Skip to main content
Top
Published in: Molecular Brain 1/2021

Open Access 01-12-2021 | Research

Astrocyte metabolism of the medium-chain fatty acids octanoic acid and decanoic acid promotes GABA synthesis in neurons via elevated glutamine supply

Authors: Jens V. Andersen, Emil W. Westi, Emil Jakobsen, Nerea Urruticoechea, Karin Borges, Blanca I. Aldana

Published in: Molecular Brain | Issue 1/2021

Login to get access

Abstract

The medium-chain fatty acids octanoic acid (C8) and decanoic acid (C10) are gaining attention as beneficial brain fuels in several neurological disorders. The protective effects of C8 and C10 have been proposed to be driven by hepatic production of ketone bodies. However, plasma ketone levels correlates poorly with the cerebral effects of C8 and C10, suggesting that additional mechanism are in place. Here we investigated cellular C8 and C10 metabolism in the brain and explored how the protective effects of C8 and C10 may be linked to cellular metabolism. Using dynamic isotope labeling, with [U-13C]C8 and [U-13C]C10 as metabolic substrates, we show that both C8 and C10 are oxidatively metabolized in mouse brain slices. The 13C enrichment from metabolism of [U-13C]C8 and [U-13C]C10 was particularly prominent in glutamine, suggesting that C8 and C10 metabolism primarily occurs in astrocytes. This finding was corroborated in cultured astrocytes in which C8 increased the respiration linked to ATP production, whereas C10 elevated the mitochondrial proton leak. When C8 and C10 were provided together as metabolic substrates in brain slices, metabolism of C10 was predominant over that of C8. Furthermore, metabolism of both [U-13C]C8 and [U-13C]C10 was unaffected by etomoxir indicating that it is independent of carnitine palmitoyltransferase I (CPT-1). Finally, we show that inhibition of glutamine synthesis selectively reduced 13C accumulation in GABA from [U-13C]C8 and [U-13C]C10 metabolism in brain slices, demonstrating that the glutamine generated from astrocyte C8 and C10 metabolism is utilized for neuronal GABA synthesis. Collectively, the results show that cerebral C8 and C10 metabolism is linked to the metabolic coupling of neurons and astrocytes, which may serve as a protective metabolic mechanism of C8 and C10 supplementation in neurological disorders.
Appendix
Available only for authorised users
Literature
1.
go back to reference Dienel GA. Brain glucose metabolism: integration of energetics with function. Physiol Rev. 2019;99:949–1045.PubMedCrossRef Dienel GA. Brain glucose metabolism: integration of energetics with function. Physiol Rev. 2019;99:949–1045.PubMedCrossRef
3.
go back to reference Romano A, Koczwara JB, Gallelli CA, Vergara D, Micioni D, Bonaventura MV, Gaetani S, Giudetti AM. Fats for thoughts: an update on brain fatty acid metabolism. Int J Biochem Cell Biol. 2017;84:40–5.PubMedCrossRef Romano A, Koczwara JB, Gallelli CA, Vergara D, Micioni D, Bonaventura MV, Gaetani S, Giudetti AM. Fats for thoughts: an update on brain fatty acid metabolism. Int J Biochem Cell Biol. 2017;84:40–5.PubMedCrossRef
4.
5.
go back to reference Cunnane SC, Trushina E, Morland C, Prigione A, Casadesus G, Andrews ZB, Beal MF, Bergersen LH, Brinton RD, de la Monte S, et al. Brain energy rescue: an emerging therapeutic concept for neurodegenerative disorders of ageing. Nat Rev Drug Discov. 2020;19:609–33.PubMedPubMedCentralCrossRef Cunnane SC, Trushina E, Morland C, Prigione A, Casadesus G, Andrews ZB, Beal MF, Bergersen LH, Brinton RD, de la Monte S, et al. Brain energy rescue: an emerging therapeutic concept for neurodegenerative disorders of ageing. Nat Rev Drug Discov. 2020;19:609–33.PubMedPubMedCentralCrossRef
6.
