Skip to main content
Top
Published in: Digestive Diseases and Sciences 4/2023

19-10-2022 | Autoimmune Hepatitis | Original Article

Missing Causality and Heritability of Autoimmune Hepatitis

Author: Albert J. Czaja

Published in: Digestive Diseases and Sciences | Issue 4/2023

Login to get access

Abstract

Background

Autoimmune hepatitis has an unknown cause and genetic associations that are not disease-specific or always present. Clarification of its missing causality and heritability could improve prevention and management strategies.

Aims

Describe the key epigenetic and genetic mechanisms that could account for missing causality and heritability in autoimmune hepatitis; indicate the prospects of these mechanisms as pivotal factors; and encourage investigations of their pathogenic role and therapeutic potential.

Methods

English abstracts were identified in PubMed using multiple key search phases. Several hundred abstracts and 210 full-length articles were reviewed.

Results

Environmental induction of epigenetic changes is the prime candidate for explaining the missing causality of autoimmune hepatitis. Environmental factors (diet, toxic exposures) can alter chromatin structure and the production of micro-ribonucleic acids that affect gene expression. Epistatic interaction between unsuspected genes is the prime candidate for explaining the missing heritability. The non-additive, interactive effects of multiple genes could enhance their impact on the propensity and phenotype of autoimmune hepatitis. Transgenerational inheritance of acquired epigenetic marks constitutes another mechanism of transmitting parental adaptations that could affect susceptibility. Management strategies could range from lifestyle adjustments and nutritional supplements to precision editing of the epigenetic landscape.

