. 1996;5:103–114.PubMedCrossRef
80.
go back to reference Ortmann B, Copeman J, Lehner PJ et al. A critical role for tapasin in the assembly and function of multimeric MHC class I-TAP complexes. Science. 1997;277:1306–1309.PubMedCrossRef Ortmann B, Copeman J, Lehner PJ et al. A critical role for tapasin in the assembly and function of multimeric MHC class I-TAP complexes. Science. 1997;277:1306–1309.PubMedCrossRef
81.
go back to reference Rizvi SM, Raghavan M. Mechanisms of function of tapasin, a critical major histocompatibility complex class I assembly factor. Traffic. 2010;11:332–347.PubMedCrossRef Rizvi SM, Raghavan M. Mechanisms of function of tapasin, a critical major histocompatibility complex class I assembly factor. Traffic. 2010;11:332–347.PubMedCrossRef
82.
go back to reference Czaja AJ. Epigenetic changes and their implications in autoimmune hepatitis. Eur J Clin Invest. 2018;48:e12899.CrossRef Czaja AJ. Epigenetic changes and their implications in autoimmune hepatitis. Eur J Clin Invest. 2018;48:e12899.CrossRef
84.
go back to reference Valdor R, Mocholi E, Botbol Y et al. Chaperone-mediated autophagy regulates T cell responses through targeted degradation of negative regulators of T cell activation. Nat Immunol. 2014;15:1046–1054.PubMedPubMedCentralCrossRef Valdor R, Mocholi E, Botbol Y et al. Chaperone-mediated autophagy regulates T cell responses through targeted degradation of negative regulators of T cell activation. Nat Immunol. 2014;15:1046–1054.PubMedPubMedCentralCrossRef
86.
go back to reference Czaja AJ. Nature and implications of oxidative and nitrosative stresses in autoimmune hepatitis. Dig Dis Sci. 2016;61:2784–2803.PubMedCrossRef Czaja AJ. Nature and implications of oxidative and nitrosative stresses in autoimmune hepatitis. Dig Dis Sci. 2016;61:2784–2803.PubMedCrossRef
88.
go back to reference Krakowiak J, Zheng X, Patel N et al. Hsf1 and Hsp70 constitute a two-component feedback loop that regulates the yeast heat shock response. Elife. 2018;7:e31668.PubMedPubMedCentralCrossRef Krakowiak J, Zheng X, Patel N et al. Hsf1 and Hsp70 constitute a two-component feedback loop that regulates the yeast heat shock response. Elife. 2018;7:e31668.PubMedPubMedCentralCrossRef
89.
go back to reference Kmiecik SW, Le Breton L, Mayer MP. Feedback regulation of heat shock factor 1 (Hsf1) activity by Hsp70-mediated trimer unzipping and dissociation from DNA. EMBO J. 2020;39:e104096.PubMedPubMedCentralCrossRef Kmiecik SW, Le Breton L, Mayer MP. Feedback regulation of heat shock factor 1 (Hsf1) activity by Hsp70-mediated trimer unzipping and dissociation from DNA. EMBO J. 2020;39:e104096.PubMedPubMedCentralCrossRef
90.
go back to reference Calderwood SK, Repasky EA, Neckers L, Hightower LE. The IXth CSSI international symposium on heat shock proteins in biology and medicine: stress responses in health and disease : Alexandria Old Town, Alexandria, Virginia, November 10–13, 2018. Cell Stress Chaperones. 2019;24:1–6.PubMedPubMedCentralCrossRef Calderwood SK, Repasky EA, Neckers L, Hightower LE. The IXth CSSI international symposium on heat shock proteins in biology and medicine: stress responses in health and disease : Alexandria Old Town, Alexandria, Virginia, November 10–13, 2018. Cell Stress Chaperones. 2019;24:1–6.PubMedPubMedCentralCrossRef
91.
go back to reference Vujanac M, Fenaroli A, Zimarino V. Constitutive nuclear import and stress-regulated nucleocytoplasmic shuttling of mammalian heat-shock factor 1. Traffic. 2005;6:214–229.PubMedCrossRef Vujanac M, Fenaroli A, Zimarino V. Constitutive nuclear import and stress-regulated nucleocytoplasmic shuttling of mammalian heat-shock factor 1. Traffic. 2005;6:214–229.PubMedCrossRef
93.
go back to reference Kijima T, Prince TL, Tigue ML et al. HSP90 inhibitors disrupt a transient HSP90-HSF1 interaction and identify a noncanonical model of HSP90-mediated HSF1 regulation. Sci Rep. 2018;8:6976.PubMedPubMedCentralCrossRef Kijima T, Prince TL, Tigue ML et al. HSP90 inhibitors disrupt a transient HSP90-HSF1 interaction and identify a noncanonical model of HSP90-mediated HSF1 regulation. Sci Rep. 2018;8:6976.PubMedPubMedCentralCrossRef
94.
go back to reference Kampinga HH, Hageman J, Vos MJ et al. Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones. 2009;14:105–111.PubMedCrossRef Kampinga HH, Hageman J, Vos MJ et al. Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones. 2009;14:105–111.PubMedCrossRef
96.
go back to reference Khalil AA, Kabapy NF, Deraz SF, Smith C. Heat shock proteins in oncology: diagnostic biomarkers or therapeutic targets? Biochim Biophys Acta. 2011;1816:89–104.PubMed Khalil AA, Kabapy NF, Deraz SF, Smith C. Heat shock proteins in oncology: diagnostic biomarkers or therapeutic targets? Biochim Biophys Acta. 2011;1816:89–104.PubMed
97.
go back to reference Janik S, Schiefer AI, Bekos C et al. HSP27 and 70 expression in thymic epithelial tumors and benign thymic alterations: diagnostic, prognostic and physiologic implications. Sci Rep. 2016;6:24267.PubMedPubMedCentralCrossRef Janik S, Schiefer AI, Bekos C et al. HSP27 and 70 expression in thymic epithelial tumors and benign thymic alterations: diagnostic, prognostic and physiologic implications. Sci Rep. 2016;6:24267.PubMedPubMedCentralCrossRef
98.
go back to reference Bakthisaran R, Tangirala R, Rao ChM. Small heat shock proteins: Role in cellular functions and pathology. Biochim Biophys Acta. 2015;1854:291–319.PubMedCrossRef Bakthisaran R, Tangirala R, Rao ChM. Small heat shock proteins: Role in cellular functions and pathology. Biochim Biophys Acta. 2015;1854:291–319.PubMedCrossRef
99.
go back to reference Haslbeck M, Weinkauf S, Buchner J. Small heat shock proteins: Simplicity meets complexity. J Biol Chem. 2019;294:2121–2132.PubMedCrossRef Haslbeck M, Weinkauf S, Buchner J. Small heat shock proteins: Simplicity meets complexity. J Biol Chem. 2019;294:2121–2132.PubMedCrossRef
100.
go back to reference Chauhan D, Li G, Hideshima T et al. Hsp27 inhibits release of mitochondrial protein Smac in multiple myeloma cells and confers dexamethasone resistance. Blood. 2003;102:3379–3386.PubMedCrossRef Chauhan D, Li G, Hideshima T et al. Hsp27 inhibits release of mitochondrial protein Smac in multiple myeloma cells and confers dexamethasone resistance. Blood. 2003;102:3379–3386.PubMedCrossRef
101.
go back to reference Parcellier A, Gurbuxani S, Schmitt E, Solary E, Garrido C. Heat shock proteins, cellular chaperones that modulate mitochondrial cell death pathways. Biochem Biophys Res Commun. 2003;304:505–512.PubMedCrossRef Parcellier A, Gurbuxani S, Schmitt E, Solary E, Garrido C. Heat shock proteins, cellular chaperones that modulate mitochondrial cell death pathways. Biochem Biophys Res Commun. 2003;304:505–512.PubMedCrossRef
102.
go back to reference Garrido C, Brunet M, Didelot C et al. Heat shock proteins 27 and 70: anti-apoptotic proteins with tumorigenic properties. Cell Cycle. 2006;5:2592–2601.PubMedCrossRef Garrido C, Brunet M, Didelot C et al. Heat shock proteins 27 and 70: anti-apoptotic proteins with tumorigenic properties. Cell Cycle. 2006;5:2592–2601.PubMedCrossRef
103.
104.
go back to reference Rosenzweig R, Nillegoda NB, Mayer MP, Bukau B. The Hsp70 chaperone network. Nat Rev Mol Cell Biol. 2019;20:665–680.PubMedCrossRef Rosenzweig R, Nillegoda NB, Mayer MP, Bukau B. The Hsp70 chaperone network. Nat Rev Mol Cell Biol. 2019;20:665–680.PubMedCrossRef
105.
go back to reference Ishii T, Udono H, Yamano T et al. Isolation of MHC class I-restricted tumor antigen peptide and its precursors associated with heat shock proteins hsp70, hsp90, and gp96. J Immunol. 1999;162:1303–1309.PubMedCrossRef Ishii T, Udono H, Yamano T et al. Isolation of MHC class I-restricted tumor antigen peptide and its precursors associated with heat shock proteins hsp70, hsp90, and gp96. J Immunol. 1999;162:1303–1309.PubMedCrossRef
107.
go back to reference Wendling U, Paul L, van der Zee R et al. A conserved mycobacterial heat shock protein (hsp) 70 sequence prevents adjuvant arthritis upon nasal administration and induces IL-10-producing T cells that cross-react with the mammalian self-hsp70 homologue. J Immunol. 2000;164:2711–2717.PubMedCrossRef Wendling U, Paul L, van der Zee R et al. A conserved mycobacterial heat shock protein (hsp) 70 sequence prevents adjuvant arthritis upon nasal administration and induces IL-10-producing T cells that cross-react with the mammalian self-hsp70 homologue. J Immunol. 2000;164:2711–2717.PubMedCrossRef
108.
go back to reference Pockley AG. Heat shock proteins in health and disease: therapeutic targets or therapeutic agents? Expert Rev Mol Med. 2001;3:1–21.PubMedCrossRef Pockley AG. Heat shock proteins in health and disease: therapeutic targets or therapeutic agents? Expert Rev Mol Med. 2001;3:1–21.PubMedCrossRef
109.
go back to reference Prakken BJ, Roord S, Ronaghy A et al. Heat shock protein 60 and adjuvant arthritis: a model for T cell regulation in human arthritis. Springer Semin Immunopathol. 2003;25:47–63.PubMedCrossRef Prakken BJ, Roord S, Ronaghy A et al. Heat shock protein 60 and adjuvant arthritis: a model for T cell regulation in human arthritis. Springer Semin Immunopathol. 2003;25:47–63.PubMedCrossRef
110.
go back to reference Pockley AG, Muthana M, Calderwood SK. The dual immunoregulatory roles of stress proteins. Trends Biochem Sci. 2008;33:71–79.PubMedCrossRef Pockley AG, Muthana M, Calderwood SK. The dual immunoregulatory roles of stress proteins. Trends Biochem Sci. 2008;33:71–79.PubMedCrossRef
111.
go back to reference van der Zee R, Anderton SM, Prakken AB, Liesbeth Paul AG, van Eden W. T cell responses to conserved bacterial heat-shock-protein epitopes induce resistance in experimental autoimmunity. Semin Immunol. 1998;10:35–41.PubMedCrossRef van der Zee R, Anderton SM, Prakken AB, Liesbeth Paul AG, van Eden W. T cell responses to conserved bacterial heat-shock-protein epitopes induce resistance in experimental autoimmunity. Semin Immunol. 1998;10:35–41.PubMedCrossRef
112.
go back to reference Zonneveld-Huijssoon E, van Wijk F, Roord S et al. TLR9 agonist CpG enhances protective nasal HSP60 peptide vaccine efficacy in experimental autoimmune arthritis. Ann Rheum Dis. 2012;71:1706–1715.PubMedCrossRef Zonneveld-Huijssoon E, van Wijk F, Roord S et al. TLR9 agonist CpG enhances protective nasal HSP60 peptide vaccine efficacy in experimental autoimmune arthritis. Ann Rheum Dis. 2012;71:1706–1715.PubMedCrossRef
114.