go back to reference Henderson ST, Vogel JL, Barr LJ, Garvin F, Jones JJ, Costantini LC. Study of the ketogenic agent AC-1202 in mild to moderate Alzheimer’s disease: a randomized, double-blind, placebo-controlled, multicenter trial. Nutr Metab (Lond). 2009;6:31.CrossRef Henderson ST, Vogel JL, Barr LJ, Garvin F, Jones JJ, Costantini LC. Study of the ketogenic agent AC-1202 in mild to moderate Alzheimer’s disease: a randomized, double-blind, placebo-controlled, multicenter trial. Nutr Metab (Lond). 2009;6:31.CrossRef
7.
go back to reference Fortier M, Castellano CA, Croteau E, Langlois F, Bocti C, St-Pierre V, Vandenberghe C, Bernier M, Roy M, Descoteaux M, et al. A ketogenic drink improves brain energy and some measures of cognition in mild cognitive impairment. Alzheimers Dement. 2019;15:625–34.PubMedCrossRef Fortier M, Castellano CA, Croteau E, Langlois F, Bocti C, St-Pierre V, Vandenberghe C, Bernier M, Roy M, Descoteaux M, et al. A ketogenic drink improves brain energy and some measures of cognition in mild cognitive impairment. Alzheimers Dement. 2019;15:625–34.PubMedCrossRef
8.
go back to reference Croteau E, Castellano CA, Richard MA, Fortier M, Nugent S, Lepage M, Duchesne S, Whittingstall K, Turcotte ÉE, Bocti C, et al. Ketogenic medium chain triglycerides increase brain energy metabolism in Alzheimer’s disease. J Alzheimers Dis. 2018;64:551–61.PubMedCrossRef Croteau E, Castellano CA, Richard MA, Fortier M, Nugent S, Lepage M, Duchesne S, Whittingstall K, Turcotte ÉE, Bocti C, et al. Ketogenic medium chain triglycerides increase brain energy metabolism in Alzheimer’s disease. J Alzheimers Dis. 2018;64:551–61.PubMedCrossRef
9.
go back to reference Augustin K, Khabbush A, Williams S, Eaton S, Orford M, Cross JH, Heales SJR, Walker MC, Williams RSB. Mechanisms of action for the medium-chain triglyceride ketogenic diet in neurological and metabolic disorders. Lancet Neurol. 2018;17:84–93.PubMedCrossRef Augustin K, Khabbush A, Williams S, Eaton S, Orford M, Cross JH, Heales SJR, Walker MC, Williams RSB. Mechanisms of action for the medium-chain triglyceride ketogenic diet in neurological and metabolic disorders. Lancet Neurol. 2018;17:84–93.PubMedCrossRef
10.
go back to reference Borges K, Kaul N, Germaine J, Kwan P, O’Brien TJ. Randomized trial of add-on triheptanoin vs medium chain triglycerides in adults with refractory epilepsy. Epilepsia Open. 2019;4:153–63.PubMedPubMedCentralCrossRef Borges K, Kaul N, Germaine J, Kwan P, O’Brien TJ. Randomized trial of add-on triheptanoin vs medium chain triglycerides in adults with refractory epilepsy. Epilepsia Open. 2019;4:153–63.PubMedPubMedCentralCrossRef
11.
go back to reference Han FY, Conboy-Schmidt L, Rybachuk G, Volk HA, Zanghi B, Pan Y, Borges K. Dietary medium chain triglycerides for management of epilepsy: new data from human, dog, and rodent studies. Epilepsia. 2021;62:1790–1806.PubMedCrossRefPubMedCentral Han FY, Conboy-Schmidt L, Rybachuk G, Volk HA, Zanghi B, Pan Y, Borges K. Dietary medium chain triglycerides for management of epilepsy: new data from human, dog, and rodent studies. Epilepsia. 2021;62:1790–1806.PubMedCrossRefPubMedCentral
12.
go back to reference Thavendiranathan P, Mendonca A, Dell C, Likhodii SS, Musa K, Iracleous C, Cunnane SC, Burnham WM. The MCT ketogenic diet: effects on animal seizure models. Exp Neurol. 2000;161:696–703.PubMedCrossRef Thavendiranathan P, Mendonca A, Dell C, Likhodii SS, Musa K, Iracleous C, Cunnane SC, Burnham WM. The MCT ketogenic diet: effects on animal seizure models. Exp Neurol. 2000;161:696–703.PubMedCrossRef
13.