Conclusions

Autoimmune hepatitis has a missing causality that might be explained by epigenetic changes induced by environmental factors and a missing heritability that might reflect epistatic gene interactions or transgenerational transmission of acquired epigenetic marks. These unassessed or under-evaluated areas warrant investigation.
Literature
1.
go back to reference Alvarez F, Berg PA, Bianchi FB et al. International Autoimmune Hepatitis Group Report: review of criteria for diagnosis of autoimmune hepatitis. J Hepatol. 1999;31:929–938.PubMedCrossRef Alvarez F, Berg PA, Bianchi FB et al. International Autoimmune Hepatitis Group Report: review of criteria for diagnosis of autoimmune hepatitis. J Hepatol. 1999;31:929–938.PubMedCrossRef
2.
go back to reference Mack CL, Adams D, Assis DN et al. Diagnosis and management of autoimmune hepatitis in adults and children: 2019 practice guidance and guidelines from the American Association for the Study of Liver Diseases. Hepatology. 2020;72:671–722.PubMedCrossRef Mack CL, Adams D, Assis DN et al. Diagnosis and management of autoimmune hepatitis in adults and children: 2019 practice guidance and guidelines from the American Association for the Study of Liver Diseases. Hepatology. 2020;72:671–722.PubMedCrossRef
3.
go back to reference Bjornsson E, Talwalkar J, Treeprasertsuk S et al. Drug-induced autoimmune hepatitis: clinical characteristics and prognosis. Hepatology. 2010;51:2040–2048.PubMedCrossRef Bjornsson E, Talwalkar J, Treeprasertsuk S et al. Drug-induced autoimmune hepatitis: clinical characteristics and prognosis. Hepatology. 2010;51:2040–2048.PubMedCrossRef
5.
go back to reference Magrin S, Craxi A, Fiorentino G et al. Is autoimmune chronic active hepatitis a HCV-related disease? J Hepatol. 1991;13:56–60.PubMedCrossRef Magrin S, Craxi A, Fiorentino G et al. Is autoimmune chronic active hepatitis a HCV-related disease? J Hepatol. 1991;13:56–60.PubMedCrossRef
6.
go back to reference Vento S, Garofano T, Di Perri G et al. Identification of hepatitis A virus as a trigger for autoimmune chronic hepatitis type 1 in susceptible individuals. Lancet. 1991;337:1183–1187.PubMedCrossRef Vento S, Garofano T, Di Perri G et al. Identification of hepatitis A virus as a trigger for autoimmune chronic hepatitis type 1 in susceptible individuals. Lancet. 1991;337:1183–1187.PubMedCrossRef
7.
go back to reference Vento S, Guella L, Mirandola F et al. Epstein-Barr virus as a trigger for autoimmune hepatitis in susceptible individuals. Lancet. 1995;346:608–609.PubMedCrossRef Vento S, Guella L, Mirandola F et al. Epstein-Barr virus as a trigger for autoimmune hepatitis in susceptible individuals. Lancet. 1995;346:608–609.PubMedCrossRef
8.
go back to reference Vento S, Cainelli F, Renzini C, Concia E. Autoimmune hepatitis type 2 induced by HCV and persisting after viral clearance. Lancet. 1997;350:1298–1299.PubMedCrossRef Vento S, Cainelli F, Renzini C, Concia E. Autoimmune hepatitis type 2 induced by HCV and persisting after viral clearance. Lancet. 1997;350:1298–1299.PubMedCrossRef
9.
go back to reference Czaja AJ, Abdulkarim AS, Carpenter HA et al. GB virus-C infection in type 1 autoimmune hepatitis. Mayo Clin Proc. 1998;73:412–418.PubMedCrossRef Czaja AJ, Abdulkarim AS, Carpenter HA et al. GB virus-C infection in type 1 autoimmune hepatitis. Mayo Clin Proc. 1998;73:412–418.PubMedCrossRef
10.
go back to reference Czaja AJ, Carpenter HA, Santrach PJ et al. Evidence against hepatitis viruses as important causes of severe autoimmune hepatitis in the United States. J Hepatol. 1993;18:342–352.PubMedCrossRef Czaja AJ, Carpenter HA, Santrach PJ et al. Evidence against hepatitis viruses as important causes of severe autoimmune hepatitis in the United States. J Hepatol. 1993;18:342–352.PubMedCrossRef
11.
go back to reference Czaja AJ. Performance parameters of the diagnostic scoring systems for autoimmune hepatitis. Hepatology. 2008;48:1540–1548.PubMedCrossRef Czaja AJ. Performance parameters of the diagnostic scoring systems for autoimmune hepatitis. Hepatology. 2008;48:1540–1548.PubMedCrossRef
12.
go back to reference Hennes EM, Zeniya M, Czaja AJ et al. Simplified criteria for the diagnosis of autoimmune hepatitis. Hepatology. 2008;48:169–176.PubMedCrossRef Hennes EM, Zeniya M, Czaja AJ et al. Simplified criteria for the diagnosis of autoimmune hepatitis. Hepatology. 2008;48:169–176.PubMedCrossRef
13.
go back to reference Donaldson PT, Doherty DG, Hayllar KM et al. Susceptibility to autoimmune chronic active hepatitis: human leukocyte antigens DR4 and A1-B8-DR3 are independent risk factors. Hepatology. 1991;13:701–706.PubMedCrossRef Donaldson PT, Doherty DG, Hayllar KM et al. Susceptibility to autoimmune chronic active hepatitis: human leukocyte antigens DR4 and A1-B8-DR3 are independent risk factors. Hepatology. 1991;13:701–706.PubMedCrossRef
14.
go back to reference Czaja AJ, Carpenter HA, Santrach PJ, Moore SB. Significance of HLA DR4 in type 1 autoimmune hepatitis. Gastroenterology. 1993;105:1502–1507.PubMedCrossRef Czaja AJ, Carpenter HA, Santrach PJ, Moore SB. Significance of HLA DR4 in type 1 autoimmune hepatitis. Gastroenterology. 1993;105:1502–1507.PubMedCrossRef
15.
go back to reference Strettell MD, Donaldson PT, Thomson LJ et al. Allelic basis for HLA-encoded susceptibility to type 1 autoimmune hepatitis. Gastroenterology. 1997;112:2028–2035.PubMedCrossRef Strettell MD, Donaldson PT, Thomson LJ et al. Allelic basis for HLA-encoded susceptibility to type 1 autoimmune hepatitis. Gastroenterology. 1997;112:2028–2035.PubMedCrossRef
16.
go back to reference Czaja AJ, Strettell MD, Thomson LJ et al. Associations between alleles of the major histocompatibility complex and type 1 autoimmune hepatitis. Hepatology. 1997;25:317–323.PubMedCrossRef Czaja AJ, Strettell MD, Thomson LJ et al. Associations between alleles of the major histocompatibility complex and type 1 autoimmune hepatitis. Hepatology. 1997;25:317–323.PubMedCrossRef
17.
go back to reference Czaja AJ. Genetic factors affecting the occurrence, clinical phenotype, and outcome of autoimmune hepatitis. Clin Gastroenterol Hepatol. 2008;6:379–388.PubMedCrossRef Czaja AJ. Genetic factors affecting the occurrence, clinical phenotype, and outcome of autoimmune hepatitis. Clin Gastroenterol Hepatol. 2008;6:379–388.PubMedCrossRef
18.
go back to reference van Gerven NM, de Boer YS, Zwiers A et al. HLA-DRB1*03:01 and HLA-DRB1*04:01 modify the presentation and outcome in autoimmune hepatitis type-1. Genes Immun. 2015;16:247–252.PubMedCrossRef van Gerven NM, de Boer YS, Zwiers A et al. HLA-DRB1*03:01 and HLA-DRB1*04:01 modify the presentation and outcome in autoimmune hepatitis type-1. Genes Immun. 2015;16:247–252.PubMedCrossRef
19.
go back to reference Smolen JS, Klippel JH, Penner E et al. HLA-DR antigens in systemic lupus erythematosus: association with specificity of autoantibody responses to nuclear antigens. Ann Rheum Dis. 1987;46:457–462.PubMedPubMedCentralCrossRef Smolen JS, Klippel JH, Penner E et al. HLA-DR antigens in systemic lupus erythematosus: association with specificity of autoantibody responses to nuclear antigens. Ann Rheum Dis. 1987;46:457–462.PubMedPubMedCentralCrossRef
20.
go back to reference Taneja V, Singh RR, Malaviya AN, Anand C, Mehra NK. Occurrence of autoimmune diseases and relationship of autoantibody expression with HLA phenotypes in multicase rheumatoid arthritis families. Scand J Rheumatol. 1993;22:152–157.PubMedCrossRef Taneja V, Singh RR, Malaviya AN, Anand C, Mehra NK. Occurrence of autoimmune diseases and relationship of autoantibody expression with HLA phenotypes in multicase rheumatoid arthritis families. Scand J Rheumatol. 1993;22:152–157.PubMedCrossRef
21.
go back to reference Niu Z, Zhang P, Tong Y. Value of HLA-DR genotype in systemic lupus erythematosus and lupus nephritis: a meta-analysis. Int J Rheum Dis. 2015;18:17–28.PubMedCrossRef Niu Z, Zhang P, Tong Y. Value of HLA-DR genotype in systemic lupus erythematosus and lupus nephritis: a meta-analysis. Int J Rheum Dis. 2015;18:17–28.PubMedCrossRef
22.
go back to reference Zakharova MY, Belyanina TA, Sokolov AV, Kiselev IS, Mamedov AE. The contribution of major histocompatibility complex class II genes to an association with autoimmune diseases. Acta Naturae. 2019;11:4–12.PubMedPubMedCentralCrossRef Zakharova MY, Belyanina TA, Sokolov AV, Kiselev IS, Mamedov AE. The contribution of major histocompatibility complex class II genes to an association with autoimmune diseases. Acta Naturae. 2019;11:4–12.PubMedPubMedCentralCrossRef
23.
go back to reference Frommer L, Kahaly GJ. Type 1 diabetes and autoimmune thyroid disease-the genetic link. Front Endocrinol (Lausanne). 2021;12:618213.PubMedCrossRef Frommer L, Kahaly GJ. Type 1 diabetes and autoimmune thyroid disease-the genetic link. Front Endocrinol (Lausanne). 2021;12:618213.PubMedCrossRef
24.
go back to reference Webb GJ, Hirschfield GM. Using GWAS to identify genetic predisposition in hepatic autoimmunity. J Autoimmun. 2016;66:25–39.PubMedCrossRef Webb GJ, Hirschfield GM. Using GWAS to identify genetic predisposition in hepatic autoimmunity. J Autoimmun. 2016;66:25–39.PubMedCrossRef
25.
go back to reference Czaja AJ. Epigenetic changes and their implications in autoimmune hepatitis. Eur J Clin Invest. 2018;48:e12899.CrossRef Czaja AJ. Epigenetic changes and their implications in autoimmune hepatitis. Eur J Clin Invest. 2018;48:e12899.CrossRef
27.
go back to reference Cookson S, Constantini PK, Clare M et al. Frequency and nature of cytokine gene polymorphisms in type 1 autoimmune hepatitis. Hepatology. 1999;30:851–856.PubMedCrossRef Cookson S, Constantini PK, Clare M et al. Frequency and nature of cytokine gene polymorphisms in type 1 autoimmune hepatitis. Hepatology. 1999;30:851–856.PubMedCrossRef
28.
go back to reference Czaja AJ, Cookson S, Constantini PK et al. Cytokine polymorphisms associated with clinical features and treatment outcome in type 1 autoimmune hepatitis. Gastroenterology. 1999;117:645–652.PubMedCrossRef Czaja AJ, Cookson S, Constantini PK et al. Cytokine polymorphisms associated with clinical features and treatment outcome in type 1 autoimmune hepatitis. Gastroenterology. 1999;117:645–652.PubMedCrossRef
29.
go back to reference Agarwal K, Czaja AJ, Jones DE, Donaldson PT. Cytotoxic T lymphocyte antigen-4 (CTLA-4) gene polymorphisms and susceptibility to type 1 autoimmune hepatitis. Hepatology. 2000;31:49–53.PubMedCrossRef Agarwal K, Czaja AJ, Jones DE, Donaldson PT. Cytotoxic T lymphocyte antigen-4 (CTLA-4) gene polymorphisms and susceptibility to type 1 autoimmune hepatitis. Hepatology. 2000;31:49–53.PubMedCrossRef
30.
go back to reference Vogel A, Strassburg CP, Manns MP. Genetic association of vitamin D receptor polymorphisms with primary biliary cirrhosis and autoimmune hepatitis. Hepatology. 2002;35:126–131.PubMedCrossRef Vogel A, Strassburg CP, Manns MP. Genetic association of vitamin D receptor polymorphisms with primary biliary cirrhosis and autoimmune hepatitis. Hepatology. 2002;35:126–131.PubMedCrossRef
31.
go back to reference Vogel A, Strassburg CP, Manns MP. 77 C/G mutation in the tyrosine phosphatase CD45 gene and autoimmune hepatitis: evidence for a genetic link. Genes Immun. 2003;4:79–81.PubMedCrossRef Vogel A, Strassburg CP, Manns MP. 77 C/G mutation in the tyrosine phosphatase CD45 gene and autoimmune hepatitis: evidence for a genetic link. Genes Immun. 2003;4:79–81.PubMedCrossRef
32.
go back to reference Fan L, Tu X, Zhu Y et al. Genetic association of vitamin D receptor polymorphisms with autoimmune hepatitis and primary biliary cirrhosis in the Chinese. J Gastroenterol Hepatol. 2005;20:249–255.PubMedCrossRef Fan L, Tu X, Zhu Y et al. Genetic association of vitamin D receptor polymorphisms with autoimmune hepatitis and primary biliary cirrhosis in the Chinese. J Gastroenterol Hepatol. 2005;20:249–255.PubMedCrossRef
33.
go back to reference Fan LY, Tu XQ, Zhu Y et al. Genetic association of cytokines polymorphisms with autoimmune hepatitis and primary biliary cirrhosis in the Chinese. World J Gastroenterol. 2005;11:2768–2772.PubMedPubMedCentralCrossRef Fan LY, Tu XQ, Zhu Y et al. Genetic association of cytokines polymorphisms with autoimmune hepatitis and primary biliary cirrhosis in the Chinese. World J Gastroenterol. 2005;11:2768–2772.PubMedPubMedCentralCrossRef
34.
go back to reference Agarwal K, Czaja AJ, Donaldson PT. A functional Fas promoter polymorphism is associated with a severe phenotype in type 1 autoimmune hepatitis characterized by early development of cirrhosis. Tissue Antigens. 2007;69:227–235.PubMedCrossRef Agarwal K, Czaja AJ, Donaldson PT. A functional Fas promoter polymorphism is associated with a severe phenotype in type 1 autoimmune hepatitis characterized by early development of cirrhosis. Tissue Antigens. 2007;69:227–235.PubMedCrossRef
35.
go back to reference de Boer YS, van Gerven NM, Zwiers A et al. Genome-wide association study identifies variants associated with autoimmune hepatitis type 1. Gastroenterology. 2014;147:443–452.PubMedCrossRef de Boer YS, van Gerven NM, Zwiers A et al. Genome-wide association study identifies variants associated with autoimmune hepatitis type 1. Gastroenterology. 2014;147:443–452.PubMedCrossRef
36.
go back to reference Umemura T, Joshita S, Hamano H et al. Association of autoimmune hepatitis with Src homology 2 adaptor protein 3 gene polymorphisms in Japanese patients. J Hum Genet. 2017;62:963–967.PubMedCrossRef Umemura T, Joshita S, Hamano H et al. Association of autoimmune hepatitis with Src homology 2 adaptor protein 3 gene polymorphisms in Japanese patients. J Hum Genet. 2017;62:963–967.PubMedCrossRef
37.
go back to reference Li Y, Sun Y, Liu Y et al. Genome-wide meta-analysis identifies susceptibility loci for autoimmune hepatitis type 1. Hepatology. 2022;76:564–575.PubMedCrossRef Li Y, Sun Y, Liu Y et al. Genome-wide meta-analysis identifies susceptibility loci for autoimmune hepatitis type 1. Hepatology. 2022;76:564–575.PubMedCrossRef
39.
go back to reference Hindorff LA, Sethupathy P, Junkins HA et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci U S A. 2009;106:9362–9367.PubMedPubMedCentralCrossRef Hindorff LA, Sethupathy P, Junkins HA et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci U S A. 2009;106:9362–9367.PubMedPubMedCentralCrossRef