115.
go back to reference Wang XY, Sun X, Chen X et al. Superior antitumor response induced by large stress protein chaperoned protein antigen compared with peptide antigen. J Immunol. 2010;184:6309–6319.PubMedCrossRef Wang XY, Sun X, Chen X et al. Superior antitumor response induced by large stress protein chaperoned protein antigen compared with peptide antigen. J Immunol. 2010;184:6309–6319.PubMedCrossRef
117.
go back to reference Wang XY, Yi H, Yu X, Zuo D, Subjeck JR. Enhancing antigen cross-presentation and T-cell priming by complexing protein antigen to recombinant large heat-shock protein. Methods Mol Biol. 2011;787:277–287.PubMedPubMedCentralCrossRef Wang XY, Yi H, Yu X, Zuo D, Subjeck JR. Enhancing antigen cross-presentation and T-cell priming by complexing protein antigen to recombinant large heat-shock protein. Methods Mol Biol. 2011;787:277–287.PubMedPubMedCentralCrossRef
118.
go back to reference Mattoo RUH, Sharma SK, Priya S, Finka A, Goloubinoff P. Hsp110 is a bona fide chaperone using ATP to unfold stable misfolded polypeptides and reciprocally collaborate with Hsp70 to solubilize protein aggregates. J Biol Chem. 2013;288:21399–21411.PubMedPubMedCentralCrossRef Mattoo RUH, Sharma SK, Priya S, Finka A, Goloubinoff P. Hsp110 is a bona fide chaperone using ATP to unfold stable misfolded polypeptides and reciprocally collaborate with Hsp70 to solubilize protein aggregates. J Biol Chem. 2013;288:21399–21411.PubMedPubMedCentralCrossRef
119.
go back to reference Tittelmeier J, Sandhof CA, Ries HM et al. The HSP110/HSP70 disaggregation system generates spreading-competent toxic alpha-synuclein species. EMBO J. 2020;39:e103954.PubMedPubMedCentralCrossRef Tittelmeier J, Sandhof CA, Ries HM et al. The HSP110/HSP70 disaggregation system generates spreading-competent toxic alpha-synuclein species. EMBO J. 2020;39:e103954.PubMedPubMedCentralCrossRef
120.
go back to reference Bajramovic JJ, Bsibsi M, Geutskens SB et al. Differential expression of stress proteins in human adult astrocytes in response to cytokines. J Neuroimmunol. 2000;106:14–22.PubMedCrossRef Bajramovic JJ, Bsibsi M, Geutskens SB et al. Differential expression of stress proteins in human adult astrocytes in response to cytokines. J Neuroimmunol. 2000;106:14–22.PubMedCrossRef
121.
go back to reference van Eden W, van Herwijnen M, Wagenaar J et al. Stress proteins are used by the immune system for cognate interactions with anti-inflammatory regulatory T cells. FEBS Lett. 2013;587:1951–1958.PubMedCrossRef van Eden W, van Herwijnen M, Wagenaar J et al. Stress proteins are used by the immune system for cognate interactions with anti-inflammatory regulatory T cells. FEBS Lett. 2013;587:1951–1958.PubMedCrossRef
123.
go back to reference Pockley AG, Shepherd J, Corton JM. Detection of heat shock protein 70 (Hsp70) and anti-Hsp70 antibodies in the serum of normal individuals. Immunol Invest. 1998;27:367–377.PubMedCrossRef Pockley AG, Shepherd J, Corton JM. Detection of heat shock protein 70 (Hsp70) and anti-Hsp70 antibodies in the serum of normal individuals. Immunol Invest. 1998;27:367–377.PubMedCrossRef
124.
go back to reference Pockley AG, Bulmer J, Hanks BM, Wright BH. Identification of human heat shock protein 60 (Hsp60) and anti-Hsp60 antibodies in the peripheral circulation of normal individuals. Cell Stress Chaperones. 1999;4:29–35.PubMedCrossRef Pockley AG, Bulmer J, Hanks BM, Wright BH. Identification of human heat shock protein 60 (Hsp60) and anti-Hsp60 antibodies in the peripheral circulation of normal individuals. Cell Stress Chaperones. 1999;4:29–35.PubMedCrossRef
125.
go back to reference Mantej J, Polasik K, Piotrowska E, Tukaj S. Autoantibodies to heat shock proteins 60, 70, and 90 in patients with rheumatoid arthritis. Cell Stress Chaperones. 2019;24:283–287.PubMedCrossRef Mantej J, Polasik K, Piotrowska E, Tukaj S. Autoantibodies to heat shock proteins 60, 70, and 90 in patients with rheumatoid arthritis. Cell Stress Chaperones. 2019;24:283–287.PubMedCrossRef
126.
go back to reference Tukaj S, Gorog A, Kleszczynski K et al. Autoimmunity to heat shock proteins and vitamin D status in patients with celiac disease without associated dermatitis herpetiformis. J Steroid Biochem Mol Biol. 2017;173:23–27.PubMedCrossRef Tukaj S, Gorog A, Kleszczynski K et al. Autoimmunity to heat shock proteins and vitamin D status in patients with celiac disease without associated dermatitis herpetiformis. J Steroid Biochem Mol Biol. 2017;173:23–27.PubMedCrossRef
127.
go back to reference Shingai R, Maeda T, Onishi S, Yamamoto Y. Autoantibody against 70 kD heat shock protein in patients with autoimmune liver diseases. J Hepatol. 1995;23:382–390.PubMedCrossRef Shingai R, Maeda T, Onishi S, Yamamoto Y. Autoantibody against 70 kD heat shock protein in patients with autoimmune liver diseases. J Hepatol. 1995;23:382–390.PubMedCrossRef
128.
go back to reference Miyata M, Kogure A, Sato H et al. Detection of antibodies to 65 KD heat shock protein and to human superoxide dismutase in autoimmune hepatitis-molecular mimicry between 65 KD heat shock protein and superoxide dismutase. Clin Rheumatol. 1995;14:673–677.PubMedCrossRef Miyata M, Kogure A, Sato H et al. Detection of antibodies to 65 KD heat shock protein and to human superoxide dismutase in autoimmune hepatitis-molecular mimicry between 65 KD heat shock protein and superoxide dismutase. Clin Rheumatol. 1995;14:673–677.PubMedCrossRef
129.
go back to reference Kotlarz A, Tukaj S, Krzewski K, Brycka E, Lipinska B. Human Hsp40 proteins, DNAJA1 and DNAJA2, as potential targets of the immune response triggered by bacterial DnaJ in rheumatoid arthritis. Cell Stress Chaperones. 2013;18:653–659.PubMedPubMedCentralCrossRef Kotlarz A, Tukaj S, Krzewski K, Brycka E, Lipinska B. Human Hsp40 proteins, DNAJA1 and DNAJA2, as potential targets of the immune response triggered by bacterial DnaJ in rheumatoid arthritis. Cell Stress Chaperones. 2013;18:653–659.PubMedPubMedCentralCrossRef
130.
go back to reference Ulmansky R, Cohen CJ, Szafer F et al. Resistance to adjuvant arthritis is due to protective antibodies against heat shock protein surface epitopes and the induction of IL-10 secretion. J Immunol. 2002;168:6463–6469.PubMedCrossRef Ulmansky R, Cohen CJ, Szafer F et al. Resistance to adjuvant arthritis is due to protective antibodies against heat shock protein surface epitopes and the induction of IL-10 secretion. J Immunol. 2002;168:6463–6469.PubMedCrossRef
131.
go back to reference Ulmansky R, Landstein D, Moallem E et al. A humanized monoclonal antibody against heat shock protein 60 suppresses murine arthritis and colitis and skews the cytokine balance toward an anti-Inflammatory response. J Immunol. 2015;194:5103–5109.PubMedCrossRef Ulmansky R, Landstein D, Moallem E et al. A humanized monoclonal antibody against heat shock protein 60 suppresses murine arthritis and colitis and skews the cytokine balance toward an anti-Inflammatory response. J Immunol. 2015;194:5103–5109.PubMedCrossRef
132.