go back to reference Likhodii SS, Musa K, Mendonca A, Dell C, Burnham WM, Cunnane SC. Dietary fat, ketosis, and seizure resistance in rats on the ketogenic diet. Epilepsia. 2000;41:1400–10.PubMedCrossRef Likhodii SS, Musa K, Mendonca A, Dell C, Burnham WM, Cunnane SC. Dietary fat, ketosis, and seizure resistance in rats on the ketogenic diet. Epilepsia. 2000;41:1400–10.PubMedCrossRef
14.
go back to reference Oldendorf WH. Carrier-mediated blood-brain barrier transport of short-chain monocarboxylic organic acids. Am J Physiol. 1973;224:1450–3.PubMedCrossRef Oldendorf WH. Carrier-mediated blood-brain barrier transport of short-chain monocarboxylic organic acids. Am J Physiol. 1973;224:1450–3.PubMedCrossRef
15.
16.
go back to reference Wlaź P, Socała K, Nieoczym D, Łuszczki JJ, Zarnowska I, Zarnowski T, Czuczwar SJ, Gasior M. Anticonvulsant profile of caprylic acid, a main constituent of the medium-chain triglyceride (MCT) ketogenic diet, in mice. Neuropharmacology. 2012;62:1882–9.PubMedCrossRef Wlaź P, Socała K, Nieoczym D, Łuszczki JJ, Zarnowska I, Zarnowski T, Czuczwar SJ, Gasior M. Anticonvulsant profile of caprylic acid, a main constituent of the medium-chain triglyceride (MCT) ketogenic diet, in mice. Neuropharmacology. 2012;62:1882–9.PubMedCrossRef
17.
go back to reference Wlaź P, Socała K, Nieoczym D, Żarnowski T, Żarnowska I, Czuczwar SJ, Gasior M. Acute anticonvulsant effects of capric acid in seizure tests in mice. Prog Neuropsychopharmacol Biol Psychiatry. 2015;57:110–6.PubMedCrossRef Wlaź P, Socała K, Nieoczym D, Żarnowski T, Żarnowska I, Czuczwar SJ, Gasior M. Acute anticonvulsant effects of capric acid in seizure tests in mice. Prog Neuropsychopharmacol Biol Psychiatry. 2015;57:110–6.PubMedCrossRef
18.
go back to reference Barros LF, Brown A, Swanson RA. Glia in brain energy metabolism: a perspective. Glia. 2018;66:1134–7.PubMedCrossRef Barros LF, Brown A, Swanson RA. Glia in brain energy metabolism: a perspective. Glia. 2018;66:1134–7.PubMedCrossRef
19.
go back to reference Schousboe A, Bak LK, Waagepetersen HS. Astrocytic control of biosynthesis and turnover of the neurotransmitters glutamate and GABA. Front Endocrinol (Lausanne). 2013;4:102.CrossRef Schousboe A, Bak LK, Waagepetersen HS. Astrocytic control of biosynthesis and turnover of the neurotransmitters glutamate and GABA. Front Endocrinol (Lausanne). 2013;4:102.CrossRef
20.
go back to reference Andersen JV, Markussen KH, Jakobsen E, Schousboe A, Waagepetersen HS, Rosenberg PA, Aldana BI. Glutamate metabolism and recycling at the excitatory synapse in health and neurodegeneration. Neuropharmacology. 2021;15:108719.CrossRef Andersen JV, Markussen KH, Jakobsen E, Schousboe A, Waagepetersen HS, Rosenberg PA, Aldana BI. Glutamate metabolism and recycling at the excitatory synapse in health and neurodegeneration. Neuropharmacology. 2021;15:108719.CrossRef
21.
go back to reference Bak LK, Schousboe A, Waagepetersen HS. The glutamate/GABA-glutamine cycle: aspects of transport, neurotransmitter homeostasis and ammonia transfer. J Neurochem. 2006;98:641–53.PubMedCrossRef Bak LK, Schousboe A, Waagepetersen HS. The glutamate/GABA-glutamine cycle: aspects of transport, neurotransmitter homeostasis and ammonia transfer. J Neurochem. 2006;98:641–53.PubMedCrossRef
22.