42.
go back to reference Findor JA, Sorda JA, Daruich JR, Manero EF. Familial association in autoimmune liver disease. Medicina (B Aires). 2002;62:241–244.PubMed Findor JA, Sorda JA, Daruich JR, Manero EF. Familial association in autoimmune liver disease. Medicina (B Aires). 2002;62:241–244.PubMed
43.
go back to reference Nozic D, Dimitrijevic J. Knezevic-Usaj S [Occurrence of autoimmune chronic hepatitis in siblings]. Vojnosanit Pregl 2005;62:591–594.PubMedCrossRef Nozic D, Dimitrijevic J. Knezevic-Usaj S [Occurrence of autoimmune chronic hepatitis in siblings]. Vojnosanit Pregl 2005;62:591–594.PubMedCrossRef
44.
go back to reference Omori K, Yoshida K, Yokota M, Daa T, Kan M. Familial occurrence of autoimmune liver disease with overlapping features of primary biliary cholangitis and autoimmune hepatitis in a mother and her daughter. Clin J Gastroenterol. 2016;9:312–318.PubMedPubMedCentralCrossRef Omori K, Yoshida K, Yokota M, Daa T, Kan M. Familial occurrence of autoimmune liver disease with overlapping features of primary biliary cholangitis and autoimmune hepatitis in a mother and her daughter. Clin J Gastroenterol. 2016;9:312–318.PubMedPubMedCentralCrossRef
45.
go back to reference Gronbaek L, Vilstrup H, Pedersen L, Christensen K, Jepsen P. Family occurrence of autoimmune hepatitis: A Danish nationwide registry-based cohort study. J Hepatol. 2018;69:873–877.PubMedCrossRef Gronbaek L, Vilstrup H, Pedersen L, Christensen K, Jepsen P. Family occurrence of autoimmune hepatitis: A Danish nationwide registry-based cohort study. J Hepatol. 2018;69:873–877.PubMedCrossRef
46.
go back to reference van Gerven NM, Verwer BJ, Witte BI et al. Epidemiology and clinical characteristics of autoimmune hepatitis in the Netherlands. Scand J Gastroenterol. 2014;49:1245–1254.PubMedCrossRef van Gerven NM, Verwer BJ, Witte BI et al. Epidemiology and clinical characteristics of autoimmune hepatitis in the Netherlands. Scand J Gastroenterol. 2014;49:1245–1254.PubMedCrossRef
48.
go back to reference Skinner MK, Manikkam M, Guerrero-Bosagna C. Epigenetic transgenerational actions of environmental factors in disease etiology. Trends Endocrinol Metab. 2010;21:214–222.PubMedPubMedCentralCrossRef Skinner MK, Manikkam M, Guerrero-Bosagna C. Epigenetic transgenerational actions of environmental factors in disease etiology. Trends Endocrinol Metab. 2010;21:214–222.PubMedPubMedCentralCrossRef
49.
go back to reference Guerrero-Bosagna C, Weeks S, Skinner MK. Identification of genomic features in environmentally induced epigenetic transgenerational inherited sperm epimutations. PLoS One. 2014;9:e100194.PubMedPubMedCentralCrossRef Guerrero-Bosagna C, Weeks S, Skinner MK. Identification of genomic features in environmentally induced epigenetic transgenerational inherited sperm epimutations. PLoS One. 2014;9:e100194.PubMedPubMedCentralCrossRef
50.
go back to reference Dias BG, Ressler KJ. Parental olfactory experience influences behavior and neural structure in subsequent generations. Nat Neurosci. 2014;17:89–96.PubMedCrossRef Dias BG, Ressler KJ. Parental olfactory experience influences behavior and neural structure in subsequent generations. Nat Neurosci. 2014;17:89–96.PubMedCrossRef
51.
go back to reference Nilsson EE, Sadler-Riggleman I, Skinner MK. Environmentally induced epigenetic transgenerational inheritance of disease. Environ Epigenet. 2018;4:dvy016.PubMedPubMedCentralCrossRef Nilsson EE, Sadler-Riggleman I, Skinner MK. Environmentally induced epigenetic transgenerational inheritance of disease. Environ Epigenet. 2018;4:dvy016.PubMedPubMedCentralCrossRef
52.
go back to reference Skinner MK, Nilsson EE. Role of environmentally induced epigenetic transgenerational inheritance in evolutionary biology: Unified Evolution Theory. Environ Epigenet. 2021;7:dvab012.PubMedPubMedCentralCrossRef Skinner MK, Nilsson EE. Role of environmentally induced epigenetic transgenerational inheritance in evolutionary biology: Unified Evolution Theory. Environ Epigenet. 2021;7:dvab012.PubMedPubMedCentralCrossRef
57.
go back to reference Fisher RA. The correlation between relatives on the supposition of Mendelian inheritance. Trans R Soc Edinb. 1918;52:399–433.CrossRef Fisher RA. The correlation between relatives on the supposition of Mendelian inheritance. Trans R Soc Edinb. 1918;52:399–433.CrossRef
60.
go back to reference Lenz TL, Deutsch AJ, Han B et al. Widespread non-additive and interaction effects within HLA loci modulate the risk of autoimmune diseases. Nat Genet. 2015;47:1085–1090.PubMedPubMedCentralCrossRef Lenz TL, Deutsch AJ, Han B et al. Widespread non-additive and interaction effects within HLA loci modulate the risk of autoimmune diseases. Nat Genet. 2015;47:1085–1090.PubMedPubMedCentralCrossRef
61.
go back to reference Lehner B. Molecular mechanisms of epistasis within and between genes. Trends Genet. 2011;27:323–331.PubMedCrossRef Lehner B. Molecular mechanisms of epistasis within and between genes. Trends Genet. 2011;27:323–331.PubMedCrossRef
62.
go back to reference Shapira Y, Agmon-Levin N, Shoenfeld Y. Defining and analyzing geoepidemiology and human autoimmunity. J Autoimmun. 2010;34:J168-177.PubMedCrossRef Shapira Y, Agmon-Levin N, Shoenfeld Y. Defining and analyzing geoepidemiology and human autoimmunity. J Autoimmun. 2010;34:J168-177.PubMedCrossRef
63.
go back to reference Youinou P, Pers JO, Gershwin ME, Shoenfeld Y. Geo-epidemiology and autoimmunity. J Autoimmun. 2010;34:J163-167.PubMedCrossRef Youinou P, Pers JO, Gershwin ME, Shoenfeld Y. Geo-epidemiology and autoimmunity. J Autoimmun. 2010;34:J163-167.PubMedCrossRef
64.
go back to reference Shapira Y, Agmon-Levin N, Shoenfeld Y. Geoepidemiology of autoimmune rheumatic diseases. Nat Rev Rheumatol. 2010;6:468–476.PubMedCrossRef Shapira Y, Agmon-Levin N, Shoenfeld Y. Geoepidemiology of autoimmune rheumatic diseases. Nat Rev Rheumatol. 2010;6:468–476.PubMedCrossRef
65.
go back to reference Moroni L, Bianchi I, Lleo A. Geoepidemiology, gender and autoimmune disease. Autoimmun Rev. 2012;11:A386-392.PubMedCrossRef Moroni L, Bianchi I, Lleo A. Geoepidemiology, gender and autoimmune disease. Autoimmun Rev. 2012;11:A386-392.PubMedCrossRef
66.
go back to reference Corpechot C, Chretien Y, Chazouilleres O, Poupon R. Demographic, lifestyle, medical and familial factors associated with primary biliary cirrhosis. J Hepatol. 2010;53:162–169.PubMedCrossRef Corpechot C, Chretien Y, Chazouilleres O, Poupon R. Demographic, lifestyle, medical and familial factors associated with primary biliary cirrhosis. J Hepatol. 2010;53:162–169.PubMedCrossRef
67.
go back to reference Corpechot C, Gaouar F, Chretien Y et al. Smoking as an independent risk factor of liver fibrosis in primary biliary cirrhosis. J Hepatol. 2012;56:218–224.PubMedCrossRef Corpechot C, Gaouar F, Chretien Y et al. Smoking as an independent risk factor of liver fibrosis in primary biliary cirrhosis. J Hepatol. 2012;56:218–224.PubMedCrossRef
69.
go back to reference Loftus EV Jr, Sandborn WJ, Tremaine WJ et al. Primary sclerosing cholangitis is associated with nonsmoking: a case-control study. Gastroenterology. 1996;110:1496–1502.PubMedCrossRef Loftus EV Jr, Sandborn WJ, Tremaine WJ et al. Primary sclerosing cholangitis is associated with nonsmoking: a case-control study. Gastroenterology. 1996;110:1496–1502.PubMedCrossRef
70.
go back to reference van Erpecum KJ, Smits SJ, van de Meeberg PC et al. Risk of primary sclerosing cholangitis is associated with nonsmoking behavior. Gastroenterology. 1996;110:1503–1506.PubMedCrossRef van Erpecum KJ, Smits SJ, van de Meeberg PC et al. Risk of primary sclerosing cholangitis is associated with nonsmoking behavior. Gastroenterology. 1996;110:1503–1506.PubMedCrossRef
71.
go back to reference Mitchell SA, Thyssen M, Orchard TR et al. Cigarette smoking, appendectomy, and tonsillectomy as risk factors for the development of primary sclerosing cholangitis: a case control study. Gut. 2002;51:567–573.PubMedPubMedCentralCrossRef Mitchell SA, Thyssen M, Orchard TR et al. Cigarette smoking, appendectomy, and tonsillectomy as risk factors for the development of primary sclerosing cholangitis: a case control study. Gut. 2002;51:567–573.PubMedPubMedCentralCrossRef
72.
go back to reference Lammert C, Juran BD, Schlicht E et al. Reduced coffee consumption among individuals with primary sclerosing cholangitis but not primary biliary cirrhosis. Clin Gastroenterol Hepatol. 2014;12:1562–1568.PubMedPubMedCentralCrossRef Lammert C, Juran BD, Schlicht E et al. Reduced coffee consumption among individuals with primary sclerosing cholangitis but not primary biliary cirrhosis. Clin Gastroenterol Hepatol. 2014;12:1562–1568.PubMedPubMedCentralCrossRef
73.
go back to reference Zein CO, Beatty K, Post AB et al. Smoking and increased severity of hepatic fibrosis in primary biliary cirrhosis: A cross validated retrospective assessment. Hepatology. 2006;44:1564–1571.PubMedCrossRef Zein CO, Beatty K, Post AB et al. Smoking and increased severity of hepatic fibrosis in primary biliary cirrhosis: A cross validated retrospective assessment. Hepatology. 2006;44:1564–1571.PubMedCrossRef
74.
go back to reference Liang Y, Yang Z, Zhong R. Smoking, family history and urinary tract infection are associated with primary biliary cirrhosis: A meta-analysis. Hepatol Res. 2011;41:572–578.PubMedCrossRef Liang Y, Yang Z, Zhong R. Smoking, family history and urinary tract infection are associated with primary biliary cirrhosis: A meta-analysis. Hepatol Res. 2011;41:572–578.PubMedCrossRef
75.
go back to reference Smyk DS, Rigopoulou EI, Muratori L, Burroughs AK, Bogdanos DP. Smoking as a risk factor for autoimmune liver disease: what we can learn from primary biliary cirrhosis. Ann Hepatol. 2012;11:7–14.PubMedCrossRef Smyk DS, Rigopoulou EI, Muratori L, Burroughs AK, Bogdanos DP. Smoking as a risk factor for autoimmune liver disease: what we can learn from primary biliary cirrhosis. Ann Hepatol. 2012;11:7–14.PubMedCrossRef
77.
go back to reference Shapira Y, Agmon-Levin N, Renaudineau Y et al. Serum markers of infections in patients with primary biliary cirrhosis: evidence of infection burden. Exp Mol Pathol. 2012;93:386–390.PubMedCrossRef Shapira Y, Agmon-Levin N, Renaudineau Y et al. Serum markers of infections in patients with primary biliary cirrhosis: evidence of infection burden. Exp Mol Pathol. 2012;93:386–390.PubMedCrossRef
78.
go back to reference Prince MI, Chetwynd A, Diggle P et al. The geographical distribution of primary biliary cirrhosis in a well-defined cohort. Hepatology. 2001;34:1083–1088.PubMedCrossRef Prince MI, Chetwynd A, Diggle P et al. The geographical distribution of primary biliary cirrhosis in a well-defined cohort. Hepatology. 2001;34:1083–1088.PubMedCrossRef
79.
go back to reference Ala A, Stanca CM, Bu-Ghanim M et al. Increased prevalence of primary biliary cirrhosis near Superfund toxic waste sites. Hepatology. 2006;43:525–531.PubMedCrossRef Ala A, Stanca CM, Bu-Ghanim M et al. Increased prevalence of primary biliary cirrhosis near Superfund toxic waste sites. Hepatology. 2006;43:525–531.PubMedCrossRef
81.
go back to reference Webb GJ, Ryan RP, Marshall TP, Hirschfield GM. The epidemiology of UK autoimmune liver disease varies with geographic latitude. Clin Gastroenterol Hepatol. 2021;19:2587–2596.PubMedPubMedCentralCrossRef Webb GJ, Ryan RP, Marshall TP, Hirschfield GM. The epidemiology of UK autoimmune liver disease varies with geographic latitude. Clin Gastroenterol Hepatol. 2021;19:2587–2596.PubMedPubMedCentralCrossRef
82.
go back to reference Lammert C. Genetic and environmental risk factors for autoimmune hepatitis. Clin Liver Dis (Hoboken). 2019;14:29–32.PubMedCrossRef Lammert C. Genetic and environmental risk factors for autoimmune hepatitis. Clin Liver Dis (Hoboken). 2019;14:29–32.PubMedCrossRef
83.
go back to reference Lammert C, Chalasani SN, Green K et al. Patients with autoimmune hepatitis report lower lifetime coffee consumption. Dig Dis Sci. 2022;67:2594–2599.PubMedCrossRef Lammert C, Chalasani SN, Green K et al. Patients with autoimmune hepatitis report lower lifetime coffee consumption. Dig Dis Sci. 2022;67:2594–2599.PubMedCrossRef
84.
go back to reference Strickland FM, Richardson BC. Epigenetics in human autoimmunity. Epigenetics in autoimmunity - DNA methylation in systemic lupus erythematosus and beyond. Autoimmunity. 2008;41:278–286.PubMedPubMedCentralCrossRef Strickland FM, Richardson BC. Epigenetics in human autoimmunity. Epigenetics in autoimmunity - DNA methylation in systemic lupus erythematosus and beyond. Autoimmunity. 2008;41:278–286.PubMedPubMedCentralCrossRef
85.
go back to reference Javierre BM, Hernando H, Ballestar E. Environmental triggers and epigenetic deregulation in autoimmune disease. Discov Med. 2011;12:535–545.PubMed Javierre BM, Hernando H, Ballestar E. Environmental triggers and epigenetic deregulation in autoimmune disease. Discov Med. 2011;12:535–545.PubMed
86.
go back to reference Canas CA, Canas F, Bonilla-Abadia F, Ospina FE, Tobon GJ. Epigenetics changes associated to environmental triggers in autoimmunity. Autoimmunity. 2016;49:1–11.PubMedCrossRef Canas CA, Canas F, Bonilla-Abadia F, Ospina FE, Tobon GJ. Epigenetics changes associated to environmental triggers in autoimmunity. Autoimmunity. 2016;49:1–11.PubMedCrossRef
87.
go back to reference Cavalli G, Heard E. Advances in epigenetics link genetics to the environment and disease. Nature. 2019;571:489–499.PubMedCrossRef Cavalli G, Heard E. Advances in epigenetics link genetics to the environment and disease. Nature. 2019;571:489–499.PubMedCrossRef
88.
go back to reference Tuong ZK, Stewart BJ, Guo SA, Clatworthy MR. Epigenetics and tissue immunity-translating environmental cues into functional adaptations. Immunol Rev. 2022;305:111–136.PubMedCrossRef Tuong ZK, Stewart BJ, Guo SA, Clatworthy MR. Epigenetics and tissue immunity-translating environmental cues into functional adaptations. Immunol Rev. 2022;305:111–136.PubMedCrossRef
89.
go back to reference Carone BR, Fauquier L, Habib N et al. Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. Cell. 2010;143:1084–1096.PubMedPubMedCentralCrossRef Carone BR, Fauquier L, Habib N et al. Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. Cell. 2010;143:1084–1096.PubMedPubMedCentralCrossRef
