Skip to main content
Top
Published in: The Journal of Headache and Pain 1/2024

Open Access 01-12-2024 | Aura | Research

Different vulnerability of fast and slow cortical oscillations to suppressive effect of spreading depolarization: state-dependent features potentially relevant to pathogenesis of migraine aura

Authors: Tatiana M. Medvedeva, Maria P. Smirnova, Irina V. Pavlova, Lyudmila V. Vinogradova

Published in: The Journal of Headache and Pain | Issue 1/2024

Login to get access

Abstract

Background

Spreading depolarization (SD), underlying mechanism of migraine aura and potential activator of pain pathways, is known to elicit transient local silencing cortical activity. Sweeping across the cortex, the electrocorticographic depression is supposed to underlie spreading negative symptoms of migraine aura. Main information about the suppressive effect of SD on cortical oscillations was obtained in anesthetized animals while ictal recordings in conscious patients failed to detect EEG depression during migraine aura. Here, we investigate the suppressive effect of SD on spontaneous cortical activity in awake animals and examine whether the anesthesia modifies the SD effect.

Methods

Spectral and spatiotemporal characteristics of spontaneous cortical activity following a single unilateral SD elicited by amygdala pinprick were analyzed in awake freely behaving rats and after induction of urethane anesthesia.

Results

In wakefulness, SD transiently suppressed cortical oscillations in all frequency bands except delta. Slow delta activity did not decline its power during SD and even increased it afterwards; high-frequency gamma oscillations showed the strongest and longest depression under awake conditions. Unexpectedly, gamma power reduced not only during SD invasion the recording cortical sites but also when SD occupied distant subcortical/cortical areas. Contralateral cortex not invaded by SD also showed transient depression of gamma activity in awake animals. Introduction of general anesthesia modified the pattern of SD-induced depression: SD evoked the strongest cessation of slow delta activity, milder suppression of fast oscillations and no distant changes in gamma activity.