go back to reference Hertz L. The glutamate-glutamine (GABA) cycle: importance of late postnatal development and potential reciprocal interactions between biosynthesis and degradation. Front Endocrinol (Lausanne). 2013;4:59.CrossRef Hertz L. The glutamate-glutamine (GABA) cycle: importance of late postnatal development and potential reciprocal interactions between biosynthesis and degradation. Front Endocrinol (Lausanne). 2013;4:59.CrossRef
23.
go back to reference Eid T, Thomas MJ, Spencer DD, Rundén-Pran E, Lai JC, Malthankar GV, Kim JH, Danbolt NC, Ottersen OP, de Lanerolle NC. Loss of glutamine synthetase in the human epileptogenic hippocampus: possible mechanism for raised extracellular glutamate in mesial temporal lobe epilepsy. Lancet. 2004;363:28–37.PubMedCrossRef Eid T, Thomas MJ, Spencer DD, Rundén-Pran E, Lai JC, Malthankar GV, Kim JH, Danbolt NC, Ottersen OP, de Lanerolle NC. Loss of glutamine synthetase in the human epileptogenic hippocampus: possible mechanism for raised extracellular glutamate in mesial temporal lobe epilepsy. Lancet. 2004;363:28–37.PubMedCrossRef
24.
go back to reference Eid T, Ghosh A, Wang Y, Beckström H, Zaveri HP, Lee TS, Lai JC, Malthankar-Phatak GH, de Lanerolle NC. Recurrent seizures and brain pathology after inhibition of glutamine synthetase in the hippocampus in rats. Brain. 2008;131:2061–70.PubMedPubMedCentralCrossRef Eid T, Ghosh A, Wang Y, Beckström H, Zaveri HP, Lee TS, Lai JC, Malthankar-Phatak GH, de Lanerolle NC. Recurrent seizures and brain pathology after inhibition of glutamine synthetase in the hippocampus in rats. Brain. 2008;131:2061–70.PubMedPubMedCentralCrossRef
25.
go back to reference Skotte NH, Andersen JV, Santos A, Aldana BI, Willert CW, Norremolle A, Waagepetersen HS, Nielsen ML. Integrative characterization of the R6/2 mouse model of Huntington’s disease reveals dysfunctional astrocyte metabolism. Cell Rep. 2018;23:2211–24.PubMedCrossRef Skotte NH, Andersen JV, Santos A, Aldana BI, Willert CW, Norremolle A, Waagepetersen HS, Nielsen ML. Integrative characterization of the R6/2 mouse model of Huntington’s disease reveals dysfunctional astrocyte metabolism. Cell Rep. 2018;23:2211–24.PubMedCrossRef
26.
go back to reference Norenberg MD, Martinez-Hernandez A. Fine structural localization of glutamine synthetase in astrocytes of rat brain. Brain Res. 1979;161:303–10.PubMedCrossRef Norenberg MD, Martinez-Hernandez A. Fine structural localization of glutamine synthetase in astrocytes of rat brain. Brain Res. 1979;161:303–10.PubMedCrossRef
27.
go back to reference McKenna MC. Glutamate pays its own way in astrocytes. Front Endocrinol (Lausanne). 2013;4:191.CrossRef McKenna MC. Glutamate pays its own way in astrocytes. Front Endocrinol (Lausanne). 2013;4:191.CrossRef
28.
go back to reference Cremer JE, Teal HM, Heath DF, Cavanagh JB. The influence of portocaval anastomosis on the metabolism of labelled octanoate, butyrate and leucine in rat brain. J Neurochem. 1977;28:215–22.PubMedCrossRef Cremer JE, Teal HM, Heath DF, Cavanagh JB. The influence of portocaval anastomosis on the metabolism of labelled octanoate, butyrate and leucine in rat brain. J Neurochem. 1977;28:215–22.PubMedCrossRef
29.
go back to reference Edmond J, Robbins RA, Bergstrom JD, Cole RA, de Vellis J. Capacity for substrate utilization in oxidative metabolism by neurons, astrocytes, and oligodendrocytes from developing brain in primary culture. J Neurosci Res. 1987;18:551–61.PubMedCrossRef Edmond J, Robbins RA, Bergstrom JD, Cole RA, de Vellis J. Capacity for substrate utilization in oxidative metabolism by neurons, astrocytes, and oligodendrocytes from developing brain in primary culture. J Neurosci Res. 1987;18:551–61.PubMedCrossRef
30.