133.
go back to reference Kovacs JJ, Murphy PJ, Gaillard S et al. HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol Cell. 2005;18:601–607.PubMedCrossRef Kovacs JJ, Murphy PJ, Gaillard S et al. HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol Cell. 2005;18:601–607.PubMedCrossRef
134.
go back to reference Panella S, Marcocci ME, Celestino I et al. MC1568 inhibits HDAC6/8 activity and influenza a virus replication in lung epithelial cells: role of Hsp90 acetylation. Future Med Chem. 2016;8:2017–2031.PubMedCrossRef Panella S, Marcocci ME, Celestino I et al. MC1568 inhibits HDAC6/8 activity and influenza a virus replication in lung epithelial cells: role of Hsp90 acetylation. Future Med Chem. 2016;8:2017–2031.PubMedCrossRef
135.
go back to reference Fox CK, Furtwaengler A, Nepomuceno RR, Martinez OM, Krams SM. Apoptotic pathways in primary biliary cirrhosis and autoimmune hepatitis. Liver. 2001;21:272–279.PubMedCrossRef Fox CK, Furtwaengler A, Nepomuceno RR, Martinez OM, Krams SM. Apoptotic pathways in primary biliary cirrhosis and autoimmune hepatitis. Liver. 2001;21:272–279.PubMedCrossRef
136.
go back to reference Suzuki Y, Kobayashi M, Hosaka T et al. Peripheral CD8+/CD25+ lymphocytes may be implicated in hepatocellular injuries in patients with acute-onset autoimmune hepatitis. J Gastroenterol. 2004;39:649–653.PubMedCrossRef Suzuki Y, Kobayashi M, Hosaka T et al. Peripheral CD8+/CD25+ lymphocytes may be implicated in hepatocellular injuries in patients with acute-onset autoimmune hepatitis. J Gastroenterol. 2004;39:649–653.PubMedCrossRef
137.
go back to reference Lohr H, Manns M, Kyriatsoulis A et al. Clonal analysis of liver-infiltrating T cells in patients with LKM-1 antibody-positive autoimmune chronic active hepatitis. Clin Exp Immunol. 1991;84:297–302.PubMedPubMedCentralCrossRef Lohr H, Manns M, Kyriatsoulis A et al. Clonal analysis of liver-infiltrating T cells in patients with LKM-1 antibody-positive autoimmune chronic active hepatitis. Clin Exp Immunol. 1991;84:297–302.PubMedPubMedCentralCrossRef
138.
go back to reference Cresswell P. Assembly, transport, and function of MHC class II molecules. Annu Rev Immunol. 1994;12:259–293.PubMedCrossRef Cresswell P. Assembly, transport, and function of MHC class II molecules. Annu Rev Immunol. 1994;12:259–293.PubMedCrossRef
140.
go back to reference Basu S, Binder RJ, Suto R, Anderson KM, Srivastava PK. Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway. Int Immunol. 2000;12:1539–1546.PubMedCrossRef Basu S, Binder RJ, Suto R, Anderson KM, Srivastava PK. Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway. Int Immunol. 2000;12:1539–1546.PubMedCrossRef
141.
go back to reference Zheng H, Dai J, Stoilova D, Li Z. Cell surface targeting of heat shock protein gp96 induces dendritic cell maturation and antitumor immunity. J Immunol. 2001;167:6731–6735.PubMedCrossRef Zheng H, Dai J, Stoilova D, Li Z. Cell surface targeting of heat shock protein gp96 induces dendritic cell maturation and antitumor immunity. J Immunol. 2001;167:6731–6735.PubMedCrossRef
142.
go back to reference Somersan S, Larsson M, Fonteneau JF et al. Primary tumor tissue lysates are enriched in heat shock proteins and induce the maturation of human dendritic cells. J Immunol. 2001;167:4844–4852.PubMedCrossRef Somersan S, Larsson M, Fonteneau JF et al. Primary tumor tissue lysates are enriched in heat shock proteins and induce the maturation of human dendritic cells. J Immunol. 2001;167:4844–4852.PubMedCrossRef
143.
go back to reference Wang Y, Kelly CG, Singh M et al. Stimulation of Th1-polarizing cytokines, C-C chemokines, maturation of dendritic cells, and adjuvant function by the peptide binding fragment of heat shock protein 70. J Immunol. 2002;169:2422–2429.PubMedCrossRef Wang Y, Kelly CG, Singh M et al. Stimulation of Th1-polarizing cytokines, C-C chemokines, maturation of dendritic cells, and adjuvant function by the peptide binding fragment of heat shock protein 70. J Immunol. 2002;169:2422–2429.PubMedCrossRef
144.
go back to reference Flohe SB, Bruggemann J, Lendemans S et al. Human heat shock protein 60 induces maturation of dendritic cells versus a Th1-promoting phenotype. J Immunol. 2003;170:2340–2348.PubMedCrossRef Flohe SB, Bruggemann J, Lendemans S et al. Human heat shock protein 60 induces maturation of dendritic cells versus a Th1-promoting phenotype. J Immunol. 2003;170:2340–2348.PubMedCrossRef
145.
go back to reference Wan Q, Song D, Li H, He ML. Stress proteins: the biological functions in virus infection, present and challenges for target-based antiviral drug development. Signal Transduct Target Ther. 2020;5:125.PubMedPubMedCentralCrossRef Wan Q, Song D, Li H, He ML. Stress proteins: the biological functions in virus infection, present and challenges for target-based antiviral drug development. Signal Transduct Target Ther. 2020;5:125.PubMedPubMedCentralCrossRef
146.
go back to reference Caruso Bavisotto C, Alberti G, Vitale AM et al. Hsp60 post-translational modifications: functional and pathological consequences. Front Mol Biosci. 2020;7:95.PubMedPubMedCentralCrossRef Caruso Bavisotto C, Alberti G, Vitale AM et al. Hsp60 post-translational modifications: functional and pathological consequences. Front Mol Biosci. 2020;7:95.PubMedPubMedCentralCrossRef
147.
go back to reference Geller R, Taguwa S, Frydman J. Broad action of Hsp90 as a host chaperone required for viral replication. Biochim Biophys Acta. 2012;1823:698–706.PubMedCrossRef Geller R, Taguwa S, Frydman J. Broad action of Hsp90 as a host chaperone required for viral replication. Biochim Biophys Acta. 2012;1823:698–706.PubMedCrossRef
148.
149.
go back to reference Mathers JC, Strathdee G, Relton CL. Induction of epigenetic alterations by dietary and other environmental factors. Adv Genet. 2010;71:3–39.PubMedCrossRef Mathers JC, Strathdee G, Relton CL. Induction of epigenetic alterations by dietary and other environmental factors. Adv Genet. 2010;71:3–39.PubMedCrossRef
150.
go back to reference Donohoe DR, Bultman SJ. Metaboloepigenetics: interrelationships between energy metabolism and epigenetic control of gene expression. J Cell Physiol. 2012;227:3169–3177.PubMedPubMedCentralCrossRef Donohoe DR, Bultman SJ. Metaboloepigenetics: interrelationships between energy metabolism and epigenetic control of gene expression. J Cell Physiol. 2012;227:3169–3177.PubMedPubMedCentralCrossRef
151.
go back to reference Shukla SD, Velazquez J, French SW et al. Emerging role of epigenetics in the actions of alcohol. Alcohol Clin Exp Res. 2008;32:1525–1534.PubMedCrossRef Shukla SD, Velazquez J, French SW et al. Emerging role of epigenetics in the actions of alcohol. Alcohol Clin Exp Res. 2008;32:1525–1534.PubMedCrossRef
152.
153.
go back to reference Phillips JM, Goodman JI. Inhalation of cigarette smoke induces regions of altered DNA methylation (RAMs) in SENCAR mouse lung. Toxicology. 2009;260:7–15.PubMedCrossRef Phillips JM, Goodman JI. Inhalation of cigarette smoke induces regions of altered DNA methylation (RAMs) in SENCAR mouse lung. Toxicology. 2009;260:7–15.PubMedCrossRef
154.
go back to reference Vaissiere T, Hung RJ, Zaridze D et al. Quantitative analysis of DNA methylation profiles in lung cancer identifies aberrant DNA methylation of specific genes and its association with gender and cancer risk factors. Cancer Res. 2009;69:243–252.PubMedPubMedCentralCrossRef Vaissiere T, Hung RJ, Zaridze D et al. Quantitative analysis of DNA methylation profiles in lung cancer identifies aberrant DNA methylation of specific genes and its association with gender and cancer risk factors. Cancer Res. 2009;69:243–252.PubMedPubMedCentralCrossRef
155.
go back to reference Salnikow K, Zhitkovich A. Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis: nickel, arsenic, and chromium. Chem Res Toxicol. 2008;21:28–44.PubMedCrossRef Salnikow K, Zhitkovich A. Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis: nickel, arsenic, and chromium. Chem Res Toxicol. 2008;21:28–44.PubMedCrossRef
156.
157.
go back to reference Ilnytskyy Y, Koturbash I, Kovalchuk O. Radiation-induced bystander effects in vivo are epigenetically regulated in a tissue-specific manner. Environ Mol Mutagen. 2009;50:105–113.PubMedCrossRef Ilnytskyy Y, Koturbash I, Kovalchuk O. Radiation-induced bystander effects in vivo are epigenetically regulated in a tissue-specific manner. Environ Mol Mutagen. 2009;50:105–113.PubMedCrossRef
159.
160.
go back to reference Liwinski T, Heinemann M, Schramm C. The intestinal and biliary microbiome in autoimmune liver disease-current evidence and concepts. Semin Immunopathol. 2022;44:485–507.PubMedPubMedCentralCrossRef Liwinski T, Heinemann M, Schramm C. The intestinal and biliary microbiome in autoimmune liver disease-current evidence and concepts. Semin Immunopathol. 2022;44:485–507.PubMedPubMedCentralCrossRef
161.
go back to reference Blees A, Januliene D, Hofmann T et al. Structure of the human MHC-I peptide-loading complex. Nature. 2017;551:525–528.PubMedCrossRef Blees A, Januliene D, Hofmann T et al. Structure of the human MHC-I peptide-loading complex. Nature. 2017;551:525–528.PubMedCrossRef
162.
go back to reference Wearsch PA, Cresswell P. Selective loading of high-affinity peptides onto major histocompatibility complex class I molecules by the tapasin-ERp57 heterodimer. Nat Immunol. 2007;8:873–881.PubMedCrossRef Wearsch PA, Cresswell P. Selective loading of high-affinity peptides onto major histocompatibility complex class I molecules by the tapasin-ERp57 heterodimer. Nat Immunol. 2007;8:873–881.PubMedCrossRef
164.
go back to reference Peaper DR, Wearsch PA, Cresswell P. Tapasin and ERp57 form a stable disulfide-linked dimer within the MHC class I peptide-loading complex. EMBO J. 2005;24:3613–3623.PubMedPubMedCentralCrossRef Peaper DR, Wearsch PA, Cresswell P. Tapasin and ERp57 form a stable disulfide-linked dimer within the MHC class I peptide-loading complex. EMBO J. 2005;24:3613–3623.PubMedPubMedCentralCrossRef
165.
go back to reference Zhang Y, Baig E, Williams DB. Functions of ERp57 in the folding and assembly of major histocompatibility complex class I molecules. J Biol Chem. 2006;281:14622–14631.PubMedCrossRef Zhang Y, Baig E, Williams DB. Functions of ERp57 in the folding and assembly of major histocompatibility complex class I molecules. J Biol Chem. 2006;281:14622–14631.PubMedCrossRef
166.
go back to reference Dong G, Wearsch PA, Peaper DR, Cresswell P, Reinisch KM. Insights into MHC class I peptide loading from the structure of the tapasin-ERp57 thiol oxidoreductase heterodimer. Immunity. 2009;30:21–32.PubMedPubMedCentralCrossRef Dong G, Wearsch PA, Peaper DR, Cresswell P, Reinisch KM. Insights into MHC class I peptide loading from the structure of the tapasin-ERp57 thiol oxidoreductase heterodimer. Immunity. 2009;30:21–32.PubMedPubMedCentralCrossRef
167.
go back to reference Coe H, Michalak M. ERp57, a multifunctional endoplasmic reticulum resident oxidoreductase. Int J Biochem Cell Biol. 2010;42:796–799.PubMedCrossRef Coe H, Michalak M. ERp57, a multifunctional endoplasmic reticulum resident oxidoreductase. Int J Biochem Cell Biol. 2010;42:796–799.PubMedCrossRef
168.
