Skip to main content
Top
Published in: Journal of Neurodevelopmental Disorders 1/2024

Open Access 01-12-2024 | Autism Spectrum Disorder | Research

Sex differences during development in cortical temporal processing and event related potentials in wild-type and fragile X syndrome model mice

Authors: Katilynne Croom, Jeffrey A. Rumschlag, Michael A. Erickson, Devin Binder, Khaleel A. Razak

Published in: Journal of Neurodevelopmental Disorders | Issue 1/2024

Login to get access

Abstract

Background

Autism spectrum disorder (ASD) is currently diagnosed in approximately 1 in 44 children in the United States, based on a wide array of symptoms, including sensory dysfunction and abnormal language development. Boys are diagnosed ~ 3.8 times more frequently than girls. Auditory temporal processing is crucial for speech recognition and language development. Abnormal development of temporal processing may account for ASD language impairments. Sex differences in the development of temporal processing may underlie the differences in language outcomes in male and female children with ASD. To understand mechanisms of potential sex differences in temporal processing requires a preclinical model. However, there are no studies that have addressed sex differences in temporal processing across development in any animal model of ASD.

Methods

To fill this major gap, we compared the development of auditory temporal processing in male and female wildtype (WT) and Fmr1 knock-out (KO) mice, a model of Fragile X Syndrome (FXS), a leading genetic cause of ASD-associated behaviors. Using epidural screw electrodes, we recorded auditory event related potentials (ERP) and auditory temporal processing with a gap-in-noise auditory steady state response (ASSR) paradigm at young (postnatal (p)21 and p30) and adult (p60) ages from both auditory and frontal cortices of awake, freely moving mice.

Results

The results show that ERP amplitudes were enhanced in both sexes of Fmr1 KO mice across development compared to WT counterparts, with greater enhancement in adult female than adult male KO mice. Gap-ASSR deficits were seen in the frontal, but not auditory, cortex in early development (p21) in female KO mice. Unlike male KO mice, female KO mice show WT-like temporal processing at p30. There were no temporal processing deficits in the adult mice of both sexes.