go back to reference Ebert D, Haller RG, Walton ME. Energy contribution of octanoate to intact rat brain metabolism measured by 13C nuclear magnetic resonance spectroscopy. J Neurosci. 2003;23:5928–35.PubMedPubMedCentralCrossRef Ebert D, Haller RG, Walton ME. Energy contribution of octanoate to intact rat brain metabolism measured by 13C nuclear magnetic resonance spectroscopy. J Neurosci. 2003;23:5928–35.PubMedPubMedCentralCrossRef
31.
go back to reference McNair LF, Kornfelt R, Walls AB, Andersen JV, Aldana BI, Nissen JD, Schousboe A, Waagepetersen HS. Metabolic characterization of acutely isolated hippocampal and cerebral cortical slices using [U-13C]glucose and [1,2–13C]acetate as substrates. Neurochem Res. 2017;42:810–26.PubMedCrossRef McNair LF, Kornfelt R, Walls AB, Andersen JV, Aldana BI, Nissen JD, Schousboe A, Waagepetersen HS. Metabolic characterization of acutely isolated hippocampal and cerebral cortical slices using [U-13C]glucose and [1,2–13C]acetate as substrates. Neurochem Res. 2017;42:810–26.PubMedCrossRef
32.
go back to reference Tan KN, Carrasco-Pozo C, McDonald TS, Puchowicz M, Borges K. Tridecanoin is anticonvulsant, antioxidant, and improves mitochondrial function. J Cereb Blood Flow Metab. 2017;37:2035–48.PubMedCrossRef Tan KN, Carrasco-Pozo C, McDonald TS, Puchowicz M, Borges K. Tridecanoin is anticonvulsant, antioxidant, and improves mitochondrial function. J Cereb Blood Flow Metab. 2017;37:2035–48.PubMedCrossRef
33.
go back to reference Nasrallah FA, Garner B, Ball GE, Rae C. Modulation of brain metabolism by very low concentrations of the commonly used drug delivery vehicle dimethyl sulfoxide (DMSO). J Neurosci Res. 2008;86:208–14.PubMedCrossRef Nasrallah FA, Garner B, Ball GE, Rae C. Modulation of brain metabolism by very low concentrations of the commonly used drug delivery vehicle dimethyl sulfoxide (DMSO). J Neurosci Res. 2008;86:208–14.PubMedCrossRef
34.
go back to reference Walls AB, Bak LK, Sonnewald U, Schousboe A, Waagepetersen HS. Metabolic mapping of astrocytes and neurons in culture using stable isotopes and gas chromatography-mass spectrometry (gc-ms). In brain energy metabolism neuromethods, vol 90. In: Hirrlinger J, Waagepetersen HS, eds. New York: Humana Press; 2014 Walls AB, Bak LK, Sonnewald U, Schousboe A, Waagepetersen HS. Metabolic mapping of astrocytes and neurons in culture using stable isotopes and gas chromatography-mass spectrometry (gc-ms). In brain energy metabolism neuromethods, vol 90. In: Hirrlinger J, Waagepetersen HS, eds. New York: Humana Press; 2014
35.
go back to reference Andersen JV, Christensen SK, Nissen JD, Waagepetersen HS. Improved cerebral energetics and ketone body metabolism in db/db mice. J Cereb Blood Flow Metab. 2017;37:1137–47.PubMedCrossRef Andersen JV, Christensen SK, Nissen JD, Waagepetersen HS. Improved cerebral energetics and ketone body metabolism in db/db mice. J Cereb Blood Flow Metab. 2017;37:1137–47.PubMedCrossRef
36.
go back to reference Andersen JV, Christensen SK, Aldana BI, Nissen JD, Tanila H, Waagepetersen HS. Alterations in cerebral cortical glucose and glutamine metabolism precedes amyloid plaques in the APPswe/PSEN1de9 mouse model of Alzheimer’s disease. Neurochem Res. 2017;42:1589–98.PubMedCrossRef Andersen JV, Christensen SK, Aldana BI, Nissen JD, Tanila H, Waagepetersen HS. Alterations in cerebral cortical glucose and glutamine metabolism precedes amyloid plaques in the APPswe/PSEN1de9 mouse model of Alzheimer’s disease. Neurochem Res. 2017;42:1589–98.PubMedCrossRef
37.