169.
go back to reference Del Cid N, Jeffery E, Rizvi SM et al. Modes of calreticulin recruitment to the major histocompatibility complex class I assembly pathway. J Biol Chem. 2010;285:4520–4535.PubMedCrossRef Del Cid N, Jeffery E, Rizvi SM et al. Modes of calreticulin recruitment to the major histocompatibility complex class I assembly pathway. J Biol Chem. 2010;285:4520–4535.PubMedCrossRef
170.
go back to reference Rizvi SM, Raghavan M. Direct peptide-regulatable interactions between MHC class I molecules and tapasin. Proc Natl Acad Sci U S A. 2006;103:18220–18225.PubMedPubMedCentralCrossRef Rizvi SM, Raghavan M. Direct peptide-regulatable interactions between MHC class I molecules and tapasin. Proc Natl Acad Sci U S A. 2006;103:18220–18225.PubMedPubMedCentralCrossRef
171.
172.
go back to reference Barnden MJ, Purcell AW, Gorman JJ, McCluskey J. Tapasin-mediated retention and optimization of peptide ligands during the assembly of class I molecules. J Immunol. 2000;165:322–330.PubMedCrossRef Barnden MJ, Purcell AW, Gorman JJ, McCluskey J. Tapasin-mediated retention and optimization of peptide ligands during the assembly of class I molecules. J Immunol. 2000;165:322–330.PubMedCrossRef
173.
go back to reference Barber LD, Howarth M, Bowness P, Elliott T. The quantity of naturally processed peptides stably bound by HLA-A*0201 is significantly reduced in the absence of tapasin. Tissue Antigens. 2001;58:363–368.PubMedCrossRef Barber LD, Howarth M, Bowness P, Elliott T. The quantity of naturally processed peptides stably bound by HLA-A*0201 is significantly reduced in the absence of tapasin. Tissue Antigens. 2001;58:363–368.PubMedCrossRef
174.
go back to reference Williams AP, Peh CA, Purcell AW, McCluskey J, Elliott T. Optimization of the MHC class I peptide cargo is dependent on tapasin. Immunity. 2002;16:509–520.PubMedCrossRef Williams AP, Peh CA, Purcell AW, McCluskey J, Elliott T. Optimization of the MHC class I peptide cargo is dependent on tapasin. Immunity. 2002;16:509–520.PubMedCrossRef
175.
go back to reference Wearsch PA, Peaper DR, Cresswell P. Essential glycan-dependent interactions optimize MHC class I peptide loading. Proc Natl Acad Sci U S A. 2011;108:4950–4955.PubMedPubMedCentralCrossRef Wearsch PA, Peaper DR, Cresswell P. Essential glycan-dependent interactions optimize MHC class I peptide loading. Proc Natl Acad Sci U S A. 2011;108:4950–4955.PubMedPubMedCentralCrossRef
176.
go back to reference Garbi N, Tan P, Diehl AD et al. Impaired immune responses and altered peptide repertoire in tapasin-deficient mice. Nat Immunol. 2000;1:234–238.PubMedCrossRef Garbi N, Tan P, Diehl AD et al. Impaired immune responses and altered peptide repertoire in tapasin-deficient mice. Nat Immunol. 2000;1:234–238.PubMedCrossRef
177.
go back to reference Grandea AG 3rd, Golovina TN, Hamilton SE et al. Impaired assembly yet normal trafficking of MHC class I molecules in Tapasin mutant mice. Immunity. 2000;13:213–222.PubMedCrossRef Grandea AG 3rd, Golovina TN, Hamilton SE et al. Impaired assembly yet normal trafficking of MHC class I molecules in Tapasin mutant mice. Immunity. 2000;13:213–222.PubMedCrossRef
178.
go back to reference Rizvi SM, Salam N, Geng J et al. Distinct assembly profiles of HLA-B molecules. J Immunol. 2014;192:4967–4976.PubMedCrossRef Rizvi SM, Salam N, Geng J et al. Distinct assembly profiles of HLA-B molecules. J Immunol. 2014;192:4967–4976.PubMedCrossRef
179.
go back to reference Peh CA, Burrows SR, Barnden M et al. HLA-B27-restricted antigen presentation in the absence of tapasin reveals polymorphism in mechanisms of HLA class I peptide loading. Immunity. 1998;8:531–542.PubMedCrossRef Peh CA, Burrows SR, Barnden M et al. HLA-B27-restricted antigen presentation in the absence of tapasin reveals polymorphism in mechanisms of HLA class I peptide loading. Immunity. 1998;8:531–542.PubMedCrossRef
180.
go back to reference Teng MS, Stephens R, Du Pasquier L et al. A human TAPBP (TAPASIN)-related gene. TAPBP-R. Eur J Immunol. 2002;32:1059–1068.PubMedCrossRef Teng MS, Stephens R, Du Pasquier L et al. A human TAPBP (TAPASIN)-related gene. TAPBP-R. Eur J Immunol. 2002;32:1059–1068.PubMedCrossRef
181.
go back to reference Neerincx A, Boyle LH. Properties of the tapasin homologue TAPBPR. Curr Opin Immunol. 2017;46:97–102.PubMedCrossRef Neerincx A, Boyle LH. Properties of the tapasin homologue TAPBPR. Curr Opin Immunol. 2017;46:97–102.PubMedCrossRef
182.
go back to reference Neerincx A, Hermann C, Antrobus R et al. TAPBPR bridges UDP-glucose:glycoprotein glucosyltransferase 1 onto MHC class I to provide quality control in the antigen presentation pathway. Elife. 2017;6:e23049.PubMedPubMedCentralCrossRef Neerincx A, Hermann C, Antrobus R et al. TAPBPR bridges UDP-glucose:glycoprotein glucosyltransferase 1 onto MHC class I to provide quality control in the antigen presentation pathway. Elife. 2017;6:e23049.PubMedPubMedCentralCrossRef
183.
go back to reference Carlsson SR, Roth J, Piller F, Fukuda M. Isolation and characterization of human lysosomal membrane glycoproteins, h-lamp-1 and h-lamp-2. Major sialoglycoproteins carrying polylactosaminoglycan. J Biol Chem. 1988;263:18911–18919.PubMedCrossRef Carlsson SR, Roth J, Piller F, Fukuda M. Isolation and characterization of human lysosomal membrane glycoproteins, h-lamp-1 and h-lamp-2. Major sialoglycoproteins carrying polylactosaminoglycan. J Biol Chem. 1988;263:18911–18919.PubMedCrossRef
184.
go back to reference Agarraberes FA, Dice JF. A molecular chaperone complex at the lysosomal membrane is required for protein translocation. J Cell Sci. 2001;114:2491–2499.PubMedCrossRef Agarraberes FA, Dice JF. A molecular chaperone complex at the lysosomal membrane is required for protein translocation. J Cell Sci. 2001;114:2491–2499.PubMedCrossRef
185.
go back to reference Bandyopadhyay U, Cuervo AM. Entering the lysosome through a transient gate by chaperone-mediated autophagy. Autophagy. 2008;4:1101–1103.PubMedCrossRef Bandyopadhyay U, Cuervo AM. Entering the lysosome through a transient gate by chaperone-mediated autophagy. Autophagy. 2008;4:1101–1103.PubMedCrossRef
186.
go back to reference Bandyopadhyay U, Kaushik S, Varticovski L, Cuervo AM. The chaperone-mediated autophagy receptor organizes in dynamic protein complexes at the lysosomal membrane. Mol Cell Biol. 2008;28:5747–5763.PubMedPubMedCentralCrossRef Bandyopadhyay U, Kaushik S, Varticovski L, Cuervo AM. The chaperone-mediated autophagy receptor organizes in dynamic protein complexes at the lysosomal membrane. Mol Cell Biol. 2008;28:5747–5763.PubMedPubMedCentralCrossRef
187.
go back to reference Crotzer VL, Blum JS. Autophagy and its role in MHC-mediated antigen presentation. J Immunol. 2009;182:3335–3341.PubMedCrossRef Crotzer VL, Blum JS. Autophagy and its role in MHC-mediated antigen presentation. J Immunol. 2009;182:3335–3341.PubMedCrossRef
188.
189.
190.
go back to reference Agarraberes FA, Terlecky SR, Dice JF. An intralysosomal hsp70 is required for a selective pathway of lysosomal protein degradation. J Cell Biol. 1997;137:825–834.PubMedPubMedCentralCrossRef Agarraberes FA, Terlecky SR, Dice JF. An intralysosomal hsp70 is required for a selective pathway of lysosomal protein degradation. J Cell Biol. 1997;137:825–834.PubMedPubMedCentralCrossRef
191.
go back to reference Rout AK, Strub MP, Piszczek G, Tjandra N. Structure of transmembrane domain of lysosome-associated membrane protein type 2a (LAMP-2A) reveals key features for substrate specificity in chaperone-mediated autophagy. J Biol Chem. 2014;289:35111–35123.PubMedPubMedCentralCrossRef Rout AK, Strub MP, Piszczek G, Tjandra N. Structure of transmembrane domain of lysosome-associated membrane protein type 2a (LAMP-2A) reveals key features for substrate specificity in chaperone-mediated autophagy. J Biol Chem. 2014;289:35111–35123.PubMedPubMedCentralCrossRef
192.
go back to reference Dice JF, Chiang HL, Spencer EP, Backer JM. Regulation of catabolism of microinjected ribonuclease A. Identification of residues 7–11 as the essential pentapeptide. J Biol Chem. 1986;261:6853–6859.PubMedCrossRef Dice JF, Chiang HL, Spencer EP, Backer JM. Regulation of catabolism of microinjected ribonuclease A. Identification of residues 7–11 as the essential pentapeptide. J Biol Chem. 1986;261:6853–6859.PubMedCrossRef
193.
go back to reference Chiang HL, Terlecky SR, Plant CP, Dice JF. A role for a 70-kilodalton heat shock protein in lysosomal degradation of intracellular proteins. Science. 1989;246:382–385.PubMedCrossRef Chiang HL, Terlecky SR, Plant CP, Dice JF. A role for a 70-kilodalton heat shock protein in lysosomal degradation of intracellular proteins. Science. 1989;246:382–385.PubMedCrossRef
194.