90.
91.
go back to reference Hajkova P, Erhardt S, Lane N et al. Epigenetic reprogramming in mouse primordial germ cells. Mech Dev. 2002;117:15–23.PubMedCrossRef Hajkova P, Erhardt S, Lane N et al. Epigenetic reprogramming in mouse primordial germ cells. Mech Dev. 2002;117:15–23.PubMedCrossRef
92.
go back to reference Hajkova P, Ancelin K, Waldmann T et al. Chromatin dynamics during epigenetic reprogramming in the mouse germ line. Nature. 2008;452:877–881.PubMedCrossRef Hajkova P, Ancelin K, Waldmann T et al. Chromatin dynamics during epigenetic reprogramming in the mouse germ line. Nature. 2008;452:877–881.PubMedCrossRef
94.
go back to reference Popp C, Dean W, Feng S et al. Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency. Nature. 2010;463:1101–1105.PubMedPubMedCentralCrossRef Popp C, Dean W, Feng S et al. Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency. Nature. 2010;463:1101–1105.PubMedPubMedCentralCrossRef
95.
go back to reference Smallwood SA, Tomizawa S, Krueger F et al. Dynamic CpG island methylation landscape in oocytes and preimplantation embryos. Nat Genet. 2011;43:811–814.PubMedPubMedCentralCrossRef Smallwood SA, Tomizawa S, Krueger F et al. Dynamic CpG island methylation landscape in oocytes and preimplantation embryos. Nat Genet. 2011;43:811–814.PubMedPubMedCentralCrossRef
96.
go back to reference Smallwood SA, Kelsey G. De novo DNA methylation: a germ cell perspective. Trends Genet. 2012;28:33–42.PubMedCrossRef Smallwood SA, Kelsey G. De novo DNA methylation: a germ cell perspective. Trends Genet. 2012;28:33–42.PubMedCrossRef
97.
go back to reference Seisenberger S, Andrews S, Krueger F et al. The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells. Mol Cell. 2012;48:849–862.PubMedPubMedCentralCrossRef Seisenberger S, Andrews S, Krueger F et al. The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells. Mol Cell. 2012;48:849–862.PubMedPubMedCentralCrossRef
98.
go back to reference Seisenberger S, Peat JR, Hore TA et al. Reprogramming DNA methylation in the mammalian life cycle: building and breaking epigenetic barriers. Philos Trans R Soc Lond B Biol Sci. 2013;368:20110330.PubMedPubMedCentralCrossRef Seisenberger S, Peat JR, Hore TA et al. Reprogramming DNA methylation in the mammalian life cycle: building and breaking epigenetic barriers. Philos Trans R Soc Lond B Biol Sci. 2013;368:20110330.PubMedPubMedCentralCrossRef
99.
go back to reference Guo F, Li X, Liang D et al. Active and passive demethylation of male and female pronuclear DNA in the mammalian zygote. Cell Stem Cell. 2014;15:447–459.PubMedCrossRef Guo F, Li X, Liang D et al. Active and passive demethylation of male and female pronuclear DNA in the mammalian zygote. Cell Stem Cell. 2014;15:447–459.PubMedCrossRef
100.
101.
103.
go back to reference Barlow DP. Genomic imprinting: a mammalian epigenetic discovery model. Annu Rev Genet. 2011;45:379–403.PubMedCrossRef Barlow DP. Genomic imprinting: a mammalian epigenetic discovery model. Annu Rev Genet. 2011;45:379–403.PubMedCrossRef
104.
go back to reference Ferguson-Smith AC. Genomic imprinting: the emergence of an epigenetic paradigm. Nat Rev Genet. 2011;12:565–575.PubMedCrossRef Ferguson-Smith AC. Genomic imprinting: the emergence of an epigenetic paradigm. Nat Rev Genet. 2011;12:565–575.PubMedCrossRef
105.
go back to reference van Otterdijk SD, Michels KB. Transgenerational epigenetic inheritance in mammals: how good is the evidence? FASEB J. 2016;30:2457–2465.PubMedCrossRef van Otterdijk SD, Michels KB. Transgenerational epigenetic inheritance in mammals: how good is the evidence? FASEB J. 2016;30:2457–2465.PubMedCrossRef
106.
go back to reference Soubry A, Hoyo C, Jirtle RL, Murphy SK. A paternal environmental legacy: evidence for epigenetic inheritance through the male germ line. Bioessays. 2014;36:359–371.PubMedPubMedCentralCrossRef Soubry A, Hoyo C, Jirtle RL, Murphy SK. A paternal environmental legacy: evidence for epigenetic inheritance through the male germ line. Bioessays. 2014;36:359–371.PubMedPubMedCentralCrossRef
107.
go back to reference Tucci V, Isles AR, Kelsey G, Ferguson-Smith AC, Erice Imprinting G. Genomic imprinting and physiological processes in mammals. Cell. 2019;176:952–965.PubMedCrossRef Tucci V, Isles AR, Kelsey G, Ferguson-Smith AC, Erice Imprinting G. Genomic imprinting and physiological processes in mammals. Cell. 2019;176:952–965.PubMedCrossRef
108.
go back to reference Millership SJ, Van de Pette M, Withers DJ. Genomic imprinting and its effects on postnatal growth and adult metabolism. Cell Mol Life Sci. 2019;76:4009–4021.PubMedPubMedCentralCrossRef Millership SJ, Van de Pette M, Withers DJ. Genomic imprinting and its effects on postnatal growth and adult metabolism. Cell Mol Life Sci. 2019;76:4009–4021.PubMedPubMedCentralCrossRef
109.
go back to reference Sebode M, Lohse AW. Autoimmune hepatitis: Is the autoimmunity in the family? Liver Int. 2019;39:42–44.PubMedCrossRef Sebode M, Lohse AW. Autoimmune hepatitis: Is the autoimmunity in the family? Liver Int. 2019;39:42–44.PubMedCrossRef
110.
go back to reference Czaja AJ. Transitioning from idiopathic to explainable autoimmune hepatitis. Dig Dis Sci. 2015;60:2881–2900.PubMedCrossRef Czaja AJ. Transitioning from idiopathic to explainable autoimmune hepatitis. Dig Dis Sci. 2015;60:2881–2900.PubMedCrossRef
111.
go back to reference Czaja AJ. Examining pathogenic concepts of autoimmune hepatitis for cues to future investigations and interventions. World J Gastroenterol. 2019;25:6579–6606.PubMedPubMedCentralCrossRef Czaja AJ. Examining pathogenic concepts of autoimmune hepatitis for cues to future investigations and interventions. World J Gastroenterol. 2019;25:6579–6606.PubMedPubMedCentralCrossRef
112.
go back to reference Moore JH. The ubiquitous nature of epistasis in determining susceptibility to common human diseases. Hum Hered. 2003;56:73–82.PubMedCrossRef Moore JH. The ubiquitous nature of epistasis in determining susceptibility to common human diseases. Hum Hered. 2003;56:73–82.PubMedCrossRef
116.
go back to reference Franke A, McGovern DP, Barrett JC et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nat Genet. 2010;42:1118–1125.PubMedPubMedCentralCrossRef Franke A, McGovern DP, Barrett JC et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nat Genet. 2010;42:1118–1125.PubMedPubMedCentralCrossRef
117.
go back to reference Zuk O, Hechter E, Sunyaev SR, Lander ES. The mystery of missing heritability: Genetic interactions create phantom heritability. Proc Natl Acad Sci U S A. 2012;109:1193–1198.PubMedPubMedCentralCrossRef Zuk O, Hechter E, Sunyaev SR, Lander ES. The mystery of missing heritability: Genetic interactions create phantom heritability. Proc Natl Acad Sci U S A. 2012;109:1193–1198.PubMedPubMedCentralCrossRef
118.
119.
go back to reference Mackay TF. Epistasis and quantitative traits: using model organisms to study gene-gene interactions. Nat Rev Genet. 2014;15:22–33.PubMedCrossRef Mackay TF. Epistasis and quantitative traits: using model organisms to study gene-gene interactions. Nat Rev Genet. 2014;15:22–33.PubMedCrossRef
121.
go back to reference Aristizabal MJ, Anreiter I, Halldorsdottir T et al. Biological embedding of experience: A primer on epigenetics. Proc Natl Acad Sci U S A. 2020;117:23261–23269.PubMedCrossRef Aristizabal MJ, Anreiter I, Halldorsdottir T et al. Biological embedding of experience: A primer on epigenetics. Proc Natl Acad Sci U S A. 2020;117:23261–23269.PubMedCrossRef
122.
go back to reference Campanero MR, Armstrong MI, Flemington EK. CpG methylation as a mechanism for the regulation of E2F activity. Proc Natl Acad Sci U S A. 2000;97:6481–6486.PubMedPubMedCentralCrossRef Campanero MR, Armstrong MI, Flemington EK. CpG methylation as a mechanism for the regulation of E2F activity. Proc Natl Acad Sci U S A. 2000;97:6481–6486.PubMedPubMedCentralCrossRef
123.
go back to reference Renaudineau Y, Youinou P. Epigenetics and autoimmunity, with special emphasis on methylation. Keio J Med. 2011;60:10–16.PubMedCrossRef Renaudineau Y, Youinou P. Epigenetics and autoimmunity, with special emphasis on methylation. Keio J Med. 2011;60:10–16.PubMedCrossRef
124.
127.
go back to reference Cai Q, Gan C, Tang C, Wu H, Gao J. Mechanism and therapeutic opportunities of histone modifications in chronic liver disease. Front Pharmacol. 2021;12:784591.PubMedPubMedCentralCrossRef Cai Q, Gan C, Tang C, Wu H, Gao J. Mechanism and therapeutic opportunities of histone modifications in chronic liver disease. Front Pharmacol. 2021;12:784591.PubMedPubMedCentralCrossRef
128.
go back to reference Bartova E, Krejci J, Harnicarova A, Galiova G, Kozubek S. Histone modifications and nuclear architecture: a review. J Histochem Cytochem. 2008;56:711–721.PubMedPubMedCentralCrossRef Bartova E, Krejci J, Harnicarova A, Galiova G, Kozubek S. Histone modifications and nuclear architecture: a review. J Histochem Cytochem. 2008;56:711–721.PubMedPubMedCentralCrossRef
129.
go back to reference Cedar H, Bergman Y. Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet. 2009;10:295–304.PubMedCrossRef Cedar H, Bergman Y. Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet. 2009;10:295–304.PubMedCrossRef
130.
go back to reference Rossetto D, Avvakumov N, Cote J. Histone phosphorylation: a chromatin modification involved in diverse nuclear events. Epigenetics. 2012;7:1098–1108.PubMedPubMedCentralCrossRef Rossetto D, Avvakumov N, Cote J. Histone phosphorylation: a chromatin modification involved in diverse nuclear events. Epigenetics. 2012;7:1098–1108.PubMedPubMedCentralCrossRef
131.
go back to reference Hardy T, Mann DA. Epigenetics in liver disease: from biology to therapeutics. Gut. 2016;65:1895–1905.PubMedCrossRef Hardy T, Mann DA. Epigenetics in liver disease: from biology to therapeutics. Gut. 2016;65:1895–1905.PubMedCrossRef
132.
go back to reference Taylor BC, Young NL. Combinations of histone post-translational modifications. Biochem J. 2021;478:511–532.PubMedCrossRef Taylor BC, Young NL. Combinations of histone post-translational modifications. Biochem J. 2021;478:511–532.PubMedCrossRef
135.
go back to reference Wei JW, Huang K, Yang C, Kang CS. Non-coding RNAs as regulators in epigenetics (Review). Oncol Rep. 2017;37:3–9.PubMedCrossRef Wei JW, Huang K, Yang C, Kang CS. Non-coding RNAs as regulators in epigenetics (Review). Oncol Rep. 2017;37:3–9.PubMedCrossRef
136.
go back to reference O’Brien J, Hayder H, Zayed Y, Peng C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne). 2018;9:402.PubMedCrossRef O’Brien J, Hayder H, Zayed Y, Peng C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne). 2018;9:402.PubMedCrossRef
137.
go back to reference Czaja AJ. Examining micro-ribonucleic acids as diagnostic and therapeutic prospects in autoimmune hepatitis. Expert Rev Clin Immunol. 2022;18:591–607.PubMedCrossRef Czaja AJ. Examining micro-ribonucleic acids as diagnostic and therapeutic prospects in autoimmune hepatitis. Expert Rev Clin Immunol. 2022;18:591–607.PubMedCrossRef
138.
go back to reference Scott GK, Mattie MD, Berger CE, Benz SC, Benz CC. Rapid alteration of microRNA levels by histone deacetylase inhibition. Cancer Res. 2006;66:1277–1281.PubMedCrossRef Scott GK, Mattie MD, Berger CE, Benz SC, Benz CC. Rapid alteration of microRNA levels by histone deacetylase inhibition. Cancer Res. 2006;66:1277–1281.PubMedCrossRef
139.
go back to reference Saito Y, Jones PA. Epigenetic activation of tumor suppressor microRNAs in human cancer cells. Cell Cycle. 2006;5:2220–2222.PubMedCrossRef Saito Y, Jones PA. Epigenetic activation of tumor suppressor microRNAs in human cancer cells. Cell Cycle. 2006;5:2220–2222.PubMedCrossRef
140.
go back to reference Saito Y, Liang G, Egger G et al. Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell. 2006;9:435–443.PubMedCrossRef Saito Y, Liang G, Egger G et al. Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell. 2006;9:435–443.PubMedCrossRef
142.
go back to reference Tahiliani M, Koh KP, Shen Y et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009;324:930–935.PubMedPubMedCentralCrossRef Tahiliani M, Koh KP, Shen Y et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009;324:930–935.PubMedPubMedCentralCrossRef
144.
go back to reference Wu X, Zhang Y. TET-mediated active DNA demethylation: mechanism, function and beyond. Nat Rev Genet. 2017;18:517–534.PubMedCrossRef Wu X, Zhang Y. TET-mediated active DNA demethylation: mechanism, function and beyond. Nat Rev Genet. 2017;18:517–534.PubMedCrossRef
145.
146.
go back to reference Daskalaki MG, Tsatsanis C, Kampranis SC. Histone methylation and acetylation in macrophages as a mechanism for regulation of inflammatory responses. J Cell Physiol. 2018;233:6495–6507.PubMedCrossRef Daskalaki MG, Tsatsanis C, Kampranis SC. Histone methylation and acetylation in macrophages as a mechanism for regulation of inflammatory responses. J Cell Physiol. 2018;233:6495–6507.PubMedCrossRef
147.
go back to reference Rea S, Eisenhaber F, O’Carroll D et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature. 2000;406:593–599.PubMedCrossRef Rea S, Eisenhaber F, O’Carroll D et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature. 2000;406:593–599.PubMedCrossRef
149.
go back to reference Gong F, Miller KM. Histone methylation and the DNA damage response. Mutat Res Rev Mutat Res. 2019;780:37–47.PubMedCrossRef Gong F, Miller KM. Histone methylation and the DNA damage response. Mutat Res Rev Mutat Res. 2019;780:37–47.PubMedCrossRef
150.
go back to reference D’Oto A, Tian QW, Davidoff AM, Yang J. Histone demethylases and their roles in cancer epigenetics. J Med Oncol Ther. 2016;1:34–40.PubMedPubMedCentral D’Oto A, Tian QW, Davidoff AM, Yang J. Histone demethylases and their roles in cancer epigenetics. J Med Oncol Ther. 2016;1:34–40.PubMedPubMedCentral
152.
go back to reference Boyce WT, Kobor MS. Development and the epigenome: the “synapse” of gene-environment interplay. Dev Sci. 2015;18:1–23.PubMedCrossRef Boyce WT, Kobor MS. Development and the epigenome: the “synapse” of gene-environment interplay. Dev Sci. 2015;18:1–23.PubMedCrossRef