go back to reference Andersen JV, Jakobsen E, Westi EW, Lie MEK, Voss CM, Aldana BI, Schousboe A, Wellendorph P, Bak LK, Pinborg LH, Waagepetersen HS. Extensive astrocyte metabolism of γ-aminobutyric acid (GABA) sustains glutamine synthesis in the mammalian cerebral cortex. Glia. 2020;68:2601–12.PubMedCrossRef Andersen JV, Jakobsen E, Westi EW, Lie MEK, Voss CM, Aldana BI, Schousboe A, Wellendorph P, Bak LK, Pinborg LH, Waagepetersen HS. Extensive astrocyte metabolism of γ-aminobutyric acid (GABA) sustains glutamine synthesis in the mammalian cerebral cortex. Glia. 2020;68:2601–12.PubMedCrossRef
38.
go back to reference Divakaruni AS, Brand MD. The regulation and physiology of mitochondrial proton leak. Physiology (Bethesda). 2011;26:192–205. Divakaruni AS, Brand MD. The regulation and physiology of mitochondrial proton leak. Physiology (Bethesda). 2011;26:192–205.
39.
go back to reference Pan JW, de Graaf RA, Petersen KF, Shulman GI, Hetherington HP, Rothman DL. [2,4–13 C2 ]-beta-hydroxybutyrate metabolism in human brain. J Cereb Blood Flow Metab. 2002;22:890–8.PubMedCrossRef Pan JW, de Graaf RA, Petersen KF, Shulman GI, Hetherington HP, Rothman DL. [2,4–13 C2 ]-beta-hydroxybutyrate metabolism in human brain. J Cereb Blood Flow Metab. 2002;22:890–8.PubMedCrossRef
40.
go back to reference Kamp F, Hamilton JA. How fatty acids of different chain length enter and leave cells by free diffusion. Prostaglandins Leukot Essent Fatty Acids. 2006;75:149–59.PubMedCrossRef Kamp F, Hamilton JA. How fatty acids of different chain length enter and leave cells by free diffusion. Prostaglandins Leukot Essent Fatty Acids. 2006;75:149–59.PubMedCrossRef
41.
go back to reference Khabbush A, Orford M, Tsai YC, Rutherford T, O’Donnell M, Eaton S, Heales SJR. Neuronal decanoic acid oxidation is markedly lower than that of octanoic acid: a mechanistic insight into the medium-chain triglyceride ketogenic diet. Epilepsia. 2017;58:1423–9.PubMedCrossRef Khabbush A, Orford M, Tsai YC, Rutherford T, O’Donnell M, Eaton S, Heales SJR. Neuronal decanoic acid oxidation is markedly lower than that of octanoic acid: a mechanistic insight into the medium-chain triglyceride ketogenic diet. Epilepsia. 2017;58:1423–9.PubMedCrossRef
42.
go back to reference Jernberg JN, Bowman CE, Wolfgang MJ, Scafidi S. Developmental regulation and localization of carnitine palmitoyltransferases (CPTs) in rat brain. J Neurochem. 2017;142:407–19.PubMedPubMedCentralCrossRef Jernberg JN, Bowman CE, Wolfgang MJ, Scafidi S. Developmental regulation and localization of carnitine palmitoyltransferases (CPTs) in rat brain. J Neurochem. 2017;142:407–19.PubMedPubMedCentralCrossRef
43.
go back to reference Andersen JV, McNair LF, Schousboe A, Waagepetersen HS. Specificity of exogenous acetate and glutamate as astrocyte substrates examined in acute brain slices from female mice using methionine sulfoximine (MSO) to inhibit glutamine synthesis. J Neurosci Res. 2017;95:2207–16.PubMedCrossRef Andersen JV, McNair LF, Schousboe A, Waagepetersen HS. Specificity of exogenous acetate and glutamate as astrocyte substrates examined in acute brain slices from female mice using methionine sulfoximine (MSO) to inhibit glutamine synthesis. J Neurosci Res. 2017;95:2207–16.PubMedCrossRef
44.