Conclusions

These results show a sex difference in the developmental trajectories of temporal processing and hypersensitive responses in Fmr1 KO mice. Male KO mice show slower maturation of temporal processing than females. Female KO mice show stronger hypersensitive responses than males later in development. The differences in maturation rates of temporal processing and hypersensitive responses during various critical periods of development may lead to sex differences in language function, arousal and anxiety in FXS.
Appendix
Available only for authorised users
Literature
1.
go back to reference Abbeduto L, Hagerman RJ. Language and communication in fragile X syndrome. Ment Retard Dev Disabil Res Rev. 1997;3(4):313–22.CrossRef Abbeduto L, Hagerman RJ. Language and communication in fragile X syndrome. Ment Retard Dev Disabil Res Rev. 1997;3(4):313–22.CrossRef
2.
go back to reference Foss-Feig JH, Schauder KB, Key AP, Wallace MT, Stone WL. Audition-specific temporal processing deficits associated with language function in children with autism spectrum disorder. Autism Res. 2017;10(11):1845–56.PubMedPubMedCentralCrossRef Foss-Feig JH, Schauder KB, Key AP, Wallace MT, Stone WL. Audition-specific temporal processing deficits associated with language function in children with autism spectrum disorder. Autism Res. 2017;10(11):1845–56.PubMedPubMedCentralCrossRef
3.
go back to reference Tager-Flusberg H, Caronna E. Language Disorders: Autism and Other Pervasive Developmental Disorders. Pediatr Clin North Am. 2007;54(3):469–81.PubMedCrossRef Tager-Flusberg H, Caronna E. Language Disorders: Autism and Other Pervasive Developmental Disorders. Pediatr Clin North Am. 2007;54(3):469–81.PubMedCrossRef
4.
go back to reference Rapin I, Dunn M. Update on the language disorders of individuals on the autistic spectrum. Brain Develop. 2003;25(3):166–72.CrossRef Rapin I, Dunn M. Update on the language disorders of individuals on the autistic spectrum. Brain Develop. 2003;25(3):166–72.CrossRef
5.
go back to reference Jeste SS, Nelson CA. Event Related Potentials in the Understanding of Autism Spectrum Disorders: An Analytical Review. J Autism Dev Disord. 2008;39(3):495–510.PubMedPubMedCentralCrossRef Jeste SS, Nelson CA. Event Related Potentials in the Understanding of Autism Spectrum Disorders: An Analytical Review. J Autism Dev Disord. 2008;39(3):495–510.PubMedPubMedCentralCrossRef
6.
go back to reference Riva V, Cantiani C, Mornati G, Gallo M, Villa L, Mani E, et al. Distinct ERP profiles for auditory processing in infants at-risk for autism and language impairment. Sci Rep. 2018;8(1):715. Riva V, Cantiani C, Mornati G, Gallo M, Villa L, Mani E, et al. Distinct ERP profiles for auditory processing in infants at-risk for autism and language impairment. Sci Rep. 2018;8(1):715.
7.
go back to reference Le Couteur A, Rutter M, Lord C, Rios P, Robertson S, Holdgrafer M, et al. Autism diagnostic interview: A standardized investigator-based instrument. J Autism Dev Disord. 1989;19(3):363–87.PubMedCrossRef Le Couteur A, Rutter M, Lord C, Rios P, Robertson S, Holdgrafer M, et al. Autism diagnostic interview: A standardized investigator-based instrument. J Autism Dev Disord. 1989;19(3):363–87.PubMedCrossRef
8.
go back to reference Lord C. Follow-Up of Two-Year-Olds Referred for Possible Autism. J Child Psychol Psychiatry. 1995;36(8):1365–82.PubMedCrossRef Lord C. Follow-Up of Two-Year-Olds Referred for Possible Autism. J Child Psychol Psychiatry. 1995;36(8):1365–82.PubMedCrossRef
9.
go back to reference Baum SH, Stevenson RA, Wallace MT. Behavioral, perceptual, and neural alterations in sensory and multisensory function in autism spectrum disorder. Prog Neurobiol. 2015;134:140–60.PubMedPubMedCentralCrossRef Baum SH, Stevenson RA, Wallace MT. Behavioral, perceptual, and neural alterations in sensory and multisensory function in autism spectrum disorder. Prog Neurobiol. 2015;134:140–60.PubMedPubMedCentralCrossRef
10.
go back to reference Hilton CL, Harper JD, Kueker RH, Lang AR, Abbacchi AM, Todorov A, et al. Sensory Responsiveness as a Predictor of Social Severity in Children with High Functioning Autism Spectrum Disorders. J Autism Dev Disord. 2010;40(8):937–45.PubMedCrossRef Hilton CL, Harper JD, Kueker RH, Lang AR, Abbacchi AM, Todorov A, et al. Sensory Responsiveness as a Predictor of Social Severity in Children with High Functioning Autism Spectrum Disorders. J Autism Dev Disord. 2010;40(8):937–45.PubMedCrossRef
11.
go back to reference Watson LR, Patten E, Baranek GT, Poe M, Boyd BA, Freuler A, et al. Differential Associations Between Sensory Response Patterns and Language, Social, and Communication Measures in Children With Autism or Other Developmental Disabilities. J Speech Lang Hear Res. 2011;54(6):1562–76.PubMedCrossRef Watson LR, Patten E, Baranek GT, Poe M, Boyd BA, Freuler A, et al. Differential Associations Between Sensory Response Patterns and Language, Social, and Communication Measures in Children With Autism or Other Developmental Disabilities. J Speech Lang Hear Res. 2011;54(6):1562–76.PubMedCrossRef
13.
go back to reference Zubrick SR, Taylor CL, Rice ML, Slegers DW. Late Language Emergence at 24 Months: An Epidemiological Study of Prevalence, Predictors, and Covariates. J Speech Lang Hear Res. 2007;50(6):1562–92.PubMedCrossRef Zubrick SR, Taylor CL, Rice ML, Slegers DW. Late Language Emergence at 24 Months: An Epidemiological Study of Prevalence, Predictors, and Covariates. J Speech Lang Hear Res. 2007;50(6):1562–92.PubMedCrossRef
14.
go back to reference Adani S, Cepanec M. Sex differences in early communication development: behavioral and neurobiological indicators of more vulnerable communication system development in boys. Croat Med J. 2019;60(2):141–9.PubMedPubMedCentralCrossRef Adani S, Cepanec M. Sex differences in early communication development: behavioral and neurobiological indicators of more vulnerable communication system development in boys. Croat Med J. 2019;60(2):141–9.PubMedPubMedCentralCrossRef
15.
go back to reference Maccoby E. The Development of Sex Differences. First Edition. Stanford University Press; 1966. Maccoby E. The Development of Sex Differences. First Edition. Stanford University Press; 1966.
16.
go back to reference Ramer ALH. Syntactic styles in emerging language. J Child Lang. 1976;3(1):49–62.CrossRef Ramer ALH. Syntactic styles in emerging language. J Child Lang. 1976;3(1):49–62.CrossRef
17.
go back to reference Huttenlocher J, Haight W, Bryk A, Seltzer M, et al. Early vocabulary growth: Relation to language input and gender. Dev Psychol. 1991;27(2):236–48.CrossRef Huttenlocher J, Haight W, Bryk A, Seltzer M, et al. Early vocabulary growth: Relation to language input and gender. Dev Psychol. 1991;27(2):236–48.CrossRef
19.
go back to reference Harrop C, Libsack E, Bernier R, Dapretto M, Jack A, McPartland JC, et al. Do Biological Sex and Early Developmental Milestones Predict the Age of First Concerns and Eventual Diagnosis in Autism Spectrum Disorder? Autism Res. 2020;14(1):156–68.PubMedPubMedCentralCrossRef Harrop C, Libsack E, Bernier R, Dapretto M, Jack A, McPartland JC, et al. Do Biological Sex and Early Developmental Milestones Predict the Age of First Concerns and Eventual Diagnosis in Autism Spectrum Disorder? Autism Res. 2020;14(1):156–68.PubMedPubMedCentralCrossRef
20.
go back to reference Darley FL, Winitz H. Age of First Word: Review of Research. Journal of Speech and Hearing Disorders. 1961;26(3):272–90.CrossRef Darley FL, Winitz H. Age of First Word: Review of Research. Journal of Speech and Hearing Disorders. 1961;26(3):272–90.CrossRef
21.
go back to reference Nelson K. Individual differences in language development: Implications for development and language. Dev Psychol. 1981;17(2):170–87.CrossRef Nelson K. Individual differences in language development: Implications for development and language. Dev Psychol. 1981;17(2):170–87.CrossRef