153.
go back to reference Salnikow K, Zhitkovich A. Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis: nickel, arsenic, and chromium. Chem Res Toxicol. 2008;21:28–44.PubMedCrossRef Salnikow K, Zhitkovich A. Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis: nickel, arsenic, and chromium. Chem Res Toxicol. 2008;21:28–44.PubMedCrossRef
154.
go back to reference Mathers JC, Strathdee G, Relton CL. Induction of epigenetic alterations by dietary and other environmental factors. Adv Genet. 2010;71:3–39.PubMedCrossRef Mathers JC, Strathdee G, Relton CL. Induction of epigenetic alterations by dietary and other environmental factors. Adv Genet. 2010;71:3–39.PubMedCrossRef
155.
go back to reference Donohoe DR, Bultman SJ. Metaboloepigenetics: interrelationships between energy metabolism and epigenetic control of gene expression. J Cell Physiol. 2012;227:3169–3177.PubMedPubMedCentralCrossRef Donohoe DR, Bultman SJ. Metaboloepigenetics: interrelationships between energy metabolism and epigenetic control of gene expression. J Cell Physiol. 2012;227:3169–3177.PubMedPubMedCentralCrossRef
156.
157.
go back to reference Niculescu MD, Craciunescu CN, Zeisel SH. Dietary choline deficiency alters global and gene-specific DNA methylation in the developing hippocampus of mouse fetal brains. FASEB J. 2006;20:43–49.PubMedCrossRef Niculescu MD, Craciunescu CN, Zeisel SH. Dietary choline deficiency alters global and gene-specific DNA methylation in the developing hippocampus of mouse fetal brains. FASEB J. 2006;20:43–49.PubMedCrossRef
158.
go back to reference Dolinoy DC. The agouti mouse model: an epigenetic biosensor for nutritional and environmental alterations on the fetal epigenome. Nutr Rev. 2008;66:S7-11.PubMedCrossRef Dolinoy DC. The agouti mouse model: an epigenetic biosensor for nutritional and environmental alterations on the fetal epigenome. Nutr Rev. 2008;66:S7-11.PubMedCrossRef
159.
go back to reference Mehedint MG, Niculescu MD, Craciunescu CN, Zeisel SH. Choline deficiency alters global histone methylation and epigenetic marking at the Re1 site of the calbindin 1 gene. FASEB J. 2010;24:184–195.PubMedPubMedCentralCrossRef Mehedint MG, Niculescu MD, Craciunescu CN, Zeisel SH. Choline deficiency alters global histone methylation and epigenetic marking at the Re1 site of the calbindin 1 gene. FASEB J. 2010;24:184–195.PubMedPubMedCentralCrossRef
161.
go back to reference Jeltsch A. Beyond Watson and Crick: DNA methylation and molecular enzymology of DNA methyltransferases. Chembiochem. 2002;3:274–293.PubMedCrossRef Jeltsch A. Beyond Watson and Crick: DNA methylation and molecular enzymology of DNA methyltransferases. Chembiochem. 2002;3:274–293.PubMedCrossRef
162.
go back to reference Finkelstein JD. Pathways and regulation of homocysteine metabolism in mammals. Semin Thromb Hemost. 2000;26:219–225.PubMedCrossRef Finkelstein JD. Pathways and regulation of homocysteine metabolism in mammals. Semin Thromb Hemost. 2000;26:219–225.PubMedCrossRef
163.
go back to reference Cooney CA, Dave AA, Wolff GL. Maternal methyl supplements in mice affect epigenetic variation and DNA methylation of offspring. J Nutr. 2002;132:2393S-2400S.PubMedCrossRef Cooney CA, Dave AA, Wolff GL. Maternal methyl supplements in mice affect epigenetic variation and DNA methylation of offspring. J Nutr. 2002;132:2393S-2400S.PubMedCrossRef
164.
go back to reference Waterland RA, Jirtle RL. Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol. 2003;23:5293–5300.PubMedPubMedCentralCrossRef Waterland RA, Jirtle RL. Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol. 2003;23:5293–5300.PubMedPubMedCentralCrossRef
165.
166.
167.
go back to reference Cohen HY, Miller C, Bitterman KJ et al. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science. 2004;305:390–392.PubMedCrossRef Cohen HY, Miller C, Bitterman KJ et al. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science. 2004;305:390–392.PubMedCrossRef
168.
170.
go back to reference Satoh A, Brace CS, Ben-Josef G et al. SIRT1 promotes the central adaptive response to diet restriction through activation of the dorsomedial and lateral nuclei of the hypothalamus. J Neurosci. 2010;30:10220–10232.PubMedPubMedCentralCrossRef Satoh A, Brace CS, Ben-Josef G et al. SIRT1 promotes the central adaptive response to diet restriction through activation of the dorsomedial and lateral nuclei of the hypothalamus. J Neurosci. 2010;30:10220–10232.PubMedPubMedCentralCrossRef
171.
go back to reference Preyat N, Leo O. Sirtuin deacylases: a molecular link between metabolism and immunity. J Leukoc Biol. 2013;93:669–680.PubMedCrossRef Preyat N, Leo O. Sirtuin deacylases: a molecular link between metabolism and immunity. J Leukoc Biol. 2013;93:669–680.PubMedCrossRef
172.
go back to reference Lin SJ, Guarente L. Nicotinamide adenine dinucleotide, a metabolic regulator of transcription, longevity and disease. Curr Opin Cell Biol. 2003;15:241–246.PubMedCrossRef Lin SJ, Guarente L. Nicotinamide adenine dinucleotide, a metabolic regulator of transcription, longevity and disease. Curr Opin Cell Biol. 2003;15:241–246.PubMedCrossRef
173.
go back to reference Zhao X, Allison D, Condon B et al. The 2.5 A crystal structure of the SIRT1 catalytic domain bound to nicotinamide adenine dinucleotide (NAD+) and an indole (EX527 analogue) reveals a novel mechanism of histone deacetylase inhibition. J Med Chem. 2013;56:963–969.PubMedCrossRef Zhao X, Allison D, Condon B et al. The 2.5 A crystal structure of the SIRT1 catalytic domain bound to nicotinamide adenine dinucleotide (NAD+) and an indole (EX527 analogue) reveals a novel mechanism of histone deacetylase inhibition. J Med Chem. 2013;56:963–969.PubMedCrossRef
174.
go back to reference Zhang N, Sauve AA. Regulatory effects of NAD(+) metabolic pathways on sirtuin activity. Prog Mol Biol Transl Sci. 2018;154:71–104.PubMedCrossRef Zhang N, Sauve AA. Regulatory effects of NAD(+) metabolic pathways on sirtuin activity. Prog Mol Biol Transl Sci. 2018;154:71–104.PubMedCrossRef
176.
go back to reference Grummt I, Ladurner AG. A metabolic throttle regulates the epigenetic state of rDNA. Cell. 2008;133:577–580.PubMedCrossRef Grummt I, Ladurner AG. A metabolic throttle regulates the epigenetic state of rDNA. Cell. 2008;133:577–580.PubMedCrossRef
177.
go back to reference Murayama A, Ohmori K, Fujimura A et al. Epigenetic control of rDNA loci in response to intracellular energy status. Cell. 2008;133:627–639.PubMedCrossRef Murayama A, Ohmori K, Fujimura A et al. Epigenetic control of rDNA loci in response to intracellular energy status. Cell. 2008;133:627–639.PubMedCrossRef
178.
go back to reference Painter RC, Roseboom TJ, Bleker OP. Prenatal exposure to the Dutch famine and disease in later life: an overview. Reprod Toxicol. 2005;20:345–352.PubMedCrossRef Painter RC, Roseboom TJ, Bleker OP. Prenatal exposure to the Dutch famine and disease in later life: an overview. Reprod Toxicol. 2005;20:345–352.PubMedCrossRef
179.
180.
go back to reference Koturbash I, Kutanzi K, Hendrickson K et al. Radiation-induced bystander effects in vivo are sex specific. Mutat Res. 2008;642:28–36.PubMedCrossRef Koturbash I, Kutanzi K, Hendrickson K et al. Radiation-induced bystander effects in vivo are sex specific. Mutat Res. 2008;642:28–36.PubMedCrossRef
181.
go back to reference Ilnytskyy Y, Koturbash I, Kovalchuk O. Radiation-induced bystander effects in vivo are epigenetically regulated in a tissue-specific manner. Environ Mol Mutagen. 2009;50:105–113.PubMedCrossRef Ilnytskyy Y, Koturbash I, Kovalchuk O. Radiation-induced bystander effects in vivo are epigenetically regulated in a tissue-specific manner. Environ Mol Mutagen. 2009;50:105–113.PubMedCrossRef
182.
go back to reference Seitz HK, Stickel F. Molecular mechanisms of alcohol-mediated carcinogenesis. Nat Rev Cancer. 2007;7:599–612.PubMedCrossRef Seitz HK, Stickel F. Molecular mechanisms of alcohol-mediated carcinogenesis. Nat Rev Cancer. 2007;7:599–612.PubMedCrossRef
183.
go back to reference Shukla SD, Velazquez J, French SW et al. Emerging role of epigenetics in the actions of alcohol. Alcohol Clin Exp Res. 2008;32:1525–1534.PubMedCrossRef Shukla SD, Velazquez J, French SW et al. Emerging role of epigenetics in the actions of alcohol. Alcohol Clin Exp Res. 2008;32:1525–1534.PubMedCrossRef
184.
go back to reference Yin H, Hu M, Liang X et al. Deletion of SIRT1 from hepatocytes in mice disrupts lipin-1 signaling and aggravates alcoholic fatty liver. Gastroenterology. 2014;146:801–811.PubMedCrossRef Yin H, Hu M, Liang X et al. Deletion of SIRT1 from hepatocytes in mice disrupts lipin-1 signaling and aggravates alcoholic fatty liver. Gastroenterology. 2014;146:801–811.PubMedCrossRef
185.
187.
go back to reference Tang Y, Zhang L, Forsyth CB et al. The role of miR-212 and iNOS in alcohol-Induced intestinal barrier dysfunction and steatohepatitis. Alcohol Clin Exp Res. 2015;39:1632–1641.PubMedPubMedCentralCrossRef Tang Y, Zhang L, Forsyth CB et al. The role of miR-212 and iNOS in alcohol-Induced intestinal barrier dysfunction and steatohepatitis. Alcohol Clin Exp Res. 2015;39:1632–1641.PubMedPubMedCentralCrossRef
188.
go back to reference Hartmann P, Tacke F. Tiny RNA with great effects: miR-155 in alcoholic liver disease. J Hepatol. 2016;64:1214–1216.PubMedCrossRef Hartmann P, Tacke F. Tiny RNA with great effects: miR-155 in alcoholic liver disease. J Hepatol. 2016;64:1214–1216.PubMedCrossRef
189.
go back to reference Phillips JM, Goodman JI. Inhalation of cigarette smoke induces regions of altered DNA methylation (RAMs) in SENCAR mouse lung. Toxicology. 2009;260:7–15.PubMedCrossRef Phillips JM, Goodman JI. Inhalation of cigarette smoke induces regions of altered DNA methylation (RAMs) in SENCAR mouse lung. Toxicology. 2009;260:7–15.PubMedCrossRef
190.
go back to reference Vaissiere T, Hung RJ, Zaridze D et al. Quantitative analysis of DNA methylation profiles in lung cancer identifies aberrant DNA methylation of specific genes and its association with gender and cancer risk factors. Cancer Res. 2009;69:243–252.PubMedPubMedCentralCrossRef Vaissiere T, Hung RJ, Zaridze D et al. Quantitative analysis of DNA methylation profiles in lung cancer identifies aberrant DNA methylation of specific genes and its association with gender and cancer risk factors. Cancer Res. 2009;69:243–252.PubMedPubMedCentralCrossRef
191.
go back to reference Marczylo EL, Amoako AA, Konje JC, Gant TW, Marczylo TH. Smoking induces differential miRNA expression in human spermatozoa: a potential transgenerational epigenetic concern? Epigenetics. 2012;7:432–439.PubMedCrossRef Marczylo EL, Amoako AA, Konje JC, Gant TW, Marczylo TH. Smoking induces differential miRNA expression in human spermatozoa: a potential transgenerational epigenetic concern? Epigenetics. 2012;7:432–439.PubMedCrossRef
192.
go back to reference Pembrey ME, Bygren LO, Kaati G et al. Sex-specific, male-line transgenerational responses in humans. Eur J Hum Genet. 2006;14:159–166.PubMedCrossRef Pembrey ME, Bygren LO, Kaati G et al. Sex-specific, male-line transgenerational responses in humans. Eur J Hum Genet. 2006;14:159–166.PubMedCrossRef
193.
go back to reference Lee YW, Klein CB, Kargacin B et al. Carcinogenic nickel silences gene expression by chromatin condensation and DNA methylation: a new model for epigenetic carcinogens. Mol Cell Biol. 1995;15:2547–2557.PubMedPubMedCentralCrossRef Lee YW, Klein CB, Kargacin B et al. Carcinogenic nickel silences gene expression by chromatin condensation and DNA methylation: a new model for epigenetic carcinogens. Mol Cell Biol. 1995;15:2547–2557.PubMedPubMedCentralCrossRef
194.
go back to reference Broday L, Peng W, Kuo MH et al. Nickel compounds are novel inhibitors of histone H4 acetylation. Cancer Res. 2000;60:238–241.PubMed Broday L, Peng W, Kuo MH et al. Nickel compounds are novel inhibitors of histone H4 acetylation. Cancer Res. 2000;60:238–241.PubMed
195.
go back to reference Yan Y, Kluz T, Zhang P, Chen HB, Costa M. Analysis of specific lysine histone H3 and H4 acetylation and methylation status in clones of cells with a gene silenced by nickel exposure. Toxicol Appl Pharmacol. 2003;190:272–277.PubMedCrossRef Yan Y, Kluz T, Zhang P, Chen HB, Costa M. Analysis of specific lysine histone H3 and H4 acetylation and methylation status in clones of cells with a gene silenced by nickel exposure. Toxicol Appl Pharmacol. 2003;190:272–277.PubMedCrossRef
196.
go back to reference Golebiowski F, Kasprzak KS. Inhibition of core histones acetylation by carcinogenic nickel(II). Mol Cell Biochem. 2005;279:133–139.PubMedCrossRef Golebiowski F, Kasprzak KS. Inhibition of core histones acetylation by carcinogenic nickel(II). Mol Cell Biochem. 2005;279:133–139.PubMedCrossRef
197.
go back to reference Ke Q, Davidson T, Chen H, Kluz T, Costa M. Alterations of histone modifications and transgene silencing by nickel chloride. Carcinogenesis. 2006;27:1481–1488.PubMedCrossRef Ke Q, Davidson T, Chen H, Kluz T, Costa M. Alterations of histone modifications and transgene silencing by nickel chloride. Carcinogenesis. 2006;27:1481–1488.PubMedCrossRef
198.
go back to reference Mass MJ, Wang L. Arsenic alters cytosine methylation patterns of the promoter of the tumor suppressor gene p53 in human lung cells: a model for a mechanism of carcinogenesis. Mutat Res. 1997;386:263–277.PubMedCrossRef Mass MJ, Wang L. Arsenic alters cytosine methylation patterns of the promoter of the tumor suppressor gene p53 in human lung cells: a model for a mechanism of carcinogenesis. Mutat Res. 1997;386:263–277.PubMedCrossRef
199.
go back to reference Zhao CQ, Young MR, Diwan BA, Coogan TP, Waalkes MP. Association of arsenic-induced malignant transformation with DNA hypomethylation and aberrant gene expression. Proc Natl Acad Sci U S A. 1997;94:10907–10912.PubMedPubMedCentralCrossRef Zhao CQ, Young MR, Diwan BA, Coogan TP, Waalkes MP. Association of arsenic-induced malignant transformation with DNA hypomethylation and aberrant gene expression. Proc Natl Acad Sci U S A. 1997;94:10907–10912.PubMedPubMedCentralCrossRef
200.
go back to reference Czaja AJ. Autoimmune hepatitis in diverse ethnic populations and geographical regions. Expert Rev Gastroenterol Hepatol. 2013;7:365–385.PubMedCrossRef Czaja AJ. Autoimmune hepatitis in diverse ethnic populations and geographical regions. Expert Rev Gastroenterol Hepatol. 2013;7:365–385.PubMedCrossRef