go back to reference Sonnewald U, Westergaard N, Schousboe A, Svendsen JS, Unsgard G, Petersen SB. Direct demonstration by [13C]NMR spectroscopy that glutamine from astrocytes is a precursor for GABA synthesis in neurons. Neurochem Int. 1993;22:19–29.PubMedCrossRef Sonnewald U, Westergaard N, Schousboe A, Svendsen JS, Unsgard G, Petersen SB. Direct demonstration by [13C]NMR spectroscopy that glutamine from astrocytes is a precursor for GABA synthesis in neurons. Neurochem Int. 1993;22:19–29.PubMedCrossRef
45.
go back to reference Geyer RP, Matthews LW, Stare FJ. Metabolism of emulsified trilaurin (-C1400-) and octanoic acid (-C1400-) by rat tissue slices. J Biol Chem. 1949;180:1037–45.PubMedCrossRef Geyer RP, Matthews LW, Stare FJ. Metabolism of emulsified trilaurin (-C1400-) and octanoic acid (-C1400-) by rat tissue slices. J Biol Chem. 1949;180:1037–45.PubMedCrossRef
46.
48.
go back to reference Nandy A, Kieweg V, Kräutle FG, Vock P, Küchler B, Bross P, Kim JJ, Rasched I, Ghisla S. Medium-long-chain chimeric human Acyl-CoA dehydrogenase: medium-chain enzyme with the active center base arrangement of long-chain Acyl-CoA dehydrogenase. Biochemistry. 1996;35:12402–11.PubMedCrossRef Nandy A, Kieweg V, Kräutle FG, Vock P, Küchler B, Bross P, Kim JJ, Rasched I, Ghisla S. Medium-long-chain chimeric human Acyl-CoA dehydrogenase: medium-chain enzyme with the active center base arrangement of long-chain Acyl-CoA dehydrogenase. Biochemistry. 1996;35:12402–11.PubMedCrossRef
49.
go back to reference Haynes VR, Michael NJ, van den Top M, Zhao FY, Brown RD, De Souza D, Dodd GT, Spanswick D, Watt MJ. A Neural basis for Octanoic acid regulation of energy balance. Mol Metab. 2020;34:54–71.PubMedPubMedCentralCrossRef Haynes VR, Michael NJ, van den Top M, Zhao FY, Brown RD, De Souza D, Dodd GT, Spanswick D, Watt MJ. A Neural basis for Octanoic acid regulation of energy balance. Mol Metab. 2020;34:54–71.PubMedPubMedCentralCrossRef
50.
go back to reference Thevenet J, De Marchi U, Domingo JS, Christinat N, Bultot L, Lefebvre G, Sakamoto K, Descombes P, Masoodi M, Wiederkehr A. Medium-chain fatty acids inhibit mitochondrial metabolism in astrocytes promoting astrocyte-neuron lactate and ketone body shuttle systems. Faseb j. 2016;30:1913–26.PubMedCrossRef Thevenet J, De Marchi U, Domingo JS, Christinat N, Bultot L, Lefebvre G, Sakamoto K, Descombes P, Masoodi M, Wiederkehr A. Medium-chain fatty acids inhibit mitochondrial metabolism in astrocytes promoting astrocyte-neuron lactate and ketone body shuttle systems. Faseb j. 2016;30:1913–26.PubMedCrossRef
51.
go back to reference Brookes PS. Mitochondrial H(+) leak and ROS generation: an odd couple. Free Radic Biol Med. 2005;38:12–23.PubMedCrossRef Brookes PS. Mitochondrial H(+) leak and ROS generation: an odd couple. Free Radic Biol Med. 2005;38:12–23.PubMedCrossRef
52.
go back to reference Hughes SD, Kanabus M, Anderson G, Hargreaves IP, Rutherford T, O’Donnell M, Cross JH, Rahman S, Eaton S, Heales SJ. The ketogenic diet component decanoic acid increases mitochondrial citrate synthase and complex I activity in neuronal cells. J Neurochem. 2014;129:426–33.PubMedCrossRef Hughes SD, Kanabus M, Anderson G, Hargreaves IP, Rutherford T, O’Donnell M, Cross JH, Rahman S, Eaton S, Heales SJ. The ketogenic diet component decanoic acid increases mitochondrial citrate synthase and complex I activity in neuronal cells. J Neurochem. 2014;129:426–33.PubMedCrossRef
53.