195.
196.
go back to reference Tutar Y, Song Y, Masison DC. Primate chaperones Hsc70 (constitutive) and Hsp70 (induced) differ functionally in supporting growth and prion propagation in Saccharomyces cerevisiae. Genetics. 2006;172:851–861.PubMedPubMedCentralCrossRef Tutar Y, Song Y, Masison DC. Primate chaperones Hsc70 (constitutive) and Hsp70 (induced) differ functionally in supporting growth and prion propagation in Saccharomyces cerevisiae. Genetics. 2006;172:851–861.PubMedPubMedCentralCrossRef
197.
go back to reference Malnati MS, Marti M, LaVaute T et al. Processing pathways for presentation of cytosolic antigen to MHC class II-restricted T cells. Nature. 1992;357:702–704.PubMedCrossRef Malnati MS, Marti M, LaVaute T et al. Processing pathways for presentation of cytosolic antigen to MHC class II-restricted T cells. Nature. 1992;357:702–704.PubMedCrossRef
198.
go back to reference Malnati MS, Ceman S, Weston M, DeMars R, Long EO. Presentation of cytosolic antigen by HLA-DR requires a function encoded in the class II region of the MHC. J Immunol. 1993;151:6751–6756.PubMedCrossRef Malnati MS, Ceman S, Weston M, DeMars R, Long EO. Presentation of cytosolic antigen by HLA-DR requires a function encoded in the class II region of the MHC. J Immunol. 1993;151:6751–6756.PubMedCrossRef
199.
go back to reference Perez L, McLetchie S, Gardiner GJ et al. LAMP-2C inhibits MHC class II presentation of cytoplasmic antigens by disrupting chaperone-mediated autophagy. J Immunol. 2016;196:2457–2465.PubMedCrossRef Perez L, McLetchie S, Gardiner GJ et al. LAMP-2C inhibits MHC class II presentation of cytoplasmic antigens by disrupting chaperone-mediated autophagy. J Immunol. 2016;196:2457–2465.PubMedCrossRef
200.
go back to reference Danon MJ, Oh SJ, DiMauro S et al. Lysosomal glycogen storage disease with normal acid maltase. Neurology. 1981;31:51–57.PubMedCrossRef Danon MJ, Oh SJ, DiMauro S et al. Lysosomal glycogen storage disease with normal acid maltase. Neurology. 1981;31:51–57.PubMedCrossRef
201.
go back to reference Nishino I, Fu J, Tanji K et al. Primary LAMP-2 deficiency causes X-linked vacuolar cardiomyopathy and myopathy (Danon disease). Nature. 2000;406:906–910.PubMedCrossRef Nishino I, Fu J, Tanji K et al. Primary LAMP-2 deficiency causes X-linked vacuolar cardiomyopathy and myopathy (Danon disease). Nature. 2000;406:906–910.PubMedCrossRef
202.
go back to reference Crotzer VL, Glosson N, Zhou D, Nishino I, Blum JS. LAMP-2-deficient human B cells exhibit altered MHC class II presentation of exogenous antigens. Immunology. 2010;131:318–330.PubMedPubMedCentralCrossRef Crotzer VL, Glosson N, Zhou D, Nishino I, Blum JS. LAMP-2-deficient human B cells exhibit altered MHC class II presentation of exogenous antigens. Immunology. 2010;131:318–330.PubMedPubMedCentralCrossRef
203.
go back to reference Wang L, Wang J, Shi Y et al. Identification of a primary biliary cirrhosis associated protein as lysosome-associated membrane protein-2. J Proteomics. 2013;91:569–579.PubMedCrossRef Wang L, Wang J, Shi Y et al. Identification of a primary biliary cirrhosis associated protein as lysosome-associated membrane protein-2. J Proteomics. 2013;91:569–579.PubMedCrossRef
204.
205.
go back to reference Sun K, Ma S, Tian S et al. An enhanced level of LAMP-2A participates in CD4(+)T cell hyperactivity in patients with primary biliary cholangitis. Ann Transl Med. 2021;9:101.PubMedPubMedCentralCrossRef Sun K, Ma S, Tian S et al. An enhanced level of LAMP-2A participates in CD4(+)T cell hyperactivity in patients with primary biliary cholangitis. Ann Transl Med. 2021;9:101.PubMedPubMedCentralCrossRef
206.
go back to reference Cuervo AM, Dice JF. Age-related decline in chaperone-mediated autophagy. J Biol Chem. 2000;275:31505–31513.PubMedCrossRef Cuervo AM, Dice JF. Age-related decline in chaperone-mediated autophagy. J Biol Chem. 2000;275:31505–31513.PubMedCrossRef
207.
go back to reference Tsukahara T, Kimura S, Ichimiya S et al. Scythe/BAT3 regulates apoptotic cell death induced by papillomavirus binding factor in human osteosarcoma. Cancer Sci. 2009;100:47–53.PubMedCrossRef Tsukahara T, Kimura S, Ichimiya S et al. Scythe/BAT3 regulates apoptotic cell death induced by papillomavirus binding factor in human osteosarcoma. Cancer Sci. 2009;100:47–53.PubMedCrossRef
208.
go back to reference Desmots F, Russell HR, Lee Y, Boyd K, McKinnon PJ. The reaper-binding protein scythe modulates apoptosis and proliferation during mammalian development. Mol Cell Biol. 2005;25:10329–10337.PubMedPubMedCentralCrossRef Desmots F, Russell HR, Lee Y, Boyd K, McKinnon PJ. The reaper-binding protein scythe modulates apoptosis and proliferation during mammalian development. Mol Cell Biol. 2005;25:10329–10337.PubMedPubMedCentralCrossRef
209.
go back to reference Desmots F, Russell HR, Michel D, McKinnon PJ. Scythe regulates apoptosis-inducing factor stability during endoplasmic reticulum stress-induced apoptosis. J Biol Chem. 2008;283:3264–3271.PubMedCrossRef Desmots F, Russell HR, Michel D, McKinnon PJ. Scythe regulates apoptosis-inducing factor stability during endoplasmic reticulum stress-induced apoptosis. J Biol Chem. 2008;283:3264–3271.PubMedCrossRef
210.
go back to reference Winnefeld M, Grewenig A, Schnolzer M et al. Human SGT interacts with Bag-6/Bat-3/Scythe and cells with reduced levels of either protein display persistence of few misaligned chromosomes and mitotic arrest. Exp Cell Res. 2006;312:2500–2514.PubMedCrossRef Winnefeld M, Grewenig A, Schnolzer M et al. Human SGT interacts with Bag-6/Bat-3/Scythe and cells with reduced levels of either protein display persistence of few misaligned chromosomes and mitotic arrest. Exp Cell Res. 2006;312:2500–2514.PubMedCrossRef
211.
go back to reference Kwak JH, Kim SI, Kim JK, Choi ME. BAT3 interacts with transforming growth factor-beta (TGF-beta) receptors and enhances TGF-beta1-induced type I collagen expression in mesangial cells. J Biol Chem. 2008;283:19816–19825.PubMedPubMedCentralCrossRef Kwak JH, Kim SI, Kim JK, Choi ME. BAT3 interacts with transforming growth factor-beta (TGF-beta) receptors and enhances TGF-beta1-induced type I collagen expression in mesangial cells. J Biol Chem. 2008;283:19816–19825.PubMedPubMedCentralCrossRef
212.
go back to reference Corduan A, Lecomte S, Martin C, Michel D, Desmots F. Sequential interplay between BAG6 and HSP70 upon heat shock. Cell Mol Life Sci. 2009;66:1998–2004.PubMedCrossRef Corduan A, Lecomte S, Martin C, Michel D, Desmots F. Sequential interplay between BAG6 and HSP70 upon heat shock. Cell Mol Life Sci. 2009;66:1998–2004.PubMedCrossRef
213.
go back to reference Monney L, Sabatos CA, Gaglia JL et al. Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease. Nature. 2002;415:536–541.PubMedCrossRef Monney L, Sabatos CA, Gaglia JL et al. Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease. Nature. 2002;415:536–541.PubMedCrossRef
214.
go back to reference Czaja AJ. Under-evaluated or unassessed pathogenic pathways in autoimmune hepatitis and implications for future management. Dig Dis Sci. 2018;63:1706–1725.PubMedCrossRef Czaja AJ. Under-evaluated or unassessed pathogenic pathways in autoimmune hepatitis and implications for future management. Dig Dis Sci. 2018;63:1706–1725.PubMedCrossRef
215.
go back to reference Cao E, Zang X, Ramagopal UA et al. T cell immunoglobulin mucin-3 crystal structure reveals a galectin-9-independent ligand-binding surface. Immunity. 2007;26:311–321.PubMedCrossRef Cao E, Zang X, Ramagopal UA et al. T cell immunoglobulin mucin-3 crystal structure reveals a galectin-9-independent ligand-binding surface. Immunity. 2007;26:311–321.PubMedCrossRef
216.
go back to reference Zhu C, Anderson AC, Schubart A et al. The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat Immunol. 2005;6:1245–1252.PubMedCrossRef Zhu C, Anderson AC, Schubart A et al. The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat Immunol. 2005;6:1245–1252.PubMedCrossRef
217.
go back to reference de Mingo PA, Hanggi K, Celias DP et al. The inhibitory receptor TIM-3 limits activation of the cGAS-STING pathway in intra-tumoral dendritic cells by suppressing extracellular DNA uptake. Immunity. 2021;54:e1157. de Mingo PA, Hanggi K, Celias DP et al. The inhibitory receptor TIM-3 limits activation of the cGAS-STING pathway in intra-tumoral dendritic cells by suppressing extracellular DNA uptake. Immunity. 2021;54:e1157.