22.
go back to reference Lutchmaya S, Baron-Cohen S, Raggatt P. Foetal testosterone and eye contact in 12-month-old human infants. Infant Behav Dev. 2002;25(3):327–35.CrossRef Lutchmaya S, Baron-Cohen S, Raggatt P. Foetal testosterone and eye contact in 12-month-old human infants. Infant Behav Dev. 2002;25(3):327–35.CrossRef
23.
go back to reference Lombardo MV, Ashwin E, Auyeung B, Chakrabarti B, Taylor K, Hackett G, et al. Fetal Testosterone Influences Sexually Dimorphic Gray Matter in the Human Brain. J Neurosci. 2012;32(2):674–80.PubMedPubMedCentralCrossRef Lombardo MV, Ashwin E, Auyeung B, Chakrabarti B, Taylor K, Hackett G, et al. Fetal Testosterone Influences Sexually Dimorphic Gray Matter in the Human Brain. J Neurosci. 2012;32(2):674–80.PubMedPubMedCentralCrossRef
24.
go back to reference Knickmeyer RC, Gouttard S, Kang C, Evans D, Wilber K, Smith JK, et al. A Structural MRI Study of Human Brain Development from Birth to 2 Years. J Neurosci. 2008;28(47):12176–82.PubMedPubMedCentralCrossRef Knickmeyer RC, Gouttard S, Kang C, Evans D, Wilber K, Smith JK, et al. A Structural MRI Study of Human Brain Development from Birth to 2 Years. J Neurosci. 2008;28(47):12176–82.PubMedPubMedCentralCrossRef
25.
go back to reference Auyeung B, Baron-Cohen S, Ashwin E, Knickmeyer R, Taylor K, Hackett G. Fetal testosterone and autistic traits. Br J Psychol. 2009;100(1):1–22.PubMedCrossRef Auyeung B, Baron-Cohen S, Ashwin E, Knickmeyer R, Taylor K, Hackett G. Fetal testosterone and autistic traits. Br J Psychol. 2009;100(1):1–22.PubMedCrossRef
26.
go back to reference Friederici AD, Pannekamp A, Partsch CJ, Ulmen U, Oehler K, Schmutzler R, et al. Sex hormone testosterone affects language organization in the infant brain. NeuroReport. 2008;19(3):283–6.PubMedCrossRef Friederici AD, Pannekamp A, Partsch CJ, Ulmen U, Oehler K, Schmutzler R, et al. Sex hormone testosterone affects language organization in the infant brain. NeuroReport. 2008;19(3):283–6.PubMedCrossRef
27.
go back to reference Hollier LP, Mattes E, Maybery MT, Keelan JA, Hickey M, Whitehouse AJO. The association between perinatal testosterone concentration and early vocabulary development: A prospective cohort study. Biol Psychol. 2013;92(2):212–5.PubMedCrossRef Hollier LP, Mattes E, Maybery MT, Keelan JA, Hickey M, Whitehouse AJO. The association between perinatal testosterone concentration and early vocabulary development: A prospective cohort study. Biol Psychol. 2013;92(2):212–5.PubMedCrossRef
28.
go back to reference Schaadt G, Hesse V, Friederici AD. Sex hormones in early infancy seem to predict aspects of later language development. Brain Lang. 2015;141:70–6.PubMedCrossRef Schaadt G, Hesse V, Friederici AD. Sex hormones in early infancy seem to predict aspects of later language development. Brain Lang. 2015;141:70–6.PubMedCrossRef
29.
go back to reference Darnell JC, Van Driesche SJ, Zhang C, Hung KYS, Mele A, Fraser CE, et al. FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell. 2011;146(2):247–61.PubMedPubMedCentralCrossRef Darnell JC, Van Driesche SJ, Zhang C, Hung KYS, Mele A, Fraser CE, et al. FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell. 2011;146(2):247–61.PubMedPubMedCentralCrossRef
30.
go back to reference Huber KM, Gallagher SM, Warren ST, Bear MF. Altered synaptic plasticity in a mouse model of fragile X mental retardation. Proc Natl Acad Sci USA. 2002;99(11):7746–50.PubMedPubMedCentralCrossRef Huber KM, Gallagher SM, Warren ST, Bear MF. Altered synaptic plasticity in a mouse model of fragile X mental retardation. Proc Natl Acad Sci USA. 2002;99(11):7746–50.PubMedPubMedCentralCrossRef
31.
go back to reference Wisniewski KE, Segan SM, Miezejeski CM, Sersen EA, Rudelli RD. The fra(X) syndrome: Neurological, electrophysiological, and neuropathological abnormalities. Am J Med Genet. 1991;38(2–3):476–80.PubMedCrossRef Wisniewski KE, Segan SM, Miezejeski CM, Sersen EA, Rudelli RD. The fra(X) syndrome: Neurological, electrophysiological, and neuropathological abnormalities. Am J Med Genet. 1991;38(2–3):476–80.PubMedCrossRef
32.
go back to reference Cordeiro L, Ballinger E, Hagerman R, Hessl D. Clinical assessment of DSM-IV anxiety disorders in fragile X syndrome: prevalence and characterization. J Neurodev Disord. 2010;3(1):57–67.PubMedPubMedCentralCrossRef Cordeiro L, Ballinger E, Hagerman R, Hessl D. Clinical assessment of DSM-IV anxiety disorders in fragile X syndrome: prevalence and characterization. J Neurodev Disord. 2010;3(1):57–67.PubMedPubMedCentralCrossRef
33.
go back to reference Van der Molen MJW, Huizinga M, Huizenga HM, Ridderinkhof KR, Van der Molen MW, Hamel BJC, et al. Profiling Fragile X Syndrome in males: Strengths and weaknesses in cognitive abilities. Res Dev Disabil. 2010;31(2):426–39.PubMedCrossRef Van der Molen MJW, Huizinga M, Huizenga HM, Ridderinkhof KR, Van der Molen MW, Hamel BJC, et al. Profiling Fragile X Syndrome in males: Strengths and weaknesses in cognitive abilities. Res Dev Disabil. 2010;31(2):426–39.PubMedCrossRef
34.
go back to reference Oakes A, Thurman AJ, McDuffie A, Bullard LM, Hagerman RJ, Abbeduto L. Characterising repetitive behaviours in young boys with fragile X syndrome. J Intellect Disabil Res. 2015;60(1):54–67.PubMedPubMedCentralCrossRef Oakes A, Thurman AJ, McDuffie A, Bullard LM, Hagerman RJ, Abbeduto L. Characterising repetitive behaviours in young boys with fragile X syndrome. J Intellect Disabil Res. 2015;60(1):54–67.PubMedPubMedCentralCrossRef
35.
go back to reference Miller LJ, McIntosh DN, McGrath J, Shyu V, Lampe M, Taylor AK, et al. Electrodermal responses to sensory stimuli in individuals with fragile X syndrome: A preliminary report. Am J Med Genet. 1999;83(4):268–79.PubMedCrossRef Miller LJ, McIntosh DN, McGrath J, Shyu V, Lampe M, Taylor AK, et al. Electrodermal responses to sensory stimuli in individuals with fragile X syndrome: A preliminary report. Am J Med Genet. 1999;83(4):268–79.PubMedCrossRef
36.
go back to reference Hall SS, Walter E, Sherman E, Hoeft F, Reiss AL. The neural basis of auditory temporal discrimination in girls with fragile X syndrome. J Neurodev Disord. 2009;1(1):91–9.PubMedPubMedCentralCrossRef Hall SS, Walter E, Sherman E, Hoeft F, Reiss AL. The neural basis of auditory temporal discrimination in girls with fragile X syndrome. J Neurodev Disord. 2009;1(1):91–9.PubMedPubMedCentralCrossRef
37.
go back to reference Abbeduto L, Brady N, Kover ST. Language development and fragile X syndrome: Profiles, syndrome-specificity, and within-syndrome differences. Ment Retard Dev Disabil Res Rev. 2007;13(1):36–46.PubMedPubMedCentralCrossRef Abbeduto L, Brady N, Kover ST. Language development and fragile X syndrome: Profiles, syndrome-specificity, and within-syndrome differences. Ment Retard Dev Disabil Res Rev. 2007;13(1):36–46.PubMedPubMedCentralCrossRef
39.
go back to reference Rice ML, Warren SF, Betz SK. Language symptoms of developmental language disorders: An overview of autism, Down syndrome, fragile X, specific language impairment, and Williams syndrome. Appl Psycholinguist. 2005;26(1):7–27.CrossRef Rice ML, Warren SF, Betz SK. Language symptoms of developmental language disorders: An overview of autism, Down syndrome, fragile X, specific language impairment, and Williams syndrome. Appl Psycholinguist. 2005;26(1):7–27.CrossRef
40.
go back to reference Martin GE, Losh M, Estigarribia B, Sideris J, Roberts J. Longitudinal profiles of expressive vocabulary, syntax and pragmatic language in boys with fragile X syndrome or Down syndrome. Int J Lang Commun Disord. 2013;48(4):432–43.PubMedPubMedCentralCrossRef Martin GE, Losh M, Estigarribia B, Sideris J, Roberts J. Longitudinal profiles of expressive vocabulary, syntax and pragmatic language in boys with fragile X syndrome or Down syndrome. Int J Lang Commun Disord. 2013;48(4):432–43.PubMedPubMedCentralCrossRef