201.
go back to reference Czaja AJ. Global disparities and their implications in the occurrence and outcome of autoimmune hepatitis. Dig Dis Sci. 2017;62:2277–2292.PubMedCrossRef Czaja AJ. Global disparities and their implications in the occurrence and outcome of autoimmune hepatitis. Dig Dis Sci. 2017;62:2277–2292.PubMedCrossRef
202.
go back to reference Morgan HD, Sutherland HG, Martin DI, Whitelaw E. Epigenetic inheritance at the agouti locus in the mouse. Nat Genet. 1999;23:314–318.PubMedCrossRef Morgan HD, Sutherland HG, Martin DI, Whitelaw E. Epigenetic inheritance at the agouti locus in the mouse. Nat Genet. 1999;23:314–318.PubMedCrossRef
203.
go back to reference Wei Y, Yang CR, Wei YP et al. Paternally induced transgenerational inheritance of susceptibility to diabetes in mammals. Proc Natl Acad Sci U S A. 2014;111:1873–1878.PubMedPubMedCentralCrossRef Wei Y, Yang CR, Wei YP et al. Paternally induced transgenerational inheritance of susceptibility to diabetes in mammals. Proc Natl Acad Sci U S A. 2014;111:1873–1878.PubMedPubMedCentralCrossRef
204.
go back to reference Heijmans BT, Tobi EW, Stein AD et al. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci U S A. 2008;105:17046–17049.PubMedPubMedCentralCrossRef Heijmans BT, Tobi EW, Stein AD et al. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci U S A. 2008;105:17046–17049.PubMedPubMedCentralCrossRef
205.
go back to reference Kaati G, Bygren LO, Pembrey M, Sjostrom M. Transgenerational response to nutrition, early life circumstances and longevity. Eur J Hum Genet. 2007;15:784–790.PubMedCrossRef Kaati G, Bygren LO, Pembrey M, Sjostrom M. Transgenerational response to nutrition, early life circumstances and longevity. Eur J Hum Genet. 2007;15:784–790.PubMedCrossRef
206.
go back to reference Horsthemke B. Epimutations in human disease. Curr Top Microbiol Immunol. 2006;310:45–59.PubMed Horsthemke B. Epimutations in human disease. Curr Top Microbiol Immunol. 2006;310:45–59.PubMed
207.
208.
go back to reference Chen Q, Yan M, Cao Z et al. Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science. 2016;351:397–400.PubMedCrossRef Chen Q, Yan M, Cao Z et al. Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science. 2016;351:397–400.PubMedCrossRef
209.
go back to reference Morgan HD, Dean W, Coker HA, Reik W, Petersen-Mahrt SK. Activation-induced cytidine deaminase deaminates 5-methylcytosine in DNA and is expressed in pluripotent tissues: implications for epigenetic reprogramming. J Biol Chem. 2004;279:52353–52360.PubMedCrossRef Morgan HD, Dean W, Coker HA, Reik W, Petersen-Mahrt SK. Activation-induced cytidine deaminase deaminates 5-methylcytosine in DNA and is expressed in pluripotent tissues: implications for epigenetic reprogramming. J Biol Chem. 2004;279:52353–52360.PubMedCrossRef
211.
go back to reference Zhang B, Zheng H, Huang B et al. Allelic reprogramming of the histone modification H3K4me3 in early mammalian development. Nature. 2016;537:553–557.PubMedCrossRef Zhang B, Zheng H, Huang B et al. Allelic reprogramming of the histone modification H3K4me3 in early mammalian development. Nature. 2016;537:553–557.PubMedCrossRef
212.
go back to reference Seki Y, Yamaji M, Yabuta Y et al. Cellular dynamics associated with the genome-wide epigenetic reprogramming in migrating primordial germ cells in mice. Development. 2007;134:2627–2638.PubMedCrossRef Seki Y, Yamaji M, Yabuta Y et al. Cellular dynamics associated with the genome-wide epigenetic reprogramming in migrating primordial germ cells in mice. Development. 2007;134:2627–2638.PubMedCrossRef
213.
go back to reference Biechele S, Lin CJ, Rinaudo PF, Ramalho-Santos M. Unwind and transcribe: chromatin reprogramming in the early mammalian embryo. Curr Opin Genet Dev. 2015;34:17–23.PubMedPubMedCentralCrossRef Biechele S, Lin CJ, Rinaudo PF, Ramalho-Santos M. Unwind and transcribe: chromatin reprogramming in the early mammalian embryo. Curr Opin Genet Dev. 2015;34:17–23.PubMedPubMedCentralCrossRef
214.
go back to reference Gu TP, Guo F, Yang H et al. The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature. 2011;477:606–610.PubMedCrossRef Gu TP, Guo F, Yang H et al. The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature. 2011;477:606–610.PubMedCrossRef
216.
go back to reference Kremsky I, Corces VG. Protection from DNA re-methylation by transcription factors in primordial germ cells and pre-implantation embryos can explain trans-generational epigenetic inheritance. Genome Biol. 2020;21:118.PubMedPubMedCentralCrossRef Kremsky I, Corces VG. Protection from DNA re-methylation by transcription factors in primordial germ cells and pre-implantation embryos can explain trans-generational epigenetic inheritance. Genome Biol. 2020;21:118.PubMedPubMedCentralCrossRef
218.
go back to reference Hackett JA, Sengupta R, Zylicz JJ et al. Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine. Science. 2013;339:448–452.PubMedCrossRef Hackett JA, Sengupta R, Zylicz JJ et al. Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine. Science. 2013;339:448–452.PubMedCrossRef
219.
go back to reference Jung YH, Kremsky I, Gold HB et al. Maintenance of CTCF- and transcription factor-mediated interactions from the gametes to the early mouse embryo. Mol Cell. 2019;75:e155.CrossRef Jung YH, Kremsky I, Gold HB et al. Maintenance of CTCF- and transcription factor-mediated interactions from the gametes to the early mouse embryo. Mol Cell. 2019;75:e155.CrossRef
220.
go back to reference Reik W, Walter J. Genomic imprinting: parental influence on the genome. Nat Rev Genet. 2001;2:21–32.PubMedCrossRef Reik W, Walter J. Genomic imprinting: parental influence on the genome. Nat Rev Genet. 2001;2:21–32.PubMedCrossRef
221.
222.
go back to reference Whitelaw E, Martin DI. Retrotransposons as epigenetic mediators of phenotypic variation in mammals. Nat Genet. 2001;27:361–365.PubMedCrossRef Whitelaw E, Martin DI. Retrotransposons as epigenetic mediators of phenotypic variation in mammals. Nat Genet. 2001;27:361–365.PubMedCrossRef
223.
go back to reference Slotkin RK, Martienssen R. Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet. 2007;8:272–285.PubMedCrossRef Slotkin RK, Martienssen R. Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet. 2007;8:272–285.PubMedCrossRef
225.
go back to reference Yoder JA, Walsh CP, Bestor TH. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet. 1997;13:335–340.PubMedCrossRef Yoder JA, Walsh CP, Bestor TH. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet. 1997;13:335–340.PubMedCrossRef
226.
go back to reference Waterland RA, Jirtle RL. Early nutrition, epigenetic changes at transposons and imprinted genes, and enhanced susceptibility to adult chronic diseases. Nutrition. 2004;20:63–68.PubMedCrossRef Waterland RA, Jirtle RL. Early nutrition, epigenetic changes at transposons and imprinted genes, and enhanced susceptibility to adult chronic diseases. Nutrition. 2004;20:63–68.PubMedCrossRef
227.
go back to reference Rakyan VK, Blewitt ME, Druker R, Preis JI, Whitelaw E. Metastable epialleles in mammals. Trends Genet. 2002;18:348–351.PubMedCrossRef Rakyan VK, Blewitt ME, Druker R, Preis JI, Whitelaw E. Metastable epialleles in mammals. Trends Genet. 2002;18:348–351.PubMedCrossRef
228.
go back to reference Morgan DK, Whitelaw E. The case for transgenerational epigenetic inheritance in humans. Mamm Genome. 2008;19:394–397.PubMedCrossRef Morgan DK, Whitelaw E. The case for transgenerational epigenetic inheritance in humans. Mamm Genome. 2008;19:394–397.PubMedCrossRef
229.
go back to reference Ostertag EM, Goodier JL, Zhang Y, Kazazian HH Jr. SVA elements are nonautonomous retrotransposons that cause disease in humans. Am J Hum Genet. 2003;73:1444–1451.PubMedPubMedCentralCrossRef Ostertag EM, Goodier JL, Zhang Y, Kazazian HH Jr. SVA elements are nonautonomous retrotransposons that cause disease in humans. Am J Hum Genet. 2003;73:1444–1451.PubMedPubMedCentralCrossRef
230.
go back to reference Belancio VP, Hedges DJ, Deininger P. Mammalian non-LTR retrotransposons: for better or worse, in sickness and in health. Genome Res. 2008;18:343–358.PubMedCrossRef Belancio VP, Hedges DJ, Deininger P. Mammalian non-LTR retrotransposons: for better or worse, in sickness and in health. Genome Res. 2008;18:343–358.PubMedCrossRef
232.
go back to reference Dolinoy DC, Das R, Weidman JR, Jirtle RL. Metastable epialleles, imprinting, and the fetal origins of adult diseases. Pediatr Res. 2007;61:30R-37R.PubMedCrossRef Dolinoy DC, Das R, Weidman JR, Jirtle RL. Metastable epialleles, imprinting, and the fetal origins of adult diseases. Pediatr Res. 2007;61:30R-37R.PubMedCrossRef
233.
go back to reference Kazachenka A, Bertozzi TM, Sjoberg-Herrera MK et al. Identification, characterization, and heritability of murine metastable epialleles: implications for non-genetic inheritance. Cell. 2018;175:e1213.CrossRef Kazachenka A, Bertozzi TM, Sjoberg-Herrera MK et al. Identification, characterization, and heritability of murine metastable epialleles: implications for non-genetic inheritance. Cell. 2018;175:e1213.CrossRef
235.
go back to reference Cheuqueman C, Maldonado R. Non-coding RNAs and chromatin: key epigenetic factors from spermatogenesis to transgenerational inheritance. Biol Res. 2021;54:41.PubMedPubMedCentralCrossRef Cheuqueman C, Maldonado R. Non-coding RNAs and chromatin: key epigenetic factors from spermatogenesis to transgenerational inheritance. Biol Res. 2021;54:41.PubMedPubMedCentralCrossRef
236.
go back to reference Sharma U, Conine CC, Shea JM et al. Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. Science. 2016;351:391–396.PubMedCrossRef Sharma U, Conine CC, Shea JM et al. Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. Science. 2016;351:391–396.PubMedCrossRef
237.
238.
go back to reference Rodgers AB, Morgan CP, Leu NA, Bale TL. Transgenerational epigenetic programming via sperm microRNA recapitulates effects of paternal stress. Proc Natl Acad Sci U S A. 2015;112:13699–13704.PubMedPubMedCentralCrossRef Rodgers AB, Morgan CP, Leu NA, Bale TL. Transgenerational epigenetic programming via sperm microRNA recapitulates effects of paternal stress. Proc Natl Acad Sci U S A. 2015;112:13699–13704.PubMedPubMedCentralCrossRef
239.
go back to reference Gapp K, Jawaid A, Sarkies P et al. Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat Neurosci. 2014;17:667–669.PubMedPubMedCentralCrossRef Gapp K, Jawaid A, Sarkies P et al. Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat Neurosci. 2014;17:667–669.PubMedPubMedCentralCrossRef
240.
go back to reference Gapp K, van Steenwyk G, Germain PL et al. Alterations in sperm long RNA contribute to the epigenetic inheritance of the effects of postnatal trauma. Mol Psychiatry. 2020;25:2162–2174.PubMedCrossRef Gapp K, van Steenwyk G, Germain PL et al. Alterations in sperm long RNA contribute to the epigenetic inheritance of the effects of postnatal trauma. Mol Psychiatry. 2020;25:2162–2174.PubMedCrossRef
242.
go back to reference Siomi MC, Sato K, Pezic D, Aravin AA. PIWI-interacting small RNAs: the vanguard of genome defence. Nat Rev Mol Cell Biol. 2011;12:246–258.PubMedCrossRef Siomi MC, Sato K, Pezic D, Aravin AA. PIWI-interacting small RNAs: the vanguard of genome defence. Nat Rev Mol Cell Biol. 2011;12:246–258.PubMedCrossRef
243.
go back to reference Monga I, Banerjee I. Computational Identification of piRNAs Using Features Based on RNA Sequence, Structure, Thermodynamic and Physicochemical Properties. Curr Genomics. 2019;20:508–518.PubMedPubMedCentralCrossRef Monga I, Banerjee I. Computational Identification of piRNAs Using Features Based on RNA Sequence, Structure, Thermodynamic and Physicochemical Properties. Curr Genomics. 2019;20:508–518.PubMedPubMedCentralCrossRef
244.
go back to reference Johnson GD, Sendler E, Lalancette C et al. Cleavage of rRNA ensures translational cessation in sperm at fertilization. Mol Hum Reprod. 2011;17:721–726.PubMedPubMedCentralCrossRef Johnson GD, Sendler E, Lalancette C et al. Cleavage of rRNA ensures translational cessation in sperm at fertilization. Mol Hum Reprod. 2011;17:721–726.PubMedPubMedCentralCrossRef
245.
go back to reference Rassoulzadegan M, Grandjean V, Gounon P et al. RNA-mediated non-mendelian inheritance of an epigenetic change in the mouse. Nature. 2006;441:469–474.PubMedCrossRef Rassoulzadegan M, Grandjean V, Gounon P et al. RNA-mediated non-mendelian inheritance of an epigenetic change in the mouse. Nature. 2006;441:469–474.PubMedCrossRef
246.
go back to reference Huypens P, Sass S, Wu M et al. Epigenetic germline inheritance of diet-induced obesity and insulin resistance. Nat Genet. 2016;48:497–499.PubMedCrossRef Huypens P, Sass S, Wu M et al. Epigenetic germline inheritance of diet-induced obesity and insulin resistance. Nat Genet. 2016;48:497–499.PubMedCrossRef
247.
go back to reference Rodgers AB, Morgan CP, Bronson SL, Revello S, Bale TL. Paternal stress exposure alters sperm microRNA content and reprograms offspring HPA stress axis regulation. J Neurosci. 2013;33:9003–9012.PubMedPubMedCentralCrossRef Rodgers AB, Morgan CP, Bronson SL, Revello S, Bale TL. Paternal stress exposure alters sperm microRNA content and reprograms offspring HPA stress axis regulation. J Neurosci. 2013;33:9003–9012.PubMedPubMedCentralCrossRef
248.
go back to reference Hayashi K, Ohta H, Kurimoto K, Aramaki S, Saitou M. Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells. Cell. 2011;146:519–532.PubMedCrossRef Hayashi K, Ohta H, Kurimoto K, Aramaki S, Saitou M. Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells. Cell. 2011;146:519–532.PubMedCrossRef
251.
go back to reference Irie N, Surani MA. Efficient induction and isolation of human primordial germ cell-Like cells from competent human pluripotent stem cells. Methods Mol Biol. 2017;1463:217–226.PubMedCrossRef Irie N, Surani MA. Efficient induction and isolation of human primordial germ cell-Like cells from competent human pluripotent stem cells. Methods Mol Biol. 2017;1463:217–226.PubMedCrossRef
252.