218.
go back to reference Dardalhon V, Anderson AC, Karman J et al. Tim-3/galectin-9 pathway: regulation of Th1 immunity through promotion of CD11b+Ly-6G+ myeloid cells. J Immunol. 2010;185:1383–1392.PubMedCrossRef Dardalhon V, Anderson AC, Karman J et al. Tim-3/galectin-9 pathway: regulation of Th1 immunity through promotion of CD11b+Ly-6G+ myeloid cells. J Immunol. 2010;185:1383–1392.PubMedCrossRef
221.
go back to reference McKinney EF, Lee JC, Jayne DR, Lyons PA, Smith KG. T-cell exhaustion, co-stimulation and clinical outcome in autoimmunity and infection. Nature. 2015;523:612–616.PubMedPubMedCentralCrossRef McKinney EF, Lee JC, Jayne DR, Lyons PA, Smith KG. T-cell exhaustion, co-stimulation and clinical outcome in autoimmunity and infection. Nature. 2015;523:612–616.PubMedPubMedCentralCrossRef
222.
go back to reference McKinney EF, Smith KG. T-cell exhaustion: understanding the interface of chronic viral and autoinflammatory diseases. Immunol Cell Biol. 2016;94:935–942.PubMedCrossRef McKinney EF, Smith KG. T-cell exhaustion: understanding the interface of chronic viral and autoinflammatory diseases. Immunol Cell Biol. 2016;94:935–942.PubMedCrossRef
223.
go back to reference McKinney EF, Smith KG. T cell exhaustion and immune-mediated disease-the potential for therapeutic exhaustion. Curr Opin Immunol. 2016;43:74–80.PubMedCrossRef McKinney EF, Smith KG. T cell exhaustion and immune-mediated disease-the potential for therapeutic exhaustion. Curr Opin Immunol. 2016;43:74–80.PubMedCrossRef
224.
go back to reference Jin HT, Anderson AC, Tan WG et al. Cooperation of Tim-3 and PD-1 in CD8 T-cell exhaustion during chronic viral infection. Proc Natl Acad Sci U S A. 2010;107:14733–14738.PubMedPubMedCentralCrossRef Jin HT, Anderson AC, Tan WG et al. Cooperation of Tim-3 and PD-1 in CD8 T-cell exhaustion during chronic viral infection. Proc Natl Acad Sci U S A. 2010;107:14733–14738.PubMedPubMedCentralCrossRef
225.
go back to reference Degli-Esposti MA, Abraham LJ, McCann V et al. Ancestral haplotypes reveal the role of the central MHC in the immunogenetics of IDDM. Immunogenetics. 1992;36:345–356.PubMedCrossRef Degli-Esposti MA, Abraham LJ, McCann V et al. Ancestral haplotypes reveal the role of the central MHC in the immunogenetics of IDDM. Immunogenetics. 1992;36:345–356.PubMedCrossRef
227.
go back to reference Millar DG, Garza KM, Odermatt B et al. Hsp70 promotes antigen-presenting cell function and converts T-cell tolerance to autoimmunity in vivo. Nat Med. 2003;9:1469–1476.PubMedCrossRef Millar DG, Garza KM, Odermatt B et al. Hsp70 promotes antigen-presenting cell function and converts T-cell tolerance to autoimmunity in vivo. Nat Med. 2003;9:1469–1476.PubMedCrossRef
228.
go back to reference Deocharan B, Zhou Z, Antar K et al. Alpha-actinin immunization elicits anti-chromatin autoimmunity in nonautoimmune mice. J Immunol. 2007;179:1313–1321.PubMedCrossRef Deocharan B, Zhou Z, Antar K et al. Alpha-actinin immunization elicits anti-chromatin autoimmunity in nonautoimmune mice. J Immunol. 2007;179:1313–1321.PubMedCrossRef
229.
go back to reference Panayi GS, Corrigall VM. BiP regulates autoimmune inflammation and tissue damage. Autoimmun Rev. 2006;5:140–142.PubMedCrossRef Panayi GS, Corrigall VM. BiP regulates autoimmune inflammation and tissue damage. Autoimmun Rev. 2006;5:140–142.PubMedCrossRef
230.
go back to reference Wang L, Fu Y, Yu B et al. HSP70, a novel regulatory molecule in B cell-mediated suppression of autoimmune diseases. J Mol Biol. 2021;433:166634.PubMedCrossRef Wang L, Fu Y, Yu B et al. HSP70, a novel regulatory molecule in B cell-mediated suppression of autoimmune diseases. J Mol Biol. 2021;433:166634.PubMedCrossRef
231.
go back to reference Czaja AJ. Emerging therapeutic biomarkers of autoimmune hepatitis and their impact on current and future management. Expert Rev Gastroenterol Hepatol. 2018;12:547–564.PubMedCrossRef Czaja AJ. Emerging therapeutic biomarkers of autoimmune hepatitis and their impact on current and future management. Expert Rev Gastroenterol Hepatol. 2018;12:547–564.PubMedCrossRef
232.
go back to reference Harrington C, Krishnan S, Mack CL et al. Noninvasive biomarkers for the diagnosis and management of autoimmune hepatitis. Hepatology. 2022;76:1862–1879.PubMedCrossRef Harrington C, Krishnan S, Mack CL et al. Noninvasive biomarkers for the diagnosis and management of autoimmune hepatitis. Hepatology. 2022;76:1862–1879.PubMedCrossRef
233.
go back to reference Massa M, Passalia M, Manzoni SM et al. Differential recognition of heat-shock protein dnaJ-derived epitopes by effector and Treg cells leads to modulation of inflammation in juvenile idiopathic arthritis. Arthritis Rheum. 2007;56:1648–1657.PubMedCrossRef Massa M, Passalia M, Manzoni SM et al. Differential recognition of heat-shock protein dnaJ-derived epitopes by effector and Treg cells leads to modulation of inflammation in juvenile idiopathic arthritis. Arthritis Rheum. 2007;56:1648–1657.PubMedCrossRef
234.
go back to reference Dominguez Mdel C, Lorenzo N, Barbera A et al. An altered peptide ligand corresponding to a novel epitope from heat-shock protein 60 induces regulatory T cells and suppresses pathogenic response in an animal model of adjuvant-induced arthritis. Autoimmunity. 2011;44:471–482.PubMedCrossRef Dominguez Mdel C, Lorenzo N, Barbera A et al. An altered peptide ligand corresponding to a novel epitope from heat-shock protein 60 induces regulatory T cells and suppresses pathogenic response in an animal model of adjuvant-induced arthritis. Autoimmunity. 2011;44:471–482.PubMedCrossRef
235.
go back to reference Puga Yung GL, Fidler M, Albani E et al. Heat shock protein-derived T-cell epitopes contribute to autoimmune inflammation in pediatric Crohn’s disease. PLoS One. 2009;4:e7714.PubMedPubMedCentralCrossRef Puga Yung GL, Fidler M, Albani E et al. Heat shock protein-derived T-cell epitopes contribute to autoimmune inflammation in pediatric Crohn’s disease. PLoS One. 2009;4:e7714.PubMedPubMedCentralCrossRef
236.
go back to reference Lohse AW, Dienes HP, Herkel J et al. Expression of the 60 kDa heat shock protein in normal and inflamed liver. J Hepatol. 1993;19:159–166.PubMedCrossRef Lohse AW, Dienes HP, Herkel J et al. Expression of the 60 kDa heat shock protein in normal and inflamed liver. J Hepatol. 1993;19:159–166.PubMedCrossRef
237.
go back to reference Jones DB, Coulson AF, Duff GW. Sequence homologies between hsp60 and autoantigens. Immunol Today. 1993;14:115–118.PubMedCrossRef Jones DB, Coulson AF, Duff GW. Sequence homologies between hsp60 and autoantigens. Immunol Today. 1993;14:115–118.PubMedCrossRef
238.
go back to reference Martins EB, Chapman RW, Marron K, Fleming KA. Biliary expression of heat shock protein: a non-specific feature of chronic cholestatic liver diseases. J Clin Pathol. 1996;49:53–56.PubMedPubMedCentralCrossRef Martins EB, Chapman RW, Marron K, Fleming KA. Biliary expression of heat shock protein: a non-specific feature of chronic cholestatic liver diseases. J Clin Pathol. 1996;49:53–56.PubMedPubMedCentralCrossRef
239.
go back to reference Tukaj S, Wegrzyn G. Anti-Hsp90 therapy in autoimmune and inflammatory diseases: a review of preclinical studies. Cell Stress Chaperones. 2016;21:213–218.PubMedPubMedCentralCrossRef Tukaj S, Wegrzyn G. Anti-Hsp90 therapy in autoimmune and inflammatory diseases: a review of preclinical studies. Cell Stress Chaperones. 2016;21:213–218.PubMedPubMedCentralCrossRef
240.
go back to reference Bae J, Munshi A, Li C et al. Heat shock protein 90 is critical for regulation of phenotype and functional activity of human T lymphocytes and NK cells. J Immunol. 2013;190:1360–1371.PubMedCrossRef Bae J, Munshi A, Li C et al. Heat shock protein 90 is critical for regulation of phenotype and functional activity of human T lymphocytes and NK cells. J Immunol. 2013;190:1360–1371.PubMedCrossRef
241.
go back to reference Tukaj S, Zillikens D, Kasperkiewicz M. Inhibitory effects of heat shock protein 90 blockade on proinflammatory human Th1 and Th17 cell subpopulations. J Inflamm (Lond). 2014;11:10.PubMedPubMedCentralCrossRef Tukaj S, Zillikens D, Kasperkiewicz M. Inhibitory effects of heat shock protein 90 blockade on proinflammatory human Th1 and Th17 cell subpopulations. J Inflamm (Lond). 2014;11:10.PubMedPubMedCentralCrossRef
242.
go back to reference Chandawarkar RY, Wagh MS, Kovalchin JT, Srivastava P. Immune modulation with high-dose heat-shock protein gp96: therapy of murine autoimmune diabetes and encephalomyelitis. Int Immunol. 2004;16:615–624.PubMedCrossRef Chandawarkar RY, Wagh MS, Kovalchin JT, Srivastava P. Immune modulation with high-dose heat-shock protein gp96: therapy of murine autoimmune diabetes and encephalomyelitis. Int Immunol. 2004;16:615–624.PubMedCrossRef
243.
go back to reference Jones D, Manns MP, Terracciano L, Torbenson M, Vierling JM. Unmet needs and new models for future trials in autoimmune hepatitis. Lancet Gastroenterol Hepatol. 2018;3:363–370.PubMedCrossRef Jones D, Manns MP, Terracciano L, Torbenson M, Vierling JM. Unmet needs and new models for future trials in autoimmune hepatitis. Lancet Gastroenterol Hepatol. 2018;3:363–370.PubMedCrossRef
244.
go back to reference Vierling JM, Kerkar N, Czaja AJ et al. Immunosuppressive treatment regimens in autoimmune hepatitis: systematic reviews and meta-analyses supporting American Association for the Study of Liver Diseases guidelines. Hepatology. 2020;72:753–769.PubMedCrossRef Vierling JM, Kerkar N, Czaja AJ et al. Immunosuppressive treatment regimens in autoimmune hepatitis: systematic reviews and meta-analyses supporting American Association for the Study of Liver Diseases guidelines. Hepatology. 2020;72:753–769.PubMedCrossRef
245.
go back to reference Mack CL, Adams D, Assis DN et al. Diagnosis and management of autoimmune hepatitis in adults and children: 2019 practice guidance and guidelines from the American Association for the Study of Liver Diseases. Hepatology. 2020;72:671–722.PubMedCrossRef Mack CL, Adams D, Assis DN et al. Diagnosis and management of autoimmune hepatitis in adults and children: 2019 practice guidance and guidelines from the American Association for the Study of Liver Diseases. Hepatology. 2020;72:671–722.PubMedCrossRef
246.
go back to reference Wieten L, van der Zee R, Spiering R et al. A novel heat-shock protein coinducer boosts stress protein Hsp70 to activate T cell regulation of inflammation in autoimmune arthritis. Arthritis Rheum. 2010;62:1026–1035.PubMedCrossRef Wieten L, van der Zee R, Spiering R et al. A novel heat-shock protein coinducer boosts stress protein Hsp70 to activate T cell regulation of inflammation in autoimmune arthritis. Arthritis Rheum. 2010;62:1026–1035.PubMedCrossRef
247.