Conclusion

Slow and fast cortical oscillations differ in their vulnerability to SD influence, especially in wakefulness. In the conscious brain, SD produces stronger and spatially broader depression of fast cortical oscillations than slow ones. The frequency-specific effects of SD on cortical activity of awake brain may underlie some previously unexplained clinical features of migraine aura.
Appendix
Available only for authorised users
Literature
1.
go back to reference Goadsby PJ, Holland PR, Martins-Oliveira M, Hoffmann J, Schankin C, Akerman S (2017) Pathophysiology of Migraine: A Disorder of Sensory Processing. Physiol Rev 97(2):553–622CrossRefPubMedPubMedCentral Goadsby PJ, Holland PR, Martins-Oliveira M, Hoffmann J, Schankin C, Akerman S (2017) Pathophysiology of Migraine: A Disorder of Sensory Processing. Physiol Rev 97(2):553–622CrossRefPubMedPubMedCentral
2.
go back to reference Charles A (2018) The migraine aura. CONTINUUM: Lifelong Learn Neurol 24(4):1009–22 Charles A (2018) The migraine aura. CONTINUUM: Lifelong Learn Neurol 24(4):1009–22
4.
go back to reference Leao A (1944) Spreading depression of activity in the cerebral cortex. J Neurophysiol 7:359–90CrossRef Leao A (1944) Spreading depression of activity in the cerebral cortex. J Neurophysiol 7:359–90CrossRef
5.
go back to reference Lindquist BE, Shuttleworth CW (2017) Evidence that adenosine contributes to Leao’s spreading depression in vivo. J Cereb Blood Flow Metab 37(5):1656–1669CrossRefPubMed Lindquist BE, Shuttleworth CW (2017) Evidence that adenosine contributes to Leao’s spreading depression in vivo. J Cereb Blood Flow Metab 37(5):1656–1669CrossRefPubMed
6.
go back to reference Eikermann-Haerter K, Negro A, Ayata C (2013) Spreading depression and the clinical correlates of migraine. Rev Neurosci 24(4):353–363CrossRefPubMed Eikermann-Haerter K, Negro A, Ayata C (2013) Spreading depression and the clinical correlates of migraine. Rev Neurosci 24(4):353–363CrossRefPubMed
7.
go back to reference Lauritzen M, Trojaborg W, Olesen J (1981) EEG during attacks of common and classical migraine. Cephalalgia 1(2):63–66CrossRefPubMed Lauritzen M, Trojaborg W, Olesen J (1981) EEG during attacks of common and classical migraine. Cephalalgia 1(2):63–66CrossRefPubMed
8.
9.
go back to reference Hartings JA, Wilson JA, Hinzman JM, Pollandt S, Dreier JP, DiNapoli V et al (2014) Spreading depression in continuous electroencephalography of brain trauma. Ann Neurol 76(5):681–694CrossRefPubMed Hartings JA, Wilson JA, Hinzman JM, Pollandt S, Dreier JP, DiNapoli V et al (2014) Spreading depression in continuous electroencephalography of brain trauma. Ann Neurol 76(5):681–694CrossRefPubMed
10.
go back to reference Kentar M, Díaz-Peregrino R, Trenado C, Sánchez-Porras R, San-Juan D, Ramírez-Cuapio FL et al (2022) Spatial and temporal frequency band changes during infarct induction, infarct progression, and spreading depolarizations in the gyrencephalic brain. Front Neurosci 16:1025967CrossRefPubMedPubMedCentral Kentar M, Díaz-Peregrino R, Trenado C, Sánchez-Porras R, San-Juan D, Ramírez-Cuapio FL et al (2022) Spatial and temporal frequency band changes during infarct induction, infarct progression, and spreading depolarizations in the gyrencephalic brain. Front Neurosci 16:1025967CrossRefPubMedPubMedCentral
11.
go back to reference Drenckhahn C, Winkler MKL, Major S, Scheel M, Kang EJ, Pinczolits A et al (2012) Correlates of spreading depolarization in human scalp electroencephalography. Brain 135(3):853–868CrossRefPubMedPubMedCentral Drenckhahn C, Winkler MKL, Major S, Scheel M, Kang EJ, Pinczolits A et al (2012) Correlates of spreading depolarization in human scalp electroencephalography. Brain 135(3):853–868CrossRefPubMedPubMedCentral
12.
go back to reference Kudo C, Toyama M, Boku A, Hanamoto H, Morimoto Y, Sugimura M et al (2013) Anesthetic effects on susceptibility to cortical spreading depression. Neuropharmacology 67:32–36CrossRefPubMed Kudo C, Toyama M, Boku A, Hanamoto H, Morimoto Y, Sugimura M et al (2013) Anesthetic effects on susceptibility to cortical spreading depression. Neuropharmacology 67:32–36CrossRefPubMed
13.
go back to reference Hertle DN, Dreier JP, Woitzik J, Hartings JA, Bullock R, Okonkwo DO et al (2012) Effect of analgesics and sedatives on the occurrence of spreading depolarizations accompanying acute brain injury. Brain 135(8):2390–2398CrossRefPubMed Hertle DN, Dreier JP, Woitzik J, Hartings JA, Bullock R, Okonkwo DO et al (2012) Effect of analgesics and sedatives on the occurrence of spreading depolarizations accompanying acute brain injury. Brain 135(8):2390–2398CrossRefPubMed
14.