go back to reference Cordell HJ. Epistasis: what it means, what it doesn’t mean, and statistical methods to detect it in humans. Hum Mol Genet. 2002;11:2463–2468.PubMedCrossRef Cordell HJ. Epistasis: what it means, what it doesn’t mean, and statistical methods to detect it in humans. Hum Mol Genet. 2002;11:2463–2468.PubMedCrossRef
253.
go back to reference Moore JH, Williams SM. Traversing the conceptual divide between biological and statistical epistasis: systems biology and a more modern synthesis. Bioessays. 2005;27:637–646.PubMedCrossRef Moore JH, Williams SM. Traversing the conceptual divide between biological and statistical epistasis: systems biology and a more modern synthesis. Bioessays. 2005;27:637–646.PubMedCrossRef
255.
256.
257.
go back to reference Manolio TA. Genomewide association studies and assessment of the risk of disease. N Engl J Med. 2010;363:166–176.PubMedCrossRef Manolio TA. Genomewide association studies and assessment of the risk of disease. N Engl J Med. 2010;363:166–176.PubMedCrossRef
258.
259.
go back to reference Park JH, Wacholder S, Gail MH et al. Estimation of effect size distribution from genome-wide association studies and implications for future discoveries. Nat Genet. 2010;42:570–575.PubMedPubMedCentralCrossRef Park JH, Wacholder S, Gail MH et al. Estimation of effect size distribution from genome-wide association studies and implications for future discoveries. Nat Genet. 2010;42:570–575.PubMedPubMedCentralCrossRef
262.
go back to reference Mitchison NA, Rose AM. Epistasis: the key to understanding immunological disease? Eur J Immunol. 2011;41:2152–2154.PubMedCrossRef Mitchison NA, Rose AM. Epistasis: the key to understanding immunological disease? Eur J Immunol. 2011;41:2152–2154.PubMedCrossRef
263.
go back to reference Wordsworth P, Pile KD, Buckely JD et al. HLA heterozygosity contributes to susceptibility to rheumatoid arthritis. Am J Hum Genet. 1992;51:585–591.PubMedPubMedCentral Wordsworth P, Pile KD, Buckely JD et al. HLA heterozygosity contributes to susceptibility to rheumatoid arthritis. Am J Hum Genet. 1992;51:585–591.PubMedPubMedCentral
264.
go back to reference Koeleman BP, Lie BA, Undlien DE et al. Genotype effects and epistasis in type 1 diabetes and HLA-DQ trans dimer associations with disease. Genes Immun. 2004;5:381–388.PubMedCrossRef Koeleman BP, Lie BA, Undlien DE et al. Genotype effects and epistasis in type 1 diabetes and HLA-DQ trans dimer associations with disease. Genes Immun. 2004;5:381–388.PubMedCrossRef
265.
go back to reference Thomson G, Valdes AM, Noble JA et al. Relative predispositional effects of HLA class II DRB1-DQB1 haplotypes and genotypes on type 1 diabetes: a meta-analysis. Tissue Antigens. 2007;70:110–127.PubMedCrossRef Thomson G, Valdes AM, Noble JA et al. Relative predispositional effects of HLA class II DRB1-DQB1 haplotypes and genotypes on type 1 diabetes: a meta-analysis. Tissue Antigens. 2007;70:110–127.PubMedCrossRef
266.
go back to reference Terao C, Yoshifuji H, Matsumura T et al. Genetic determinants and an epistasis of LILRA3 and HLA-B*52 in Takayasu arteritis. Proc Natl Acad Sci U S A. 2018;115:13045–13050.PubMedPubMedCentralCrossRef Terao C, Yoshifuji H, Matsumura T et al. Genetic determinants and an epistasis of LILRA3 and HLA-B*52 in Takayasu arteritis. Proc Natl Acad Sci U S A. 2018;115:13045–13050.PubMedPubMedCentralCrossRef
267.
go back to reference Lester S, McLure C, Williamson J et al. Epistasis between the MHC and the RCA alpha block in primary Sjogren syndrome. Ann Rheum Dis. 2008;67:849–854.PubMedCrossRef Lester S, McLure C, Williamson J et al. Epistasis between the MHC and the RCA alpha block in primary Sjogren syndrome. Ann Rheum Dis. 2008;67:849–854.PubMedCrossRef
268.
go back to reference Gregersen JW, Kranc KR, Ke X et al. Functional epistasis on a common MHC haplotype associated with multiple sclerosis. Nature. 2006;443:574–577.PubMedCrossRef Gregersen JW, Kranc KR, Ke X et al. Functional epistasis on a common MHC haplotype associated with multiple sclerosis. Nature. 2006;443:574–577.PubMedCrossRef
269.
go back to reference Ueda S, Oryoji D, Yamamoto K et al. Identification of independent susceptible and protective HLA alleles in Japanese autoimmune thyroid disease and their epistasis. J Clin Endocrinol Metab. 2014;99:E379-383.PubMedCrossRef Ueda S, Oryoji D, Yamamoto K et al. Identification of independent susceptible and protective HLA alleles in Japanese autoimmune thyroid disease and their epistasis. J Clin Endocrinol Metab. 2014;99:E379-383.PubMedCrossRef
270.
go back to reference Kim K, Cho SK, Han TU et al. A redundant epistatic interaction between IRF5 and STAT4 of the type I interferon pathway in susceptibility to lupus and rheumatoid arthritis. Lupus. 2013;22:1336–1340.PubMedCrossRef Kim K, Cho SK, Han TU et al. A redundant epistatic interaction between IRF5 and STAT4 of the type I interferon pathway in susceptibility to lupus and rheumatoid arthritis. Lupus. 2013;22:1336–1340.PubMedCrossRef
271.
go back to reference Ellis JA, Scurrah KJ, Li YR et al. Epistasis amongst PTPN2 and genes of the vitamin D pathway contributes to risk of juvenile idiopathic arthritis. J Steroid Biochem Mol Biol. 2015;145:113–120.PubMedCrossRef Ellis JA, Scurrah KJ, Li YR et al. Epistasis amongst PTPN2 and genes of the vitamin D pathway contributes to risk of juvenile idiopathic arthritis. J Steroid Biochem Mol Biol. 2015;145:113–120.PubMedCrossRef
272.
go back to reference Galarza-Munoz G, Briggs FBS, Evsyukova I et al. Human epistatic interaction controls IL7R splicing and increases multiple sclerosis risk. Cell. 2017;169:e13.CrossRef Galarza-Munoz G, Briggs FBS, Evsyukova I et al. Human epistatic interaction controls IL7R splicing and increases multiple sclerosis risk. Cell. 2017;169:e13.CrossRef
273.
go back to reference Juran BD, Hirschfield GM, Invernizzi P et al. Immunochip analyses identify a novel risk locus for primary biliary cirrhosis at 13q14, multiple independent associations at four established risk loci and epistasis between 1p31 and 7q32 risk variants. Hum Mol Genet. 2012;21:5209–5221.PubMedPubMedCentralCrossRef Juran BD, Hirschfield GM, Invernizzi P et al. Immunochip analyses identify a novel risk locus for primary biliary cirrhosis at 13q14, multiple independent associations at four established risk loci and epistasis between 1p31 and 7q32 risk variants. Hum Mol Genet. 2012;21:5209–5221.PubMedPubMedCentralCrossRef
274.
go back to reference Barrett JC, Hansoul S, Nicolae DL et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat Genet. 2008;40:955–962.PubMedPubMedCentralCrossRef Barrett JC, Hansoul S, Nicolae DL et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat Genet. 2008;40:955–962.PubMedPubMedCentralCrossRef
275.
go back to reference Ritchie MD, Hahn LW, Moore JH. Power of multifactor dimensionality reduction for detecting gene-gene interactions in the presence of genotyping error, missing data, phenocopy, and genetic heterogeneity. Genet Epidemiol. 2003;24:150–157.PubMedCrossRef Ritchie MD, Hahn LW, Moore JH. Power of multifactor dimensionality reduction for detecting gene-gene interactions in the presence of genotyping error, missing data, phenocopy, and genetic heterogeneity. Genet Epidemiol. 2003;24:150–157.PubMedCrossRef
276.
go back to reference Joiret M, Mahachie John JM, Gusareva ES, Van Steen K. Confounding of linkage disequilibrium patterns in large scale DNA based gene-gene interaction studies. BioData Min. 2019;12:11.PubMedPubMedCentralCrossRef Joiret M, Mahachie John JM, Gusareva ES, Van Steen K. Confounding of linkage disequilibrium patterns in large scale DNA based gene-gene interaction studies. BioData Min. 2019;12:11.PubMedPubMedCentralCrossRef
277.
go back to reference Ritchie MD. Using biological knowledge to uncover the mystery in the search for epistasis in genome-wide association studies. Ann Hum Genet. 2011;75:172–182.PubMedPubMedCentralCrossRef Ritchie MD. Using biological knowledge to uncover the mystery in the search for epistasis in genome-wide association studies. Ann Hum Genet. 2011;75:172–182.PubMedPubMedCentralCrossRef
278.
go back to reference Ritchie MD, Van Steen K. The search for gene-gene interactions in genome-wide association studies: challenges in abundance of methods, practical considerations, and biological interpretation. Ann Transl Med. 2018;6:157.PubMedPubMedCentralCrossRef Ritchie MD, Van Steen K. The search for gene-gene interactions in genome-wide association studies: challenges in abundance of methods, practical considerations, and biological interpretation. Ann Transl Med. 2018;6:157.PubMedPubMedCentralCrossRef
279.
go back to reference Kam-Thong T, Czamara D, Tsuda K et al. EPIBLASTER-fast exhaustive two-locus epistasis detection strategy using graphical processing units. Eur J Hum Genet. 2011;19:465–471.PubMedCrossRef Kam-Thong T, Czamara D, Tsuda K et al. EPIBLASTER-fast exhaustive two-locus epistasis detection strategy using graphical processing units. Eur J Hum Genet. 2011;19:465–471.PubMedCrossRef
280.
go back to reference Ritchie MD, Hahn LW, Roodi N et al. Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am J Hum Genet. 2001;69:138–147.PubMedPubMedCentralCrossRef Ritchie MD, Hahn LW, Roodi N et al. Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am J Hum Genet. 2001;69:138–147.PubMedPubMedCentralCrossRef
281.
go back to reference Cattaert T, Calle ML, Dudek SM et al. Model-based multifactor dimensionality reduction for detecting epistasis in case-control data in the presence of noise. Ann Hum Genet. 2011;75:78–89.PubMedCrossRef Cattaert T, Calle ML, Dudek SM et al. Model-based multifactor dimensionality reduction for detecting epistasis in case-control data in the presence of noise. Ann Hum Genet. 2011;75:78–89.PubMedCrossRef
282.
go back to reference Mahachie John JM, Cattaert T, Lishout FV, Gusareva ES, Steen KV. Lower-order effects adjustment in quantitative traits model-based multifactor dimensionality reduction. PLoS One. 2012;7:e29594.PubMedPubMedCentralCrossRef Mahachie John JM, Cattaert T, Lishout FV, Gusareva ES, Steen KV. Lower-order effects adjustment in quantitative traits model-based multifactor dimensionality reduction. PLoS One. 2012;7:e29594.PubMedPubMedCentralCrossRef
283.
go back to reference Urbanowicz RJ, Kiralis J, Sinnott-Armstrong NA et al. GAMETES: a fast, direct algorithm for generating pure, strict, epistatic models with random architectures. BioData Min. 2012;5:16.PubMedPubMedCentralCrossRef Urbanowicz RJ, Kiralis J, Sinnott-Armstrong NA et al. GAMETES: a fast, direct algorithm for generating pure, strict, epistatic models with random architectures. BioData Min. 2012;5:16.PubMedPubMedCentralCrossRef
284.
go back to reference Corbett-Detig R, Jones M. SELAM: simulation of epistasis and local adaptation during admixture with mate choice. Bioinformatics. 2016;32:3035–3037.PubMedCrossRef Corbett-Detig R, Jones M. SELAM: simulation of epistasis and local adaptation during admixture with mate choice. Bioinformatics. 2016;32:3035–3037.PubMedCrossRef
285.
go back to reference Gusareva ES, Van Steen K. Practical aspects of genome-wide association interaction analysis. Hum Genet. 2014;133:1343–1358.PubMedCrossRef Gusareva ES, Van Steen K. Practical aspects of genome-wide association interaction analysis. Hum Genet. 2014;133:1343–1358.PubMedCrossRef
286.
go back to reference Holdener M, Hintermann E, Bayer M et al. Breaking tolerance to the natural human liver autoantigen cytochrome P450 2D6 by virus infection. J Exp Med. 2008;205:1409–1422.PubMedPubMedCentralCrossRef Holdener M, Hintermann E, Bayer M et al. Breaking tolerance to the natural human liver autoantigen cytochrome P450 2D6 by virus infection. J Exp Med. 2008;205:1409–1422.PubMedPubMedCentralCrossRef
287.
go back to reference Ehser J, Holdener M, Christen S et al. Molecular mimicry rather than identity breaks T-cell tolerance in the CYP2D6 mouse model for human autoimmune hepatitis. J Autoimmun. 2013;42:39–49.PubMedCrossRef Ehser J, Holdener M, Christen S et al. Molecular mimicry rather than identity breaks T-cell tolerance in the CYP2D6 mouse model for human autoimmune hepatitis. J Autoimmun. 2013;42:39–49.PubMedCrossRef
288.
go back to reference Longhi MS, Ma Y, Bogdanos DP et al. Impairment of CD4(+)CD25(+) regulatory T-cells in autoimmune liver disease. J Hepatol. 2004;41:31–37.PubMedCrossRef Longhi MS, Ma Y, Bogdanos DP et al. Impairment of CD4(+)CD25(+) regulatory T-cells in autoimmune liver disease. J Hepatol. 2004;41:31–37.PubMedCrossRef
289.
go back to reference Longhi MS, Ma Y, Mitry RR et al. Effect of CD4+ CD25+ regulatory T-cells on CD8 T-cell function in patients with autoimmune hepatitis. J Autoimmun. 2005;25:63–71.PubMedCrossRef Longhi MS, Ma Y, Mitry RR et al. Effect of CD4+ CD25+ regulatory T-cells on CD8 T-cell function in patients with autoimmune hepatitis. J Autoimmun. 2005;25:63–71.PubMedCrossRef
290.
go back to reference Taubert R, Hardtke-Wolenski M, Noyan F et al. Intrahepatic regulatory T cells in autoimmune hepatitis are associated with treatment response and depleted with current therapies. J Hepatol. 2014;61:1106–1114.PubMedCrossRef Taubert R, Hardtke-Wolenski M, Noyan F et al. Intrahepatic regulatory T cells in autoimmune hepatitis are associated with treatment response and depleted with current therapies. J Hepatol. 2014;61:1106–1114.PubMedCrossRef
292.
go back to reference Yuksel M, Wang Y, Tai N et al. A novel “humanized mouse” model for autoimmune hepatitis and the association of gut microbiota with liver inflammation. Hepatology. 2015;62:1536–1550.PubMedCrossRef Yuksel M, Wang Y, Tai N et al. A novel “humanized mouse” model for autoimmune hepatitis and the association of gut microbiota with liver inflammation. Hepatology. 2015;62:1536–1550.PubMedCrossRef
293.
go back to reference Lin R, Zhou L, Zhang J, Wang B. Abnormal intestinal permeability and microbiota in patients with autoimmune hepatitis. Int J Clin Exp Pathol. 2015;8:5153–5160.PubMedPubMedCentral Lin R, Zhou L, Zhang J, Wang B. Abnormal intestinal permeability and microbiota in patients with autoimmune hepatitis. Int J Clin Exp Pathol. 2015;8:5153–5160.PubMedPubMedCentral
294.
295.
296.