41.
go back to reference Rogers SJ, Hepburn S, Wehner E. Parent Reports of Sensory Symptoms in Toddlers with Autism and Those with Other Developmental Disorders. J Autism Dev Disord. 2003;33(6):631–42.PubMedCrossRef Rogers SJ, Hepburn S, Wehner E. Parent Reports of Sensory Symptoms in Toddlers with Autism and Those with Other Developmental Disorders. J Autism Dev Disord. 2003;33(6):631–42.PubMedCrossRef
42.
go back to reference Crane L, Goddard L, Pring L. Sensory processing in adults with autism spectrum disorders. Autism : the international journal of research and practice. 2009;13(3):215–28.PubMedCrossRef Crane L, Goddard L, Pring L. Sensory processing in adults with autism spectrum disorders. Autism : the international journal of research and practice. 2009;13(3):215–28.PubMedCrossRef
43.
go back to reference Marco EJ, Hinkley LBN, Hill SS, Nagarajan SS. Sensory Processing in Autism: A Review of Neurophysiologic Findings. Pediatric Research. 2011;69(5 Part 2):48–54.CrossRef Marco EJ, Hinkley LBN, Hill SS, Nagarajan SS. Sensory Processing in Autism: A Review of Neurophysiologic Findings. Pediatric Research. 2011;69(5 Part 2):48–54.CrossRef
44.
go back to reference Takarae Y, Sablich SR, White SP, Sweeney JA. Neurophysiological hyperresponsivity to sensory input in autism spectrum disorders. J Neurodev Disord. 2016;8(1):29. Takarae Y, Sablich SR, White SP, Sweeney JA. Neurophysiological hyperresponsivity to sensory input in autism spectrum disorders. J Neurodev Disord. 2016;8(1):29.
45.
go back to reference Ethridge LE, White SP, Mosconi MW, Wang J, Byerly MJ, Sweeney JA. Reduced habituation of auditory evoked potentials indicate cortical hyper-excitability in Fragile X Syndrome. Transl Psychiatry. 2016;6(4):e787–97.PubMedPubMedCentralCrossRef Ethridge LE, White SP, Mosconi MW, Wang J, Byerly MJ, Sweeney JA. Reduced habituation of auditory evoked potentials indicate cortical hyper-excitability in Fragile X Syndrome. Transl Psychiatry. 2016;6(4):e787–97.PubMedPubMedCentralCrossRef
46.
go back to reference Bartholomay KL, Lee CH, Bruno JL, Lightbody AA, Reiss AL. Closing the Gender Gap in Fragile X Syndrome: Review of Females with Fragile X Syndrome and Preliminary Research Findings. Brain Sci. 2019;9(1):11. Bartholomay KL, Lee CH, Bruno JL, Lightbody AA, Reiss AL. Closing the Gender Gap in Fragile X Syndrome: Review of Females with Fragile X Syndrome and Preliminary Research Findings. Brain Sci. 2019;9(1):11.
47.
go back to reference Kover ST, Abbeduto L. Expressive language in male adolescents with fragile X syndrome with and without comorbid autism. J Intellect Disabil Res. 2010;54(3):246–65.PubMedPubMedCentralCrossRef Kover ST, Abbeduto L. Expressive language in male adolescents with fragile X syndrome with and without comorbid autism. J Intellect Disabil Res. 2010;54(3):246–65.PubMedPubMedCentralCrossRef
48.
go back to reference Abbeduto L, Murphy MM, Cawthon SW, Richmond EK, Weissman MD, Karadottir S, et al. Receptive Language Skills of Adolescents and Young Adults With Down or Fragile X Syndrome. Am J Ment Retard. 2003;108(3):149.PubMedCrossRef Abbeduto L, Murphy MM, Cawthon SW, Richmond EK, Weissman MD, Karadottir S, et al. Receptive Language Skills of Adolescents and Young Adults With Down or Fragile X Syndrome. Am J Ment Retard. 2003;108(3):149.PubMedCrossRef
49.
go back to reference Brady NC, Marquis J, Fleming K, McLean L. Prelinguistic Predictors of Language Growth in Children With Developmental Disabilities. J Speech Lang Hear Res. 2004;47(3):663–77.PubMedCrossRef Brady NC, Marquis J, Fleming K, McLean L. Prelinguistic Predictors of Language Growth in Children With Developmental Disabilities. J Speech Lang Hear Res. 2004;47(3):663–77.PubMedCrossRef
50.
go back to reference Zeng FG, Nie K, Stickney GS, Kong YY, Vongphoe M, Bhargave A, et al. Speech recognition with amplitude and frequency modulations. Proc Natl Acad Sci. 2005;102(7):2293–8.PubMedPubMedCentralCrossRef Zeng FG, Nie K, Stickney GS, Kong YY, Vongphoe M, Bhargave A, et al. Speech recognition with amplitude and frequency modulations. Proc Natl Acad Sci. 2005;102(7):2293–8.PubMedPubMedCentralCrossRef
51.
go back to reference Shannon RV, Zeng FG, Kamath V, Wygonski J, Ekelid M. Speech Recognition with Primarily Temporal Cues. Science. 1995;270(5234):303–4.PubMedCrossRef Shannon RV, Zeng FG, Kamath V, Wygonski J, Ekelid M. Speech Recognition with Primarily Temporal Cues. Science. 1995;270(5234):303–4.PubMedCrossRef
52.
go back to reference Moore BCJ. The Role of Temporal Fine Structure Processing in Pitch Perception, Masking, and Speech Perception for Normal-Hearing and Hearing-Impaired People. J Assoc Res Otolaryngol. 2008;9(4):399–406.PubMedPubMedCentralCrossRef Moore BCJ. The Role of Temporal Fine Structure Processing in Pitch Perception, Masking, and Speech Perception for Normal-Hearing and Hearing-Impaired People. J Assoc Res Otolaryngol. 2008;9(4):399–406.PubMedPubMedCentralCrossRef
53.
54.
go back to reference Tallal P, Merzenich MM, Miller S, Jenkins W. Language learning impairments: integrating basic science, technology, and remediation. Exp Brain Res. 1998;123(1–2):210–9.PubMedCrossRef Tallal P, Merzenich MM, Miller S, Jenkins W. Language learning impairments: integrating basic science, technology, and remediation. Exp Brain Res. 1998;123(1–2):210–9.PubMedCrossRef
55.
go back to reference Kwakye LD, Foss-Feig JH, Cascio CJ, Stone WL, Wallace MT. Altered auditory and multisensory temporal processing in autism spectrum disorders. Front Integr Neurosci. 2011;4:129. Kwakye LD, Foss-Feig JH, Cascio CJ, Stone WL, Wallace MT. Altered auditory and multisensory temporal processing in autism spectrum disorders. Front Integr Neurosci. 2011;4:129.
56.
go back to reference Lepistö T, Silokallio S, Nieminen-von Wendt T, Alku P, Näätänen R, Kujala T. Auditory perception and attention as reflected by the brain event-related potentials in children with Asperger syndrome. Clin Neurophysiol. 2006;117(10):2161–71.PubMedCrossRef Lepistö T, Silokallio S, Nieminen-von Wendt T, Alku P, Näätänen R, Kujala T. Auditory perception and attention as reflected by the brain event-related potentials in children with Asperger syndrome. Clin Neurophysiol. 2006;117(10):2161–71.PubMedCrossRef
57.
go back to reference Oram Cardy JE, Flagg EJ, Roberts W, Brian J, Roberts TPL. Magnetoencephalography identifies rapid temporal processing deficit in autism and language impairment. NeuroReport. 2005;16(4):329–32.PubMedCrossRef Oram Cardy JE, Flagg EJ, Roberts W, Brian J, Roberts TPL. Magnetoencephalography identifies rapid temporal processing deficit in autism and language impairment. NeuroReport. 2005;16(4):329–32.PubMedCrossRef
58.
go back to reference Orekhova EV, Stroganova TA, Prokofiev AO, Nygren G, Gillberg C, Elam M. The right hemisphere fails to respond to temporal novelty in autism: Evidence from an ERP study. Clin Neurophysiol. 2009;120(3):520–9.PubMedCrossRef Orekhova EV, Stroganova TA, Prokofiev AO, Nygren G, Gillberg C, Elam M. The right hemisphere fails to respond to temporal novelty in autism: Evidence from an ERP study. Clin Neurophysiol. 2009;120(3):520–9.PubMedCrossRef
59.
go back to reference Meilleur A, Foster NEV, Coll SM, Brambati SM, Hyde KL. Unisensory and multisensory temporal processing in autism and dyslexia: A systematic review and meta-analysis. Neurosci Biobehav Rev. 2020;116:44–63.PubMedCrossRef Meilleur A, Foster NEV, Coll SM, Brambati SM, Hyde KL. Unisensory and multisensory temporal processing in autism and dyslexia: A systematic review and meta-analysis. Neurosci Biobehav Rev. 2020;116:44–63.PubMedCrossRef
60.