248.
go back to reference Elias D, Meilin A, Ablamunits V et al. Hsp60 peptide therapy of NOD mouse diabetes induces a Th2 cytokine burst and downregulates autoimmunity to various beta-cell antigens. Diabetes. 1997;46:758–764.PubMedCrossRef Elias D, Meilin A, Ablamunits V et al. Hsp60 peptide therapy of NOD mouse diabetes induces a Th2 cytokine burst and downregulates autoimmunity to various beta-cell antigens. Diabetes. 1997;46:758–764.PubMedCrossRef
249.
go back to reference Ablamunits V, Elias D, Reshef T, Cohen IR. Islet T cells secreting IFN-gamma in NOD mouse diabetes: arrest by p277 peptide treatment. J Autoimmun. 1998;11:73–81.PubMedCrossRef Ablamunits V, Elias D, Reshef T, Cohen IR. Islet T cells secreting IFN-gamma in NOD mouse diabetes: arrest by p277 peptide treatment. J Autoimmun. 1998;11:73–81.PubMedCrossRef
250.
go back to reference Prakken BJ, Samodal R, Le TD et al. Epitope-specific immunotherapy induces immune deviation of proinflammatory T cells in rheumatoid arthritis. Proc Natl Acad Sci U S A. 2004;101:4228–4233.PubMedPubMedCentralCrossRef Prakken BJ, Samodal R, Le TD et al. Epitope-specific immunotherapy induces immune deviation of proinflammatory T cells in rheumatoid arthritis. Proc Natl Acad Sci U S A. 2004;101:4228–4233.PubMedPubMedCentralCrossRef
251.
go back to reference Koffeman EC, Genovese M, Amox D et al. Epitope-specific immunotherapy of rheumatoid arthritis: clinical responsiveness occurs with immune deviation and relies on the expression of a cluster of molecules associated with T cell tolerance in a double-blind, placebo-controlled, pilot phase II trial. Arthritis Rheum. 2009;60:3207–3216.PubMedCrossRef Koffeman EC, Genovese M, Amox D et al. Epitope-specific immunotherapy of rheumatoid arthritis: clinical responsiveness occurs with immune deviation and relies on the expression of a cluster of molecules associated with T cell tolerance in a double-blind, placebo-controlled, pilot phase II trial. Arthritis Rheum. 2009;60:3207–3216.PubMedCrossRef
252.
go back to reference Vanags D, Williams B, Johnson B et al. Therapeutic efficacy and safety of chaperonin 10 in patients with rheumatoid arthritis: a double-blind randomised trial. Lancet. 2006;368:855–863.PubMedCrossRef Vanags D, Williams B, Johnson B et al. Therapeutic efficacy and safety of chaperonin 10 in patients with rheumatoid arthritis: a double-blind randomised trial. Lancet. 2006;368:855–863.PubMedCrossRef
253.
go back to reference Kirkham B, Chaabo K, Hall C et al. Safety and patient response as indicated by biomarker changes to binding immunoglobulin protein in the phase I/IIA RAGULA clinical trial in rheumatoid arthritis. Rheumatology (Oxford). 2016;55:1993–2000.PubMedPubMedCentralCrossRef Kirkham B, Chaabo K, Hall C et al. Safety and patient response as indicated by biomarker changes to binding immunoglobulin protein in the phase I/IIA RAGULA clinical trial in rheumatoid arthritis. Rheumatology (Oxford). 2016;55:1993–2000.PubMedPubMedCentralCrossRef
254.
go back to reference Corrales O, Hernandez L, Prada D et al. CIGB-814, an altered peptide ligand derived from human heat-shock protein 60, decreases anti-cyclic citrullinated peptides antibodies in patients with rheumatoid arthritis. Clin Rheumatol. 2019;38:955–960.PubMedCrossRef Corrales O, Hernandez L, Prada D et al. CIGB-814, an altered peptide ligand derived from human heat-shock protein 60, decreases anti-cyclic citrullinated peptides antibodies in patients with rheumatoid arthritis. Clin Rheumatol. 2019;38:955–960.PubMedCrossRef
255.
go back to reference van Eden W, van der Zee R, Prakken B. Heat-shock proteins induce T-cell regulation of chronic inflammation. Nat Rev Immunol. 2005;5:318–330.PubMedCrossRef van Eden W, van der Zee R, Prakken B. Heat-shock proteins induce T-cell regulation of chronic inflammation. Nat Rev Immunol. 2005;5:318–330.PubMedCrossRef
256.
258.
go back to reference Huurman VA, van der Meide PE, Duinkerken G et al. Immunological efficacy of heat shock protein 60 peptide DiaPep277 therapy in clinical type I diabetes. Clin Exp Immunol. 2008;152:488–497.PubMedPubMedCentralCrossRef Huurman VA, van der Meide PE, Duinkerken G et al. Immunological efficacy of heat shock protein 60 peptide DiaPep277 therapy in clinical type I diabetes. Clin Exp Immunol. 2008;152:488–497.PubMedPubMedCentralCrossRef
259.
go back to reference Lazar L, Ofan R, Weintrob N et al. Heat-shock protein peptide DiaPep277 treatment in children with newly diagnosed type 1 diabetes: a randomised, double-blind phase II study. Diabetes Metab Res Rev. 2007;23:286–291.PubMedCrossRef Lazar L, Ofan R, Weintrob N et al. Heat-shock protein peptide DiaPep277 treatment in children with newly diagnosed type 1 diabetes: a randomised, double-blind phase II study. Diabetes Metab Res Rev. 2007;23:286–291.PubMedCrossRef
260.
go back to reference Whitesell L, Mimnaugh EG, De Costa B, Myers CE, Neckers LM. Inhibition of heat shock protein HSP90-pp60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. Proc Natl Acad Sci U S A. 1994;91:8324–8328.PubMedPubMedCentralCrossRef Whitesell L, Mimnaugh EG, De Costa B, Myers CE, Neckers LM. Inhibition of heat shock protein HSP90-pp60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. Proc Natl Acad Sci U S A. 1994;91:8324–8328.PubMedPubMedCentralCrossRef
261.
go back to reference Zou J, Guo Y, Guettouche T, Smith DF, Voellmy R. Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell. 1998;94:471–480.PubMedCrossRef Zou J, Guo Y, Guettouche T, Smith DF, Voellmy R. Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell. 1998;94:471–480.PubMedCrossRef
262.
go back to reference Wieten L, Broere F, van der Zee R et al. Cell stress induced HSP are targets of regulatory T cells: a role for HSP inducing compounds as anti-inflammatory immuno-modulators? FEBS Lett. 2007;581:3716–3722.PubMedCrossRef Wieten L, Broere F, van der Zee R et al. Cell stress induced HSP are targets of regulatory T cells: a role for HSP inducing compounds as anti-inflammatory immuno-modulators? FEBS Lett. 2007;581:3716–3722.PubMedCrossRef
263.
go back to reference Otaka M, Yamamoto S, Ogasawara K et al. The induction mechanism of the molecular chaperone HSP70 in the gastric mucosa by Geranylgeranylacetone (HSP-inducer). Biochem Biophys Res Commun. 2007;353:399–404.PubMedCrossRef Otaka M, Yamamoto S, Ogasawara K et al. The induction mechanism of the molecular chaperone HSP70 in the gastric mucosa by Geranylgeranylacetone (HSP-inducer). Biochem Biophys Res Commun. 2007;353:399–404.PubMedCrossRef
264.
go back to reference Lee BS, Chen J, Angelidis C, Jurivich DA, Morimoto RI. Pharmacological modulation of heat shock factor 1 by antiinflammatory drugs results in protection against stress-induced cellular damage. Proc Natl Acad Sci U S A. 1995;92:7207–7211.PubMedPubMedCentralCrossRef Lee BS, Chen J, Angelidis C, Jurivich DA, Morimoto RI. Pharmacological modulation of heat shock factor 1 by antiinflammatory drugs results in protection against stress-induced cellular damage. Proc Natl Acad Sci U S A. 1995;92:7207–7211.PubMedPubMedCentralCrossRef
265.
go back to reference Ma C, Chen J, Li P. Geldanamycin induces apoptosis and inhibits inflammation in fibroblast-like synoviocytes isolated from rheumatoid arthritis patients. J Cell Biochem. 2019;120:16254–16263.PubMedCrossRef Ma C, Chen J, Li P. Geldanamycin induces apoptosis and inhibits inflammation in fibroblast-like synoviocytes isolated from rheumatoid arthritis patients. J Cell Biochem. 2019;120:16254–16263.PubMedCrossRef
266.
go back to reference Saeki Y, Okita Y, Igashira-Oguro E et al. Modulation of TNFR 1-triggered two opposing signals for inflammation and apoptosis via RIPK 1 disruption by geldanamycin in rheumatoid arthritis. Clin Rheumatol. 2021;40:2395–2405.PubMedCrossRef Saeki Y, Okita Y, Igashira-Oguro E et al. Modulation of TNFR 1-triggered two opposing signals for inflammation and apoptosis via RIPK 1 disruption by geldanamycin in rheumatoid arthritis. Clin Rheumatol. 2021;40:2395–2405.PubMedCrossRef
267.