go back to reference Halasz T, Horvath G, Par G et al. miR-122 negatively correlates with liver fibrosis as detected by histology and FibroScan. World J Gastroenterol. 2015;21:7814–7823.PubMedPubMedCentralCrossRef Halasz T, Horvath G, Par G et al. miR-122 negatively correlates with liver fibrosis as detected by histology and FibroScan. World J Gastroenterol. 2015;21:7814–7823.PubMedPubMedCentralCrossRef
297.
go back to reference Li A, Song W, Qian J et al. MiR-122 modulates type I interferon expression through blocking suppressor of cytokine signaling 1. Int J Biochem Cell Biol. 2013;45:858–865.PubMedCrossRef Li A, Song W, Qian J et al. MiR-122 modulates type I interferon expression through blocking suppressor of cytokine signaling 1. Int J Biochem Cell Biol. 2013;45:858–865.PubMedCrossRef
298.
go back to reference Blaya D, Aguilar-Bravo B, Hao F et al. Expression of microRNA-155 in inflammatory cells modulates liver injury. Hepatology. 2018;68:691–706.PubMedCrossRef Blaya D, Aguilar-Bravo B, Hao F et al. Expression of microRNA-155 in inflammatory cells modulates liver injury. Hepatology. 2018;68:691–706.PubMedCrossRef
299.
go back to reference Zachou K, Arvaniti P, Lyberopoulou A, Dalekos GN. Impact of genetic and environmental factors on autoimmune hepatitis. J Transl Autoimmun. 2021;4:100125.PubMedPubMedCentralCrossRef Zachou K, Arvaniti P, Lyberopoulou A, Dalekos GN. Impact of genetic and environmental factors on autoimmune hepatitis. J Transl Autoimmun. 2021;4:100125.PubMedPubMedCentralCrossRef
300.
go back to reference Zachou K, Arvaniti P, Lyberopoulou A et al. Altered DNA methylation pattern characterizes the peripheral immune cells of patients with autoimmune hepatitis. Liver Int. 2022;42:1355–1368.PubMedCrossRef Zachou K, Arvaniti P, Lyberopoulou A et al. Altered DNA methylation pattern characterizes the peripheral immune cells of patients with autoimmune hepatitis. Liver Int. 2022;42:1355–1368.PubMedCrossRef
301.
go back to reference Thomsen H, Li X, Sundquist K et al. Familial associations between autoimmune hepatitis and primary biliary cholangitis and other autoimmune diseases. PLoS One. 2020;15:e0240794.PubMedPubMedCentralCrossRef Thomsen H, Li X, Sundquist K et al. Familial associations between autoimmune hepatitis and primary biliary cholangitis and other autoimmune diseases. PLoS One. 2020;15:e0240794.PubMedPubMedCentralCrossRef
302.
go back to reference Mackay TF, Moore JH. Why epistasis is important for tackling complex human disease genetics. Genome Med. 2014;6:124.PubMedCrossRef Mackay TF, Moore JH. Why epistasis is important for tackling complex human disease genetics. Genome Med. 2014;6:124.PubMedCrossRef
303.
go back to reference Mackay TF, Stone EA, Ayroles JF. The genetics of quantitative traits: challenges and prospects. Nat Rev Genet. 2009;10:565–577.PubMedCrossRef Mackay TF, Stone EA, Ayroles JF. The genetics of quantitative traits: challenges and prospects. Nat Rev Genet. 2009;10:565–577.PubMedCrossRef
304.
go back to reference Zan Y, Forsberg SKG, Carlborg O. On the relationship between high-order linkage disequilibrium and epistasis. G3 (Bethesda). 2018;8:2817–2824.PubMedCrossRef Zan Y, Forsberg SKG, Carlborg O. On the relationship between high-order linkage disequilibrium and epistasis. G3 (Bethesda). 2018;8:2817–2824.PubMedCrossRef
306.
307.
go back to reference Kuang Y, El-Khoueiry A, Taverna P, Ljungman M, Neamati N. Guadecitabine (SGI-110) priming sensitizes hepatocellular carcinoma cells to oxaliplatin. Mol Oncol. 2015;9:1799–1814.PubMedPubMedCentralCrossRef Kuang Y, El-Khoueiry A, Taverna P, Ljungman M, Neamati N. Guadecitabine (SGI-110) priming sensitizes hepatocellular carcinoma cells to oxaliplatin. Mol Oncol. 2015;9:1799–1814.PubMedPubMedCentralCrossRef
308.
go back to reference Perugorria MJ, Wilson CL, Zeybel M et al. Histone methyltransferase ASH1 orchestrates fibrogenic gene transcription during myofibroblast transdifferentiation. Hepatology. 2012;56:1129–1139.PubMedCrossRef Perugorria MJ, Wilson CL, Zeybel M et al. Histone methyltransferase ASH1 orchestrates fibrogenic gene transcription during myofibroblast transdifferentiation. Hepatology. 2012;56:1129–1139.PubMedCrossRef
309.
go back to reference Lachenmayer A, Toffanin S, Cabellos L et al. Combination therapy for hepatocellular carcinoma: additive preclinical efficacy of the HDAC inhibitor panobinostat with sorafenib. J Hepatol. 2012;56:1343–1350.PubMedPubMedCentralCrossRef Lachenmayer A, Toffanin S, Cabellos L et al. Combination therapy for hepatocellular carcinoma: additive preclinical efficacy of the HDAC inhibitor panobinostat with sorafenib. J Hepatol. 2012;56:1343–1350.PubMedPubMedCentralCrossRef
310.
go back to reference Zeybel M, Luli S, Sabater L et al. A proof-of-concept for epigenetic therapy of tissue fibrosis: inhibition of liver fibrosis progression by 3-deazaneplanocin A. Mol Ther. 2017;25:218–231.PubMedPubMedCentralCrossRef Zeybel M, Luli S, Sabater L et al. A proof-of-concept for epigenetic therapy of tissue fibrosis: inhibition of liver fibrosis progression by 3-deazaneplanocin A. Mol Ther. 2017;25:218–231.PubMedPubMedCentralCrossRef
312.
go back to reference Jeffries MA. Epigenetic editing: How cutting-edge targeted epigenetic modification might provide novel avenues for autoimmune disease therapy. Clin Immunol. 2018;196:49–58.PubMedPubMedCentralCrossRef Jeffries MA. Epigenetic editing: How cutting-edge targeted epigenetic modification might provide novel avenues for autoimmune disease therapy. Clin Immunol. 2018;196:49–58.PubMedPubMedCentralCrossRef
313.
go back to reference Qi LS, Larson MH, Gilbert LA et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell. 2013;152:1173–1183.PubMedPubMedCentralCrossRef Qi LS, Larson MH, Gilbert LA et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell. 2013;152:1173–1183.PubMedPubMedCentralCrossRef
314.
go back to reference Pei WD, Zhang Y, Yin TL, Yu Y. Epigenome editing by CRISPR/Cas9 in clinical settings: possibilities and challenges. Brief Funct Genomics. 2020;19:215–228.PubMedCrossRef Pei WD, Zhang Y, Yin TL, Yu Y. Epigenome editing by CRISPR/Cas9 in clinical settings: possibilities and challenges. Brief Funct Genomics. 2020;19:215–228.PubMedCrossRef
315.
go back to reference Bernardo BC, Ooi JY, Lin RC, McMullen JR. miRNA therapeutics: a new class of drugs with potential therapeutic applications in the heart. Future Med Chem. 2015;7:1771–1792.PubMedCrossRef Bernardo BC, Ooi JY, Lin RC, McMullen JR. miRNA therapeutics: a new class of drugs with potential therapeutic applications in the heart. Future Med Chem. 2015;7:1771–1792.PubMedCrossRef
316.
go back to reference Huang C, Xing X, Xiang X et al. MicroRNAs in autoimmune liver diseases: from diagnosis to potential therapeutic targets. Biomed Pharmacother. 2020;130:110558.PubMedCrossRef Huang C, Xing X, Xiang X et al. MicroRNAs in autoimmune liver diseases: from diagnosis to potential therapeutic targets. Biomed Pharmacother. 2020;130:110558.PubMedCrossRef
317.
go back to reference Krutzfeldt J, Rajewsky N, Braich R et al. Silencing of microRNAs in vivo with “antagomirs.” Nature. 2005;438:685–689.PubMedCrossRef Krutzfeldt J, Rajewsky N, Braich R et al. Silencing of microRNAs in vivo with “antagomirs.” Nature. 2005;438:685–689.PubMedCrossRef
318.
go back to reference Itoh A, Adams D, Huang W et al. Enoxacin up-regulates microRNA biogenesis and down-regulates cytotoxic CD8 T-cell function in autoimmune cholangitis. Hepatology. 2021;74:835–846.PubMedCrossRef Itoh A, Adams D, Huang W et al. Enoxacin up-regulates microRNA biogenesis and down-regulates cytotoxic CD8 T-cell function in autoimmune cholangitis. Hepatology. 2021;74:835–846.PubMedCrossRef
319.
go back to reference Detich N, Hamm S, Just G, Knox JD, Szyf M. The methyl donor S-adenosylmethionine inhibits active demethylation of DNA: a candidate novel mechanism for the pharmacological effects of S-adenosylmethionine. J Biol Chem. 2003;278:20812–20820.PubMedCrossRef Detich N, Hamm S, Just G, Knox JD, Szyf M. The methyl donor S-adenosylmethionine inhibits active demethylation of DNA: a candidate novel mechanism for the pharmacological effects of S-adenosylmethionine. J Biol Chem. 2003;278:20812–20820.PubMedCrossRef
320.
go back to reference Anstee QM, Day CP. S-adenosylmethionine (SAMe) therapy in liver disease: a review of current evidence and clinical utility. J Hepatol. 2012;57:1097–1109.PubMedCrossRef Anstee QM, Day CP. S-adenosylmethionine (SAMe) therapy in liver disease: a review of current evidence and clinical utility. J Hepatol. 2012;57:1097–1109.PubMedCrossRef
321.
go back to reference Waterland RA, Travisano M, Tahiliani KG, Rached MT, Mirza S. Methyl donor supplementation prevents transgenerational amplification of obesity. Int J Obes (Lond). 2008;32:1373–1379.PubMedCrossRef Waterland RA, Travisano M, Tahiliani KG, Rached MT, Mirza S. Methyl donor supplementation prevents transgenerational amplification of obesity. Int J Obes (Lond). 2008;32:1373–1379.PubMedCrossRef
322.
go back to reference Blaschke K, Ebata KT, Karimi MM et al. Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells. Nature. 2013;500:222–226.PubMedPubMedCentralCrossRef Blaschke K, Ebata KT, Karimi MM et al. Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells. Nature. 2013;500:222–226.PubMedPubMedCentralCrossRef
323.
go back to reference Artaza JN, Norris KC. Vitamin D reduces the expression of collagen and key profibrotic factors by inducing an antifibrotic phenotype in mesenchymal multipotent cells. J Endocrinol. 2009;200:207–221.PubMedCrossRef Artaza JN, Norris KC. Vitamin D reduces the expression of collagen and key profibrotic factors by inducing an antifibrotic phenotype in mesenchymal multipotent cells. J Endocrinol. 2009;200:207–221.PubMedCrossRef
324.
go back to reference Abramovitch S, Dahan-Bachar L, Sharvit E et al. Vitamin D inhibits proliferation and profibrotic marker expression in hepatic stellate cells and decreases thioacetamide-induced liver fibrosis in rats. Gut. 2011;60:1728–1737.PubMedCrossRef Abramovitch S, Dahan-Bachar L, Sharvit E et al. Vitamin D inhibits proliferation and profibrotic marker expression in hepatic stellate cells and decreases thioacetamide-induced liver fibrosis in rats. Gut. 2011;60:1728–1737.PubMedCrossRef
325.
go back to reference Potter JJ, Liu X, Koteish A, Mezey E. 1,25-dihydroxyvitamin D3 and its nuclear receptor repress human alpha1 (I) collagen expression and type I collagen formation. Liver Int. 2013;33:677–686.PubMedCrossRef Potter JJ, Liu X, Koteish A, Mezey E. 1,25-dihydroxyvitamin D3 and its nuclear receptor repress human alpha1 (I) collagen expression and type I collagen formation. Liver Int. 2013;33:677–686.PubMedCrossRef
326.
go back to reference Abramovitch S, Sharvit E, Weisman Y et al. Vitamin D inhibits development of liver fibrosis in an animal model but cannot ameliorate established cirrhosis. Am J Physiol Gastrointest Liver Physiol. 2015;308:G112-120.PubMedCrossRef Abramovitch S, Sharvit E, Weisman Y et al. Vitamin D inhibits development of liver fibrosis in an animal model but cannot ameliorate established cirrhosis. Am J Physiol Gastrointest Liver Physiol. 2015;308:G112-120.PubMedCrossRef
327.
go back to reference Janssen HL, Reesink HW, Lawitz EJ et al. Treatment of HCV infection by targeting microRNA. N Engl J Med. 2013;368:1685–1694.PubMedCrossRef Janssen HL, Reesink HW, Lawitz EJ et al. Treatment of HCV infection by targeting microRNA. N Engl J Med. 2013;368:1685–1694.PubMedCrossRef
328.
go back to reference Gomez IG, MacKenna DA, Johnson BG et al. Anti-microRNA-21 oligonucleotides prevent Alport nephropathy progression by stimulating metabolic pathways. J Clin Invest. 2015;125:141–156.PubMedCrossRef Gomez IG, MacKenna DA, Johnson BG et al. Anti-microRNA-21 oligonucleotides prevent Alport nephropathy progression by stimulating metabolic pathways. J Clin Invest. 2015;125:141–156.PubMedCrossRef
329.
go back to reference Anastasiadou E, Seto AG, Beatty X et al. Cobomarsen, an oligonucleotide inhibitor of miR-155, slows DLBCL tumor cell growth In vitro and In vivo. Clin Cancer Res. 2021;27:1139–1149.PubMedCrossRef Anastasiadou E, Seto AG, Beatty X et al. Cobomarsen, an oligonucleotide inhibitor of miR-155, slows DLBCL tumor cell growth In vitro and In vivo. Clin Cancer Res. 2021;27:1139–1149.PubMedCrossRef
330.
go back to reference Franco-Zorrilla JM, Valli A, Todesco M et al. Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet. 2007;39:1033–1037.PubMedCrossRef Franco-Zorrilla JM, Valli A, Todesco M et al. Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet. 2007;39:1033–1037.PubMedCrossRef
331.
go back to reference Ebert MS, Neilson JR, Sharp PA. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods. 2007;4:721–726.PubMedCrossRef Ebert MS, Neilson JR, Sharp PA. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods. 2007;4:721–726.PubMedCrossRef
332.
go back to reference Haraguchi T, Ozaki Y, Iba H. Vectors expressing efficient RNA decoys achieve the long-term suppression of specific microRNA activity in mammalian cells. Nucleic Acids Res. 2009;37:e43.PubMedPubMedCentralCrossRef Haraguchi T, Ozaki Y, Iba H. Vectors expressing efficient RNA decoys achieve the long-term suppression of specific microRNA activity in mammalian cells. Nucleic Acids Res. 2009;37:e43.PubMedPubMedCentralCrossRef
333.
334.
go back to reference Melo S, Villanueva A, Moutinho C et al. Small molecule enoxacin is a cancer-specific growth inhibitor that acts by enhancing TAR RNA-binding protein 2-mediated microRNA processing. Proc Natl Acad Sci U S A. 2011;108:4394–4399.PubMedPubMedCentralCrossRef Melo S, Villanueva A, Moutinho C et al. Small molecule enoxacin is a cancer-specific growth inhibitor that acts by enhancing TAR RNA-binding protein 2-mediated microRNA processing. Proc Natl Acad Sci U S A. 2011;108:4394–4399.PubMedPubMedCentralCrossRef
Metadata
Title
Missing Causality and Heritability of Autoimmune Hepatitis
Author
Albert J. Czaja
Publication date
19-10-2022
Publisher
Springer US
Published in
Digestive Diseases and Sciences / Issue 4/2023
Print ISSN: 0163-2116
Electronic ISSN: 1573-2568
DOI
https://doi.org/10.1007/s10620-022-07728-w

Other articles of this Issue 4/2023

Digestive Diseases and Sciences 4/2023 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.