go back to reference Szelag E, Kowalska J, Galkowski T, Pöppel E. Temporal processing deficits in high-functioning children with autism. Br J Psychol. 2004;95(3):269–82.PubMedCrossRef Szelag E, Kowalska J, Galkowski T, Pöppel E. Temporal processing deficits in high-functioning children with autism. Br J Psychol. 2004;95(3):269–82.PubMedCrossRef
61.
go back to reference Tecchio F, Benassi F, Zappasodi F, Gialloreti LE, Palermo M, Seri S, et al. Auditory sensory processing in autism: a magnetoencephalographic study. Biol Psychiat. 2003;54(6):647–54.PubMedCrossRef Tecchio F, Benassi F, Zappasodi F, Gialloreti LE, Palermo M, Seri S, et al. Auditory sensory processing in autism: a magnetoencephalographic study. Biol Psychiat. 2003;54(6):647–54.PubMedCrossRef
62.
go back to reference Gomot M, Bernard FA, Davis MH, Belmonte MK, Ashwin C, Bullmore ET, et al. Change detection in children with autism: An auditory event-related fMRI study. Neuroimage. 2006;29(2):475–84.PubMedCrossRef Gomot M, Bernard FA, Davis MH, Belmonte MK, Ashwin C, Bullmore ET, et al. Change detection in children with autism: An auditory event-related fMRI study. Neuroimage. 2006;29(2):475–84.PubMedCrossRef
63.
go back to reference Razak KA, Binder DK, Ethell IM. Neural Correlates of Auditory Hypersensitivity in Fragile X Syndrome. Front Psych. 2021;7:12. Razak KA, Binder DK, Ethell IM. Neural Correlates of Auditory Hypersensitivity in Fragile X Syndrome. Front Psych. 2021;7:12.
64.
go back to reference Croom K, Rumschlag JA, Erickson MA, Binder DK, Razak KA. Developmental delays in cortical auditory temporal processing in a mouse model of Fragile X syndrome. J Neurodev Disord. 2023;15(1):23. Croom K, Rumschlag JA, Erickson MA, Binder DK, Razak KA. Developmental delays in cortical auditory temporal processing in a mouse model of Fragile X syndrome. J Neurodev Disord. 2023;15(1):23.
65.
go back to reference Rumschlag JA, Razak KA. Age-related changes in event related potentials, steady state responses and temporal processing in the auditory cortex of mice with severe or mild hearing loss. Hear Res. 2021;412: 108380.PubMedCrossRef Rumschlag JA, Razak KA. Age-related changes in event related potentials, steady state responses and temporal processing in the auditory cortex of mice with severe or mild hearing loss. Hear Res. 2021;412: 108380.PubMedCrossRef
67.
68.
go back to reference Rotschafer S, Razak K. Altered auditory processing in a mouse model of fragile X syndrome. Brain Res. 2013;1506:12–24.PubMedCrossRef Rotschafer S, Razak K. Altered auditory processing in a mouse model of fragile X syndrome. Brain Res. 2013;1506:12–24.PubMedCrossRef
69.
go back to reference Nguyen A, Binder DK, Ethell IM, Razak KA. Abnormal development of auditory responses in the inferior colliculus of a mouse model of Fragile X Syndrome. J Neurophysiol. 2020;123(6):2101–21.PubMedPubMedCentralCrossRef Nguyen A, Binder DK, Ethell IM, Razak KA. Abnormal development of auditory responses in the inferior colliculus of a mouse model of Fragile X Syndrome. J Neurophysiol. 2020;123(6):2101–21.PubMedPubMedCentralCrossRef
70.
go back to reference Wen TH, Afroz S, Reinhard SM, Palacios AR, Tapia K, Binder DK, et al. Genetic Reduction of Matrix Metalloproteinase-9 Promotes Formation of Perineuronal Nets Around Parvalbumin-Expressing Interneurons and Normalizes Auditory Cortex Responses in Developing Fmr1 Knock-Out Mice. Cerebral Cortex (New York, NY: 1991). 2018 Nov 1;28(11):3951–64. Wen TH, Afroz S, Reinhard SM, Palacios AR, Tapia K, Binder DK, et al. Genetic Reduction of Matrix Metalloproteinase-9 Promotes Formation of Perineuronal Nets Around Parvalbumin-Expressing Interneurons and Normalizes Auditory Cortex Responses in Developing Fmr1 Knock-Out Mice. Cerebral Cortex (New York, NY: 1991). 2018 Nov 1;28(11):3951–64.
72.
go back to reference Kim H, Gibboni R, Kirkhart C, Bao S. Impaired Critical Period Plasticity in Primary Auditory Cortex of Fragile X Model Mice. J Neurosci. 2013;33(40):15686–92.PubMedPubMedCentralCrossRef Kim H, Gibboni R, Kirkhart C, Bao S. Impaired Critical Period Plasticity in Primary Auditory Cortex of Fragile X Model Mice. J Neurosci. 2013;33(40):15686–92.PubMedPubMedCentralCrossRef
73.
go back to reference Carrasco MA, Trujillo MA, Razak KA. Development of response selectivity in the mouse auditory cortex. Hear Res. 2013;1(296):107–20.CrossRef Carrasco MA, Trujillo MA, Razak KA. Development of response selectivity in the mouse auditory cortex. Hear Res. 2013;1(296):107–20.CrossRef
74.
go back to reference Rumschlag JA, Lovelace JW, Razak KA. Age- and movement-related modulation of cortical oscillations in a mouse model of presbycusis. Hear Res. 2020;402: 108095.PubMedCrossRef Rumschlag JA, Lovelace JW, Razak KA. Age- and movement-related modulation of cortical oscillations in a mouse model of presbycusis. Hear Res. 2020;402: 108095.PubMedCrossRef
75.
go back to reference Wen TH, Lovelace JW, Ethell IM, Binder DK, Razak KA. Developmental Changes in EEG Phenotypes in a Mouse Model of Fragile X Syndrome. Neuroscience. 2019;398:126–43.PubMedCrossRef Wen TH, Lovelace JW, Ethell IM, Binder DK, Razak KA. Developmental Changes in EEG Phenotypes in a Mouse Model of Fragile X Syndrome. Neuroscience. 2019;398:126–43.PubMedCrossRef
76.
go back to reference Lovelace JW, Ethell IM, Binder DK, Razak KA. Translation-relevant EEG phenotypes in a mouse model of Fragile X Syndrome. Neurobiol Dis. 2018;115:39–48.PubMedPubMedCentralCrossRef Lovelace JW, Ethell IM, Binder DK, Razak KA. Translation-relevant EEG phenotypes in a mouse model of Fragile X Syndrome. Neurobiol Dis. 2018;115:39–48.PubMedPubMedCentralCrossRef
77.
78.
go back to reference Pastor MA, Artieda J, Arbizu J, Marti-Climent JM, Peñuelas I, Masdeu JC. Activation of Human Cerebral and Cerebellar Cortex by Auditory Stimulation at 40 Hz. J Neurosci. 2002;22(23):10501–6.PubMedPubMedCentralCrossRef Pastor MA, Artieda J, Arbizu J, Marti-Climent JM, Peñuelas I, Masdeu JC. Activation of Human Cerebral and Cerebellar Cortex by Auditory Stimulation at 40 Hz. J Neurosci. 2002;22(23):10501–6.PubMedPubMedCentralCrossRef
79.
go back to reference Llinás R. The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science. 1988;242(4886):1654–64.PubMedCrossRef Llinás R. The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science. 1988;242(4886):1654–64.PubMedCrossRef
80.
go back to reference Llinás RR, Grace AA, Yarom Y. In vitro neurons in mammalian cortical layer 4 exhibit intrinsic oscillatory activity in the 10- to 50-Hz frequency range. Proc Natl Acad Sci. 1991;88(3):897–901.PubMedPubMedCentralCrossRef Llinás RR, Grace AA, Yarom Y. In vitro neurons in mammalian cortical layer 4 exhibit intrinsic oscillatory activity in the 10- to 50-Hz frequency range. Proc Natl Acad Sci. 1991;88(3):897–901.PubMedPubMedCentralCrossRef
81.
go back to reference Rosanova M, Casali A, Bellina V, Resta F, Mariotti M, Massimini M. Natural Frequencies of Human Corticothalamic Circuits. J Neurosci. 2009;29(24):7679–85.PubMedPubMedCentralCrossRef Rosanova M, Casali A, Bellina V, Resta F, Mariotti M, Massimini M. Natural Frequencies of Human Corticothalamic Circuits. J Neurosci. 2009;29(24):7679–85.PubMedPubMedCentralCrossRef
82.
go back to reference Kim T, Thankachan S, McKenna JT, McNally JM, Yang C, Choi JH, et al. Cortically projecting basal forebrain parvalbumin neurons regulate cortical gamma band oscillations. Proc Natl Acad Sci. 2015;112(11):3535–40.PubMedPubMedCentralCrossRef Kim T, Thankachan S, McKenna JT, McNally JM, Yang C, Choi JH, et al. Cortically projecting basal forebrain parvalbumin neurons regulate cortical gamma band oscillations. Proc Natl Acad Sci. 2015;112(11):3535–40.PubMedPubMedCentralCrossRef
83.