go back to reference Tepe N, Filiz A, Dilekoz E, Akcali D, Sara Y, Charles A et al (2015) The thalamic reticular nucleus is activated by cortical spreading depression in freely moving rats: prevention by acute valproate administration. Eur J Neurosci 41(1):120–128CrossRefPubMed Tepe N, Filiz A, Dilekoz E, Akcali D, Sara Y, Charles A et al (2015) The thalamic reticular nucleus is activated by cortical spreading depression in freely moving rats: prevention by acute valproate administration. Eur J Neurosci 41(1):120–128CrossRefPubMed
15.
go back to reference Houben T, Loonen IC, Baca SM, Schenke M, Meijer JH, Ferrari MD et al (2017) Optogenetic induction of cortical spreading depression in anesthetized and freely behaving mice. J Cereb Blood Flow & Metab 37(5):1641–55CrossRef Houben T, Loonen IC, Baca SM, Schenke M, Meijer JH, Ferrari MD et al (2017) Optogenetic induction of cortical spreading depression in anesthetized and freely behaving mice. J Cereb Blood Flow & Metab 37(5):1641–55CrossRef
16.
go back to reference Akcali D, Sayin A, Sara Y, Bolay H (2010) Does single cortical spreading depression elicit pain behaviour in freely moving rats? Cephalalgia 30(10):1195–1206CrossRefPubMed Akcali D, Sayin A, Sara Y, Bolay H (2010) Does single cortical spreading depression elicit pain behaviour in freely moving rats? Cephalalgia 30(10):1195–1206CrossRefPubMed
17.
go back to reference Siegfried B, Shibata M, Huston JP (1977) Electrophysiological concomitants of eating induced from neocortex and hippocampus by electrical stimulation and injection of KCl or norepinephrine. Brain Res 121(1):97–112CrossRefPubMed Siegfried B, Shibata M, Huston JP (1977) Electrophysiological concomitants of eating induced from neocortex and hippocampus by electrical stimulation and injection of KCl or norepinephrine. Brain Res 121(1):97–112CrossRefPubMed
18.
go back to reference Vinogradova LV, Rysakova MP, Pavlova IV (2020) Small damage of brain parenchyma reliably triggers spreading depolarization. Neurol Res 42(1):76–82CrossRefPubMed Vinogradova LV, Rysakova MP, Pavlova IV (2020) Small damage of brain parenchyma reliably triggers spreading depolarization. Neurol Res 42(1):76–82CrossRefPubMed
19.
go back to reference Sugimoto K, Yang J, Fischer P, Takizawa T, Mulder IA, Qin T et al (2023) Optogenetic spreading depolarizations do not worsen acute ischemic stroke outcome. Stroke 54(4):1110–1119CrossRefPubMed Sugimoto K, Yang J, Fischer P, Takizawa T, Mulder IA, Qin T et al (2023) Optogenetic spreading depolarizations do not worsen acute ischemic stroke outcome. Stroke 54(4):1110–1119CrossRefPubMed
20.
21.
go back to reference Smirnova MP, Medvedeva TM, Pavlova IV, Vinogradova LV (2022) Region-specific vulnerability of the amygdala to injury-induced spreading depolarization. Biomedicines 10(9):2183CrossRefPubMedPubMedCentral Smirnova MP, Medvedeva TM, Pavlova IV, Vinogradova LV (2022) Region-specific vulnerability of the amygdala to injury-induced spreading depolarization. Biomedicines 10(9):2183CrossRefPubMedPubMedCentral
22.
go back to reference Vinogradova LV, Koroleva VI, Bures J (1991) Re-entry waves of Leao’s spreading depression between neocortex and caudate nucleus. Brain Res 538(1):161–164CrossRefPubMed Vinogradova LV, Koroleva VI, Bures J (1991) Re-entry waves of Leao’s spreading depression between neocortex and caudate nucleus. Brain Res 538(1):161–164CrossRefPubMed
23.
go back to reference Hadjikhani N, Ward N, Boshyan J, Napadow V, Maeda Y, Truini A et al (2013) The missing link: Enhanced functional connectivity between amygdala and visceroceptive cortex in migraine. Cephalalgia 33(15):1264–1268CrossRefPubMedPubMedCentral Hadjikhani N, Ward N, Boshyan J, Napadow V, Maeda Y, Truini A et al (2013) The missing link: Enhanced functional connectivity between amygdala and visceroceptive cortex in migraine. Cephalalgia 33(15):1264–1268CrossRefPubMedPubMedCentral
24.
go back to reference Chen Z, Chen X, Liu M, Dong Z, Ma L, Yu S (2017) Altered functional connectivity of amygdala underlying the neuromechanism of migraine pathogenesis. J Headache Pain 18(1):7CrossRefPubMedPubMedCentral Chen Z, Chen X, Liu M, Dong Z, Ma L, Yu S (2017) Altered functional connectivity of amygdala underlying the neuromechanism of migraine pathogenesis. J Headache Pain 18(1):7CrossRefPubMedPubMedCentral
25.
go back to reference Neeb L, Bastian K, Villringer K, Israel H, Reuter U, Fiebach JB (2017) Structural gray matter alterations in chronic migraine: implications for a progressive disease? Headache: J Head Face Pain 57(3):400–16CrossRef Neeb L, Bastian K, Villringer K, Israel H, Reuter U, Fiebach JB (2017) Structural gray matter alterations in chronic migraine: implications for a progressive disease? Headache: J Head Face Pain 57(3):400–16CrossRef
26.
go back to reference Lee CH, Park H, Lee MJ, Park B (2023) Whole-brain functional gradients reveal cortical and subcortical alterations in patients with episodic migraine. Hum Brain Mapp 44(6):2224–2233CrossRefPubMedPubMedCentral Lee CH, Park H, Lee MJ, Park B (2023) Whole-brain functional gradients reveal cortical and subcortical alterations in patients with episodic migraine. Hum Brain Mapp 44(6):2224–2233CrossRefPubMedPubMedCentral