go back to reference Supko JG, Hickman RL, Grever MR, Malspeis L. Preclinical pharmacologic evaluation of geldanamycin as an antitumor agent. Cancer Chemother Pharmacol. 1995;36:305–315.PubMedCrossRef Supko JG, Hickman RL, Grever MR, Malspeis L. Preclinical pharmacologic evaluation of geldanamycin as an antitumor agent. Cancer Chemother Pharmacol. 1995;36:305–315.PubMedCrossRef
268.
go back to reference Fukuyo Y, Hunt CR, Horikoshi N. Geldanamycin and its anti-cancer activities. Cancer Lett. 2010;290:24–35.PubMedCrossRef Fukuyo Y, Hunt CR, Horikoshi N. Geldanamycin and its anti-cancer activities. Cancer Lett. 2010;290:24–35.PubMedCrossRef
269.
go back to reference Ardestani M, Khorsandi Z, Keshavarzipour F et al. Heterocyclic compounds as Hsp90 inhibitors: a perspective on anticancer applications. Pharmaceutics. 2022;14:2220.PubMedPubMedCentralCrossRef Ardestani M, Khorsandi Z, Keshavarzipour F et al. Heterocyclic compounds as Hsp90 inhibitors: a perspective on anticancer applications. Pharmaceutics. 2022;14:2220.PubMedPubMedCentralCrossRef
270.
go back to reference Shahini E, Pasculli G, Mastropietro A et al. Network proximity-based drug repurposing strategy for early and late stages of primary biliary cholangitis. Biomedicines. 2022;10:1694.PubMedPubMedCentralCrossRef Shahini E, Pasculli G, Mastropietro A et al. Network proximity-based drug repurposing strategy for early and late stages of primary biliary cholangitis. Biomedicines. 2022;10:1694.PubMedPubMedCentralCrossRef
271.
go back to reference Suarez Del Pino JA, Kolhatkar R. Delivery of HSP90 inhibitor using water soluble polymeric conjugates with high drug payload. Pharm Res. 2017;34:2735–2748.PubMedCrossRef Suarez Del Pino JA, Kolhatkar R. Delivery of HSP90 inhibitor using water soluble polymeric conjugates with high drug payload. Pharm Res. 2017;34:2735–2748.PubMedCrossRef
272.
go back to reference Mailer RKW, Gistera A, Polyzos KA, Ketelhuth DFJ, Hansson GK. Hypercholesterolemia induces differentiation of regulatory T cells in the liver. Circ Res. 2017;120:1740–1753.PubMedCrossRef Mailer RKW, Gistera A, Polyzos KA, Ketelhuth DFJ, Hansson GK. Hypercholesterolemia induces differentiation of regulatory T cells in the liver. Circ Res. 2017;120:1740–1753.PubMedCrossRef
273.
go back to reference Steinman RM, Nussenzweig MC. Avoiding horror autotoxicus: the importance of dendritic cells in peripheral T cell tolerance. Proc Natl Acad Sci U S A. 2002;99:351–358.PubMedPubMedCentralCrossRef Steinman RM, Nussenzweig MC. Avoiding horror autotoxicus: the importance of dendritic cells in peripheral T cell tolerance. Proc Natl Acad Sci U S A. 2002;99:351–358.PubMedPubMedCentralCrossRef
274.
go back to reference Darrasse-Jeze G, Deroubaix S, Mouquet H et al. Feedback control of regulatory T cell homeostasis by dendritic cells in vivo. J Exp Med. 2009;206:1853–1862.PubMedPubMedCentralCrossRef Darrasse-Jeze G, Deroubaix S, Mouquet H et al. Feedback control of regulatory T cell homeostasis by dendritic cells in vivo. J Exp Med. 2009;206:1853–1862.PubMedPubMedCentralCrossRef
275.
go back to reference Osorio F, Fuentes C, Lopez MN, Salazar-Onfray F, Gonzalez FE. Role of dendritic cells in the induction of lymphocyte tolerance. Front Immunol. 2015;6:535.PubMedPubMedCentralCrossRef Osorio F, Fuentes C, Lopez MN, Salazar-Onfray F, Gonzalez FE. Role of dendritic cells in the induction of lymphocyte tolerance. Front Immunol. 2015;6:535.PubMedPubMedCentralCrossRef
276.
go back to reference Harry RA, Anderson AE, Isaacs JD, Hilkens CM. Generation and characterisation of therapeutic tolerogenic dendritic cells for rheumatoid arthritis. Ann Rheum Dis. 2010;69:2042–2050.PubMedCrossRef Harry RA, Anderson AE, Isaacs JD, Hilkens CM. Generation and characterisation of therapeutic tolerogenic dendritic cells for rheumatoid arthritis. Ann Rheum Dis. 2010;69:2042–2050.PubMedCrossRef
277.
go back to reference Bell GM, Anderson AE, Diboll J et al. Autologous tolerogenic dendritic cells for rheumatoid and inflammatory arthritis. Ann Rheum Dis. 2017;76:227–234.PubMedCrossRef Bell GM, Anderson AE, Diboll J et al. Autologous tolerogenic dendritic cells for rheumatoid and inflammatory arthritis. Ann Rheum Dis. 2017;76:227–234.PubMedCrossRef
278.
go back to reference Rea D, van Kooten C, van Meijgaarden KE et al. Glucocorticoids transform CD40-triggering of dendritic cells into an alternative activation pathway resulting in antigen-presenting cells that secrete IL-10. Blood. 2000;95:3162–3167.PubMedCrossRef Rea D, van Kooten C, van Meijgaarden KE et al. Glucocorticoids transform CD40-triggering of dendritic cells into an alternative activation pathway resulting in antigen-presenting cells that secrete IL-10. Blood. 2000;95:3162–3167.PubMedCrossRef
279.
go back to reference Calmette J, Ellouze M, Tran T et al. Glucocorticoid-induced leucine zipper enhanced expression in dendritic cells is sufficient to drive regulatory T cells expansion in vivo. J Immunol. 2014;193:5863–5872.PubMedCrossRef Calmette J, Ellouze M, Tran T et al. Glucocorticoid-induced leucine zipper enhanced expression in dendritic cells is sufficient to drive regulatory T cells expansion in vivo. J Immunol. 2014;193:5863–5872.PubMedCrossRef
280.
go back to reference Hackstein H, Taner T, Zahorchak AF et al. Rapamycin inhibits IL-4–induced dendritic cell maturation in vitro and dendritic cell mobilization and function in vivo. Blood. 2003;101:4457–4463.PubMedCrossRef Hackstein H, Taner T, Zahorchak AF et al. Rapamycin inhibits IL-4–induced dendritic cell maturation in vitro and dendritic cell mobilization and function in vivo. Blood. 2003;101:4457–4463.PubMedCrossRef
281.
go back to reference Taner T, Hackstein H, Wang Z, Morelli AE, Thomson AW. Rapamycin-treated, alloantigen-pulsed host dendritic cells induce ag-specific T cell regulation and prolong graft survival. Am J Transplant. 2005;5:228–236.PubMedCrossRef Taner T, Hackstein H, Wang Z, Morelli AE, Thomson AW. Rapamycin-treated, alloantigen-pulsed host dendritic cells induce ag-specific T cell regulation and prolong graft survival. Am J Transplant. 2005;5:228–236.PubMedCrossRef
282.
go back to reference Turnquist HR, Raimondi G, Zahorchak AF et al. Rapamycin-conditioned dendritic cells are poor stimulators of allogeneic CD4+ T cells, but enrich for antigen-specific Foxp3+ T regulatory cells and promote organ transplant tolerance. J Immunol. 2007;178:7018–7031.PubMedCrossRef Turnquist HR, Raimondi G, Zahorchak AF et al. Rapamycin-conditioned dendritic cells are poor stimulators of allogeneic CD4+ T cells, but enrich for antigen-specific Foxp3+ T regulatory cells and promote organ transplant tolerance. J Immunol. 2007;178:7018–7031.PubMedCrossRef
283.
go back to reference van Duivenvoorde LM, Louis-Plence P, Apparailly F et al. Antigen-specific immunomodulation of collagen-induced arthritis with tumor necrosis factor-stimulated dendritic cells. Arthritis Rheum. 2004;50:3354–3364.PubMedCrossRef van Duivenvoorde LM, Louis-Plence P, Apparailly F et al. Antigen-specific immunomodulation of collagen-induced arthritis with tumor necrosis factor-stimulated dendritic cells. Arthritis Rheum. 2004;50:3354–3364.PubMedCrossRef
284.
go back to reference van Duivenvoorde LM, Han WG, Bakker AM et al. Immunomodulatory dendritic cells inhibit Th1 responses and arthritis via different mechanisms. J Immunol. 2007;179:1506–1515.PubMedCrossRef van Duivenvoorde LM, Han WG, Bakker AM et al. Immunomodulatory dendritic cells inhibit Th1 responses and arthritis via different mechanisms. J Immunol. 2007;179:1506–1515.PubMedCrossRef
285.
go back to reference Healy LJ, Collins HL, Thompson SJ. Systemic administration of tolerogenic dendritic cells ameliorates murine inflammatory arthritis. Open Rheumatol J. 2008;2:71–80.PubMedPubMedCentralCrossRef Healy LJ, Collins HL, Thompson SJ. Systemic administration of tolerogenic dendritic cells ameliorates murine inflammatory arthritis. Open Rheumatol J. 2008;2:71–80.PubMedPubMedCentralCrossRef
286.
go back to reference Torres-Aguilar H, Aguilar-Ruiz SR, Gonzalez-Perez G et al. Tolerogenic dendritic cells generated with different immunosuppressive cytokines induce antigen-specific anergy and regulatory properties in memory CD4+ T cells. J Immunol. 2010;184:1765–1775.PubMedCrossRef Torres-Aguilar H, Aguilar-Ruiz SR, Gonzalez-Perez G et al. Tolerogenic dendritic cells generated with different immunosuppressive cytokines induce antigen-specific anergy and regulatory properties in memory CD4+ T cells. J Immunol. 2010;184:1765–1775.PubMedCrossRef
Metadata
Title
Introducing Molecular Chaperones into the Causality and Prospective Management of Autoimmune Hepatitis
Author
Albert J. Czaja
Publication date
27-09-2023
Publisher
Springer US
Published in
Digestive Diseases and Sciences / Issue 11/2023
Print ISSN: 0163-2116
Electronic ISSN: 1573-2568
DOI
https://doi.org/10.1007/s10620-023-08118-6

Other articles of this Issue 11/2023

Digestive Diseases and Sciences 11/2023 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.