go back to reference Hwang E, Brown RE, Kocsis B, Kim T, McKenna JT, McNally JM, et al. Optogenetic stimulation of basal forebrain parvalbumin neurons modulates the cortical topography of auditory steady-state responses. Brain Struct Funct. 2019;224(4):1505–18.PubMedPubMedCentralCrossRef Hwang E, Brown RE, Kocsis B, Kim T, McKenna JT, McNally JM, et al. Optogenetic stimulation of basal forebrain parvalbumin neurons modulates the cortical topography of auditory steady-state responses. Brain Struct Funct. 2019;224(4):1505–18.PubMedPubMedCentralCrossRef
84.
go back to reference Cohen MX. Analyzing Neural Time Series Data. The MIT Press; 2014. Cohen MX. Analyzing Neural Time Series Data. The MIT Press; 2014.
85.
go back to reference West S, Finch J, Curran P. Structural equation modeling: Concepts, issues, and applications. Doyle RH, editor. SAGE Publications, Inc; 1995. West S, Finch J, Curran P. Structural equation modeling: Concepts, issues, and applications. Doyle RH, editor. SAGE Publications, Inc; 1995.
86.
go back to reference Ethridge LE, De Stefano LA, Schmitt LM, Woodruff NE, Brown KL, Tran M, et al. Auditory EEG Biomarkers in Fragile X Syndrome: Clinical Relevance. Front Integr Neurosci. 2019;9:13. Ethridge LE, De Stefano LA, Schmitt LM, Woodruff NE, Brown KL, Tran M, et al. Auditory EEG Biomarkers in Fragile X Syndrome: Clinical Relevance. Front Integr Neurosci. 2019;9:13.
87.
go back to reference Castrén M, Pääkkönen A, Tarkka IM, Ryynänen M, Partanen J. Augmentation of auditory N1 in children with fragile X syndrome. Brain Topogr. 2003;15(3):165–71.PubMedCrossRef Castrén M, Pääkkönen A, Tarkka IM, Ryynänen M, Partanen J. Augmentation of auditory N1 in children with fragile X syndrome. Brain Topogr. 2003;15(3):165–71.PubMedCrossRef
88.
go back to reference Knoth IS, Lippé S. Event-related potential alterations in fragile X syndrome. Front Hum Neurosci. 2012;6:264. Knoth IS, Lippé S. Event-related potential alterations in fragile X syndrome. Front Hum Neurosci. 2012;6:264.
89.
go back to reference Rojas DC, Benkers TL, Rogers SJ, Teale PD, Reite ML, Hagerman RJ. Auditory evoked magnetic fields in adults with fragile X syndrome. NeuroReport. 2001;12(11):2573–6.PubMedCrossRef Rojas DC, Benkers TL, Rogers SJ, Teale PD, Reite ML, Hagerman RJ. Auditory evoked magnetic fields in adults with fragile X syndrome. NeuroReport. 2001;12(11):2573–6.PubMedCrossRef
90.
go back to reference St. Clair DM, Blackwood DHR, Oliver CJ, Dickens P. P3 Abnormality in fragile X syndrome. Biological Psychiatry. 1987 Mar;22(3):303–12. St. Clair DM, Blackwood DHR, Oliver CJ, Dickens P. P3 Abnormality in fragile X syndrome. Biological Psychiatry. 1987 Mar;22(3):303–12.
91.
go back to reference Van der Molen MJW, Van der Molen MW, Ridderinkhof KR, Hamel BCJ, Curfs LMG, Ramakers GJA. Auditory change detection in fragile X syndrome males: A brain potential study. Clin Neurophysiol. 2012;123(7):1309–18.PubMedCrossRef Van der Molen MJW, Van der Molen MW, Ridderinkhof KR, Hamel BCJ, Curfs LMG, Ramakers GJA. Auditory change detection in fragile X syndrome males: A brain potential study. Clin Neurophysiol. 2012;123(7):1309–18.PubMedCrossRef
92.
go back to reference Van der Molen MJW, Van der Molen MW, Ridderinkhof KR, Hamel BCJ, Curfs LMG, Ramakers GJA. Auditory and visual cortical activity during selective attention in fragile X syndrome: A cascade of processing deficiencies. Clin Neurophysiol. 2012;123(4):720–9.PubMedCrossRef Van der Molen MJW, Van der Molen MW, Ridderinkhof KR, Hamel BCJ, Curfs LMG, Ramakers GJA. Auditory and visual cortical activity during selective attention in fragile X syndrome: A cascade of processing deficiencies. Clin Neurophysiol. 2012;123(4):720–9.PubMedCrossRef
93.
go back to reference Petroni V, Subashi E, Premoli M, Wöhr M, Crusio WE, Lemaire V, et al. Autistic-like behavioral effects of prenatal stress in juvenile Fmr1 mice: the relevance of sex differences and gene–environment interactions. Sci Rep. 2022;12(1):7269.PubMedPubMedCentralCrossRef Petroni V, Subashi E, Premoli M, Wöhr M, Crusio WE, Lemaire V, et al. Autistic-like behavioral effects of prenatal stress in juvenile Fmr1 mice: the relevance of sex differences and gene–environment interactions. Sci Rep. 2022;12(1):7269.PubMedPubMedCentralCrossRef
94.
go back to reference Nolan SO, Reynolds CD, Smith GD, Holley AJ, Escobar B, Chandler MA, et al. Deletion of Fmr1 results in sex-specific changes in behavior. Brain and Behavior. 2017;7(10): e00800.PubMedPubMedCentralCrossRef Nolan SO, Reynolds CD, Smith GD, Holley AJ, Escobar B, Chandler MA, et al. Deletion of Fmr1 results in sex-specific changes in behavior. Brain and Behavior. 2017;7(10): e00800.PubMedPubMedCentralCrossRef
95.
go back to reference Qin M, Kang J, Smith CB. A null mutation for Fmr1 in female mice: Effects on regional cerebral metabolic rate for glucose and relationship to behavior. Neuroscience. 2005;135(3):999–1009.PubMedCrossRef Qin M, Kang J, Smith CB. A null mutation for Fmr1 in female mice: Effects on regional cerebral metabolic rate for glucose and relationship to behavior. Neuroscience. 2005;135(3):999–1009.PubMedCrossRef
96.
go back to reference Schmitt LM, Arzuaga AL, Dapore A, Duncan J, Patel M, Larson JR, et al. Parallel learning and cognitive flexibility impairments between Fmr1 knockout mice and individuals with fragile X syndrome. Front Behav Neurosci. 2023;5:16. Schmitt LM, Arzuaga AL, Dapore A, Duncan J, Patel M, Larson JR, et al. Parallel learning and cognitive flexibility impairments between Fmr1 knockout mice and individuals with fragile X syndrome. Front Behav Neurosci. 2023;5:16.
97.
go back to reference Van der Molen MJW, Van der Molen MW. Reduced alpha and exaggerated theta power during the resting-state EEG in fragile X syndrome. Biol Psychol. 2013;92(2):216–9.PubMedCrossRef Van der Molen MJW, Van der Molen MW. Reduced alpha and exaggerated theta power during the resting-state EEG in fragile X syndrome. Biol Psychol. 2013;92(2):216–9.PubMedCrossRef
98.
go back to reference Wang J, Ethridge LE, Mosconi MW, White SP, Binder DK, Pedapati EV, et al. A resting EEG study of neocortical hyperexcitability and altered functional connectivity in fragile X syndrome. J Neurodev Disord. 2017;9(1):11. Wang J, Ethridge LE, Mosconi MW, White SP, Binder DK, Pedapati EV, et al. A resting EEG study of neocortical hyperexcitability and altered functional connectivity in fragile X syndrome. J Neurodev Disord. 2017;9(1):11.
99.
go back to reference Smith EG, Pedapati EV, Liu R, Schmitt LM, Dominick KC, Shaffer RC, et al. Sex differences in resting EEG power in Fragile X Syndrome. J Psychiatr Res. 2021;138:89–95.PubMedPubMedCentralCrossRef Smith EG, Pedapati EV, Liu R, Schmitt LM, Dominick KC, Shaffer RC, et al. Sex differences in resting EEG power in Fragile X Syndrome. J Psychiatr Res. 2021;138:89–95.PubMedPubMedCentralCrossRef
100.
go back to reference Crowley KE, Colrain IM. A review of the evidence for P2 being an independent component process: age, sleep and modality. Clin Neurophysiol. 2004;115(4):732–44.PubMedCrossRef Crowley KE, Colrain IM. A review of the evidence for P2 being an independent component process: age, sleep and modality. Clin Neurophysiol. 2004;115(4):732–44.PubMedCrossRef
101.
go back to reference Näätänen R, Paavilainen P, Rinne T, Alho K. The mismatch negativity (MMN) in basic research of central auditory processing: A review. Clin Neurophysiol. 2007;118(12):2544–90.PubMedCrossRef Näätänen R, Paavilainen P, Rinne T, Alho K. The mismatch negativity (MMN) in basic research of central auditory processing: A review. Clin Neurophysiol. 2007;118(12):2544–90.PubMedCrossRef
102.
go back to reference Gesi C, Migliarese G, Torriero S, Capellazzi M, Omboni AC, Cerveri G, et al. Gender Differences in Misdiagnosis and Delayed Diagnosis among Adults with Autism Spectrum Disorder with No Language or Intellectual Disability. Brain Sci. 2021;11(7):912.PubMedPubMedCentralCrossRef Gesi C, Migliarese G, Torriero S, Capellazzi M, Omboni AC, Cerveri G, et al. Gender Differences in Misdiagnosis and Delayed Diagnosis among Adults with Autism Spectrum Disorder with No Language or Intellectual Disability. Brain Sci. 2021;11(7):912.PubMedPubMedCentralCrossRef