27.
go back to reference Eikermann-Haerter K, Yuzawa I, Qin T, Wang Y, Baek K, Kim YR et al (2011) Enhanced subcortical spreading depression in familial hemiplegic migraine type 1 mutant mice. J Neurosci 31(15):5755–5763CrossRefPubMedPubMedCentral Eikermann-Haerter K, Yuzawa I, Qin T, Wang Y, Baek K, Kim YR et al (2011) Enhanced subcortical spreading depression in familial hemiplegic migraine type 1 mutant mice. J Neurosci 31(15):5755–5763CrossRefPubMedPubMedCentral
30.
go back to reference Paxinos G, Watson C (1982) The Rat Brain in Stereotaxic Coordinates. Elsevier, Am sterdam Paxinos G, Watson C (1982) The Rat Brain in Stereotaxic Coordinates. Elsevier, Am sterdam
31.
go back to reference Hall SD, Barnes GR, Hillebrand A, Furlong PL, Singh KD, Holliday IE (2004) Spatio-temporal imaging of cortical desynchronization in migraine visual aura: a magnetoencephalography case study. Headache: J Head Face Pain 44(3):204–8CrossRef Hall SD, Barnes GR, Hillebrand A, Furlong PL, Singh KD, Holliday IE (2004) Spatio-temporal imaging of cortical desynchronization in migraine visual aura: a magnetoencephalography case study. Headache: J Head Face Pain 44(3):204–8CrossRef
34.
go back to reference Unekawa M, Tomita Y, Toriumi H, Masamoto K, Kanno I, Suzuki N (2013) Potassium-induced cortical spreading depression bilaterally suppresses the electroencephalogram but only ipsilaterally affects red blood cell velocity in intraparenchymal capillaries. J Neurosci Res 91(4):578–584. https://doi.org/10.1002/jnr.23184CrossRefPubMed Unekawa M, Tomita Y, Toriumi H, Masamoto K, Kanno I, Suzuki N (2013) Potassium-induced cortical spreading depression bilaterally suppresses the electroencephalogram but only ipsilaterally affects red blood cell velocity in intraparenchymal capillaries. J Neurosci Res 91(4):578–584. https://​doi.​org/​10.​1002/​jnr.​23184CrossRefPubMed
36.
go back to reference Hertle DN, Heer M, Santos E, Schöll M, Kowoll CM, Dohmen C et al (2016) Changes in electrocorticographic beta frequency components precede spreading depolarization in patients with acute brain injury. Clin Neurophysiol 127(7):2661–2667CrossRefPubMed Hertle DN, Heer M, Santos E, Schöll M, Kowoll CM, Dohmen C et al (2016) Changes in electrocorticographic beta frequency components precede spreading depolarization in patients with acute brain injury. Clin Neurophysiol 127(7):2661–2667CrossRefPubMed
37.
go back to reference Bureš J, Burešová O, Fifková E, Rabending G (1965) Reversible deafferentation of cerebral cortex by thalamic spreading depression. Exp Neurol 12(1):55–67CrossRefPubMed Bureš J, Burešová O, Fifková E, Rabending G (1965) Reversible deafferentation of cerebral cortex by thalamic spreading depression. Exp Neurol 12(1):55–67CrossRefPubMed
38.
go back to reference Bureš J, Hartmann G, Lukyanova LD (1967) Blockade of thalamocortical and pyramidal pathways by striatal spreading depression in rats. Exp Neurol 18(4):404–415CrossRefPubMed Bureš J, Hartmann G, Lukyanova LD (1967) Blockade of thalamocortical and pyramidal pathways by striatal spreading depression in rats. Exp Neurol 18(4):404–415CrossRefPubMed
41.
go back to reference Vinogradova LV (2015) Comparative potency of sensory-induced brainstem activation to trigger spreading depression and seizures in the cortex of awake rats: Implications for the pathophysiology of migraine aura. Cephalalgia 35(11):979–986CrossRefPubMed Vinogradova LV (2015) Comparative potency of sensory-induced brainstem activation to trigger spreading depression and seizures in the cortex of awake rats: Implications for the pathophysiology of migraine aura. Cephalalgia 35(11):979–986CrossRefPubMed
43.
go back to reference Hansen JM, Baca SM, VanValkenburgh P, Charles A (2013) Distinctive anatomical and physiological features of migraine aura revealed by 18 years of recording. Brain 136(12):3589–3595CrossRefPubMed Hansen JM, Baca SM, VanValkenburgh P, Charles A (2013) Distinctive anatomical and physiological features of migraine aura revealed by 18 years of recording. Brain 136(12):3589–3595CrossRefPubMed
Metadata
Title
Different vulnerability of fast and slow cortical oscillations to suppressive effect of spreading depolarization: state-dependent features potentially relevant to pathogenesis of migraine aura
Authors
Tatiana M. Medvedeva
Maria P. Smirnova
Irina V. Pavlova
Lyudmila V. Vinogradova
Publication date
01-12-2024
Publisher
Springer Milan
Published in
The Journal of Headache and Pain / Issue 1/2024
Print ISSN: 1129-2369
Electronic ISSN: 1129-2377
DOI
https://doi.org/10.1186/s10194-023-01706-x

Other articles of this Issue 1/2024

The Journal of Headache and Pain 1/2024 Go to the issue