103.
go back to reference Hattier MA, Matson JL, Tureck K, Horovitz M. The effects of gender and age on repetitive and/or restricted behaviors and interests in adults with autism spectrum disorders and intellectual disability. Res Dev Disabil. 2011;32(6):2346–51.PubMedCrossRef Hattier MA, Matson JL, Tureck K, Horovitz M. The effects of gender and age on repetitive and/or restricted behaviors and interests in adults with autism spectrum disorders and intellectual disability. Res Dev Disabil. 2011;32(6):2346–51.PubMedCrossRef
104.
go back to reference Mandy W, Chilvers R, Chowdhury U, Salter G, Seigal A, Skuse D. Sex Differences in Autism Spectrum Disorder: Evidence from a Large Sample of Children and Adolescents. J Autism Dev Disord. 2011;42(7):1304–13.CrossRef Mandy W, Chilvers R, Chowdhury U, Salter G, Seigal A, Skuse D. Sex Differences in Autism Spectrum Disorder: Evidence from a Large Sample of Children and Adolescents. J Autism Dev Disord. 2011;42(7):1304–13.CrossRef
105.
go back to reference Szatmari P, Liu X, Goldberg J, Zwaigenbaum L, Paterson AD, Woodbury-Smith M, et al. Sex differences in repetitive stereotyped behaviors in autism: Implications for genetic liability. Am J Med Genet B Neuropsychiatr Genet. 2011;159B(1):5–12.PubMedCrossRef Szatmari P, Liu X, Goldberg J, Zwaigenbaum L, Paterson AD, Woodbury-Smith M, et al. Sex differences in repetitive stereotyped behaviors in autism: Implications for genetic liability. Am J Med Genet B Neuropsychiatr Genet. 2011;159B(1):5–12.PubMedCrossRef
106.
go back to reference Bölte S, Duketis E, Poustka F, Holtmann M. Sex differences in cognitive domains and their clinical correlates in higher-functioning autism spectrum disorders. Autism. 2011;15(4):497–511.PubMedCrossRef Bölte S, Duketis E, Poustka F, Holtmann M. Sex differences in cognitive domains and their clinical correlates in higher-functioning autism spectrum disorders. Autism. 2011;15(4):497–511.PubMedCrossRef
107.
go back to reference Giarelli E, Wiggins LD, Rice CE, Levy SE, Kirby RS, Pinto-Martin J, et al. Sex differences in the evaluation and diagnosis of autism spectrum disorders among children. Disabil Health J. 2010;3(2):107–16.PubMedCrossRef Giarelli E, Wiggins LD, Rice CE, Levy SE, Kirby RS, Pinto-Martin J, et al. Sex differences in the evaluation and diagnosis of autism spectrum disorders among children. Disabil Health J. 2010;3(2):107–16.PubMedCrossRef
108.
go back to reference Solomon M, Miller M, Taylor SL, Hinshaw SP, Carter CS. Autism Symptoms and Internalizing Psychopathology in Girls and Boys with Autism Spectrum Disorders. J Autism Dev Disord. 2011;42(1):48–59.PubMedCentralCrossRef Solomon M, Miller M, Taylor SL, Hinshaw SP, Carter CS. Autism Symptoms and Internalizing Psychopathology in Girls and Boys with Autism Spectrum Disorders. J Autism Dev Disord. 2011;42(1):48–59.PubMedCentralCrossRef
109.
go back to reference Meng X, Solarana K, Bowen Z, Liu J, Nagode DA, Sheikh A, et al. Transient Subgranular Hyperconnectivity to L2/3 and Enhanced Pairwise Correlations During the Critical Period in the Mouse Auditory Cortex. Cereb Cortex. 2019;30(3):1914–30.PubMedCentralCrossRef Meng X, Solarana K, Bowen Z, Liu J, Nagode DA, Sheikh A, et al. Transient Subgranular Hyperconnectivity to L2/3 and Enhanced Pairwise Correlations During the Critical Period in the Mouse Auditory Cortex. Cereb Cortex. 2019;30(3):1914–30.PubMedCentralCrossRef
110.
go back to reference Oswald AMM, Reyes AD. Maturation of Intrinsic and Synaptic Properties of Layer 2/3 Pyramidal Neurons in Mouse Auditory Cortex. J Neurophysiol. 2008;99(6):2998–3008.PubMedCrossRef Oswald AMM, Reyes AD. Maturation of Intrinsic and Synaptic Properties of Layer 2/3 Pyramidal Neurons in Mouse Auditory Cortex. J Neurophysiol. 2008;99(6):2998–3008.PubMedCrossRef
111.
go back to reference Bhumika S, Nakamura M, Valerio P, Sołyga M, Henrik Lindén, Tania Rinaldi Barkat. A Late Critical Period for Frequency Modulated Sweeps in the Mouse Auditory System. Cerebral Cortex. 2019 Dec 4;30(4):2586–99. Bhumika S, Nakamura M, Valerio P, Sołyga M, Henrik Lindén, Tania Rinaldi Barkat. A Late Critical Period for Frequency Modulated Sweeps in the Mouse Auditory System. Cerebral Cortex. 2019 Dec 4;30(4):2586–99.
112.
go back to reference Nakamura M, Valerio P, Bhumika S, Barkat TR. Sequential Organization of Critical Periods in the Mouse Auditory System. Cell Rep. 2020;32(8): 108070.PubMedCrossRef Nakamura M, Valerio P, Bhumika S, Barkat TR. Sequential Organization of Critical Periods in the Mouse Auditory System. Cell Rep. 2020;32(8): 108070.PubMedCrossRef
114.
go back to reference Cai D, Han R, Liu M, Xie F, You L, Zheng Y, et al. A Critical Role of Inhibition in Temporal Processing Maturation in the Primary Auditory Cortex. Cereb Cortex. 2017;28(5):1610–24.PubMedCentralCrossRef Cai D, Han R, Liu M, Xie F, You L, Zheng Y, et al. A Critical Role of Inhibition in Temporal Processing Maturation in the Primary Auditory Cortex. Cereb Cortex. 2017;28(5):1610–24.PubMedCentralCrossRef
115.
go back to reference Knipper M, Singer W, Schwabe K, Hagberg GE, Li Hegner Y, Rüttiger L, et al. Disturbed Balance of Inhibitory Signaling Links Hearing Loss and Cognition. Frontiers in Neural Circuits. 2022;6(15): 785603.CrossRef Knipper M, Singer W, Schwabe K, Hagberg GE, Li Hegner Y, Rüttiger L, et al. Disturbed Balance of Inhibitory Signaling Links Hearing Loss and Cognition. Frontiers in Neural Circuits. 2022;6(15): 785603.CrossRef
116.
go back to reference Kotak VC, Takesian AE, Sanes DH. Hearing Loss Prevents the Maturation of GABAergic Transmission in the Auditory Cortex. Cereb Cortex. 2008;18(9):2098–108.PubMedPubMedCentralCrossRef Kotak VC, Takesian AE, Sanes DH. Hearing Loss Prevents the Maturation of GABAergic Transmission in the Auditory Cortex. Cereb Cortex. 2008;18(9):2098–108.PubMedPubMedCentralCrossRef
117.
go back to reference Takesian AE, Kotak VC, Sanes DH. Age-dependent effect of hearing loss on cortical inhibitory synapse function. J Neurophysiol. 2012;107(3):937–47.PubMedCrossRef Takesian AE, Kotak VC, Sanes DH. Age-dependent effect of hearing loss on cortical inhibitory synapse function. J Neurophysiol. 2012;107(3):937–47.PubMedCrossRef
118.
go back to reference Nomura T, Musial TF, Marshall JJ, Zhu Y, Remmers CL, Xu J, et al. Delayed Maturation of Fast-Spiking Interneurons Is Rectified by Activation of the TrkB Receptor in the Mouse Model of Fragile X Syndrome. J Neurosci. 2017;37(47):11298–310.PubMedPubMedCentralCrossRef Nomura T, Musial TF, Marshall JJ, Zhu Y, Remmers CL, Xu J, et al. Delayed Maturation of Fast-Spiking Interneurons Is Rectified by Activation of the TrkB Receptor in the Mouse Model of Fragile X Syndrome. J Neurosci. 2017;37(47):11298–310.PubMedPubMedCentralCrossRef
119.
120.
go back to reference McCullagh EA, Rotschafer SE, Auerbach BD, Klug A, Kaczmarek LK, Cramer KS, et al. Mechanisms underlying auditory processing deficits in Fragile X syndrome. FASEB J. 2020;34(3):3501–18.PubMedCrossRef McCullagh EA, Rotschafer SE, Auerbach BD, Klug A, Kaczmarek LK, Cramer KS, et al. Mechanisms underlying auditory processing deficits in Fragile X syndrome. FASEB J. 2020;34(3):3501–18.PubMedCrossRef
121.
go back to reference Fritz JB, David SV, Radtke-Schuller S, Yin P, Shamma SA. Adaptive, behaviorally gated, persistent encoding of task-relevant auditory information in ferret frontal cortex. Nat Neurosci. 2010;13(8):1011–9.PubMedPubMedCentralCrossRef Fritz JB, David SV, Radtke-Schuller S, Yin P, Shamma SA. Adaptive, behaviorally gated, persistent encoding of task-relevant auditory information in ferret frontal cortex. Nat Neurosci. 2010;13(8):1011–9.PubMedPubMedCentralCrossRef
122.
go back to reference Schmitt LM, Wang J, Pedapati EV, Thurman AJ, Abbeduto L, Erickson CA, et al. A neurophysiological model of speech production deficits in fragile X syndrome. Brain Commun. 2019;2(1):fcz042. Schmitt LM, Wang J, Pedapati EV, Thurman AJ, Abbeduto L, Erickson CA, et al. A neurophysiological model of speech production deficits in fragile X syndrome. Brain Commun. 2019;2(1):fcz042.
123.
go back to reference Kommajosyula SP, Bartlett EE, Cai R, Ling L, Caspary DM. Corticothalamic projections deliver enhanced responses to medial geniculate body as a function of the temporal reliability of the stimulus. J Physiol. 2021;599(24):5465–84.PubMedCrossRef Kommajosyula SP, Bartlett EE, Cai R, Ling L, Caspary DM. Corticothalamic projections deliver enhanced responses to medial geniculate body as a function of the temporal reliability of the stimulus. J Physiol. 2021;599(24):5465–84.PubMedCrossRef
124.
go back to reference Müller RA, Shih P, Keehn B, Deyoe JR, Leyden KM, Shukla DK. Underconnected, but How? A Survey of Functional Connectivity MRI Studies in Autism Spectrum Disorders. Cereb Cortex. 2011;21(10):2233–43.PubMedPubMedCentralCrossRef Müller RA, Shih P, Keehn B, Deyoe JR, Leyden KM, Shukla DK. Underconnected, but How? A Survey of Functional Connectivity MRI Studies in Autism Spectrum Disorders. Cereb Cortex. 2011;21(10):2233–43.PubMedPubMedCentralCrossRef
125.
go back to reference O’Reilly C, Lewis JD, Elsabbagh M. Is functional brain connectivity atypical in autism? A systematic review of EEG and MEG studies. Gozzi A, editor. PLOS ONE. 2017 May 3;12(5):e0175870. O’Reilly C, Lewis JD, Elsabbagh M. Is functional brain connectivity atypical in autism? A systematic review of EEG and MEG studies. Gozzi A, editor. PLOS ONE. 2017 May 3;12(5):e0175870.
126.
go back to reference Schmitt LM, Li J, Liu R, Horn PS, Sweeney JA, Erickson CA, et al. Altered frontal connectivity as a mechanism for executive function deficits in fragile X syndrome. Molecular Autism. 2022;13(1):47.PubMedPubMedCentralCrossRef Schmitt LM, Li J, Liu R, Horn PS, Sweeney JA, Erickson CA, et al. Altered frontal connectivity as a mechanism for executive function deficits in fragile X syndrome. Molecular Autism. 2022;13(1):47.PubMedPubMedCentralCrossRef
127.
go back to reference Norris JE, DeStefano L, Schmitt L, Pedapati EV, Erickson CA, Sweeney JA, et al. Hemispheric Utilization of Alpha Oscillatory Dynamics as a Unique Biomarker of Neural Compensation in Females with Fragile X Syndrome. ACS Chem Neurosci. 2022;13(23):3389–402.PubMedCrossRef Norris JE, DeStefano L, Schmitt L, Pedapati EV, Erickson CA, Sweeney JA, et al. Hemispheric Utilization of Alpha Oscillatory Dynamics as a Unique Biomarker of Neural Compensation in Females with Fragile X Syndrome. ACS Chem Neurosci. 2022;13(23):3389–402.PubMedCrossRef
128.
go back to reference Bear MF, Huber KM, Warren ST. The mGluR theory of fragile X mental retardation. Trends Neurosci. 2004;27(7):370–7.PubMedCrossRef Bear MF, Huber KM, Warren ST. The mGluR theory of fragile X mental retardation. Trends Neurosci. 2004;27(7):370–7.PubMedCrossRef
130.
go back to reference Martínez LA, Peterson BM, Meisel RL, Mermelstein P. Estradiol facilitation of cocaine-induced locomotor sensitization in female rats requires activation of mGluR5. Behav Brain Res. 2014;1(271):39–42.CrossRef Martínez LA, Peterson BM, Meisel RL, Mermelstein P. Estradiol facilitation of cocaine-induced locomotor sensitization in female rats requires activation of mGluR5. Behav Brain Res. 2014;1(271):39–42.CrossRef
131.
go back to reference Tabatadze N, Huang G, May RM, Jain A, Woolley CS. Sex Differences in Molecular Signaling at Inhibitory Synapses in the Hippocampus. J Neurosci. 2015;35(32):11252–65.PubMedPubMedCentralCrossRef Tabatadze N, Huang G, May RM, Jain A, Woolley CS. Sex Differences in Molecular Signaling at Inhibitory Synapses in the Hippocampus. J Neurosci. 2015;35(32):11252–65.PubMedPubMedCentralCrossRef
132.
go back to reference Tonn Eisinger KR, Gross KS, Head BP, Mermelstein PG. Interactions between estrogen receptors and metabotropic glutamate receptors and their impact on drug addiction in females. Horm Behav. 2018;104:130–7.PubMedPubMedCentralCrossRef Tonn Eisinger KR, Gross KS, Head BP, Mermelstein PG. Interactions between estrogen receptors and metabotropic glutamate receptors and their impact on drug addiction in females. Horm Behav. 2018;104:130–7.PubMedPubMedCentralCrossRef
133.
go back to reference Santollo J, Daniels D. Anorexigenic effects of estradiol in the medial preoptic area occur through membrane-associated estrogen receptors and metabotropic glutamate receptors. Horm Behav. 2019;107:20–5.PubMedCrossRef Santollo J, Daniels D. Anorexigenic effects of estradiol in the medial preoptic area occur through membrane-associated estrogen receptors and metabotropic glutamate receptors. Horm Behav. 2019;107:20–5.PubMedCrossRef
134.
go back to reference Huang G, Woolley CS. Estradiol Acutely Suppresses Inhibition in the Hippocampus through a Sex-Specific Endocannabinoid and mGluR-Dependent Mechanism. Neuron. 2012;74(5):801–8.PubMedPubMedCentralCrossRef Huang G, Woolley CS. Estradiol Acutely Suppresses Inhibition in the Hippocampus through a Sex-Specific Endocannabinoid and mGluR-Dependent Mechanism. Neuron. 2012;74(5):801–8.PubMedPubMedCentralCrossRef
135.
go back to reference Boulware MI, Heisler JD, Frick KM. The Memory-Enhancing Effects of Hippocampal Estrogen Receptor Activation Involve Metabotropic Glutamate Receptor Signaling. J Neurosci. 2013;33(38):15184–94.PubMedPubMedCentralCrossRef Boulware MI, Heisler JD, Frick KM. The Memory-Enhancing Effects of Hippocampal Estrogen Receptor Activation Involve Metabotropic Glutamate Receptor Signaling. J Neurosci. 2013;33(38):15184–94.PubMedPubMedCentralCrossRef
136.
go back to reference Grove-Strawser D, Boulware MI, Mermelstein PG. Membrane estrogen receptors activate the metabotropic glutamate receptors mGluR5 and mGluR3 to bidirectionally regulate CREB phosphorylation in female rat striatal neurons. Neuroscience. 2010;170(4):1045–55.PubMedCrossRef Grove-Strawser D, Boulware MI, Mermelstein PG. Membrane estrogen receptors activate the metabotropic glutamate receptors mGluR5 and mGluR3 to bidirectionally regulate CREB phosphorylation in female rat striatal neurons. Neuroscience. 2010;170(4):1045–55.PubMedCrossRef
137.
go back to reference Luo H, Poeppel D. Cortical Oscillations in auditory perception and speech: Evidence for two temporal windows in human auditory cortex. Front Psychol. 2012;3:170. Luo H, Poeppel D. Cortical Oscillations in auditory perception and speech: Evidence for two temporal windows in human auditory cortex. Front Psychol. 2012;3:170.
138.
go back to reference Kulinich AO, Reinhard SM, Rais M, Lovelace JW, Scott V, Binder DK, et al. Beneficial effects of sound exposure on auditory cortex development in a mouse model of Fragile X Syndrome. Neurobiol Dis. 2020;134: 104622.PubMedCrossRef Kulinich AO, Reinhard SM, Rais M, Lovelace JW, Scott V, Binder DK, et al. Beneficial effects of sound exposure on auditory cortex development in a mouse model of Fragile X Syndrome. Neurobiol Dis. 2020;134: 104622.PubMedCrossRef
Metadata
Title
Sex differences during development in cortical temporal processing and event related potentials in wild-type and fragile X syndrome model mice
Authors
Katilynne Croom
Jeffrey A. Rumschlag
Michael A. Erickson
Devin Binder
Khaleel A. Razak
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Journal of Neurodevelopmental Disorders / Issue 1/2024
Print ISSN: 1866-1947
Electronic ISSN: 1866-1955
DOI
https://doi.org/10.1186/s11689-024-09539-8

Other articles of this Issue 1/2024

Journal of Neurodevelopmental Disorders 1/2024 Go to the issue