go back to reference Sonnay S, Chakrabarti A, Thevenet J, Wiederkehr A, Christinat N, Masoodi M. Differential metabolism of medium-chain fatty acids in differentiated human-induced pluripotent stem cell-derived astrocytes. Front Physiol. 2019;10:657.PubMedPubMedCentralCrossRef Sonnay S, Chakrabarti A, Thevenet J, Wiederkehr A, Christinat N, Masoodi M. Differential metabolism of medium-chain fatty acids in differentiated human-induced pluripotent stem cell-derived astrocytes. Front Physiol. 2019;10:657.PubMedPubMedCentralCrossRef
54.
go back to reference Malapaka RR, Khoo S, Zhang J, Choi JH, Zhou XE, Xu Y, Gong Y, Li J, Yong EL, Chalmers MJ, et al. Identification and mechanism of 10-carbon fatty acid as modulating ligand of peroxisome proliferator-activated receptors. J Biol Chem. 2012;287:183–95.PubMedCrossRef Malapaka RR, Khoo S, Zhang J, Choi JH, Zhou XE, Xu Y, Gong Y, Li J, Yong EL, Chalmers MJ, et al. Identification and mechanism of 10-carbon fatty acid as modulating ligand of peroxisome proliferator-activated receptors. J Biol Chem. 2012;287:183–95.PubMedCrossRef
55.
go back to reference Miglio G, Rosa AC, Rattazzi L, Collino M, Lombardi G, Fantozzi R. PPARgamma stimulation promotes mitochondrial biogenesis and prevents glucose deprivation-induced neuronal cell loss. Neurochem Int. 2009;55:496–504.PubMedCrossRef Miglio G, Rosa AC, Rattazzi L, Collino M, Lombardi G, Fantozzi R. PPARgamma stimulation promotes mitochondrial biogenesis and prevents glucose deprivation-induced neuronal cell loss. Neurochem Int. 2009;55:496–504.PubMedCrossRef
56.
go back to reference Ioannou MS, Jackson J, Sheu SH, Chang CL, Weigel AV, Liu H, Pasolli HA, Xu CS, Pang S, Matthies D, et al. Neuron-astrocyte metabolic coupling protects against activity-induced fatty acid toxicity. Cell. 2019;177:1522-1535.e1514.PubMedCrossRef Ioannou MS, Jackson J, Sheu SH, Chang CL, Weigel AV, Liu H, Pasolli HA, Xu CS, Pang S, Matthies D, et al. Neuron-astrocyte metabolic coupling protects against activity-induced fatty acid toxicity. Cell. 2019;177:1522-1535.e1514.PubMedCrossRef
58.
go back to reference Damiano F, De Benedetto GE, Longo S, Giannotti L, Fico D, Siculella L, Giudetti AM. Decanoic acid and not octanoic acid stimulates fatty acid synthesis in U87MG glioblastoma cells: a metabolomics study. Front Neurosci. 2020;14:783.PubMedPubMedCentralCrossRef Damiano F, De Benedetto GE, Longo S, Giannotti L, Fico D, Siculella L, Giudetti AM. Decanoic acid and not octanoic acid stimulates fatty acid synthesis in U87MG glioblastoma cells: a metabolomics study. Front Neurosci. 2020;14:783.PubMedPubMedCentralCrossRef
59.
go back to reference Lee N, Sa M, Hong YR, Lee CJ, Koo J. Fatty acid increases cAMP-dependent lactate and MAO-B-dependent GABA production in mouse astrocytes by activating a G(αs) protein-coupled receptor. Exp Neurobiol. 2018;27:365–76.PubMedPubMedCentralCrossRef Lee N, Sa M, Hong YR, Lee CJ, Koo J. Fatty acid increases cAMP-dependent lactate and MAO-B-dependent GABA production in mouse astrocytes by activating a G(αs) protein-coupled receptor. Exp Neurobiol. 2018;27:365–76.PubMedPubMedCentralCrossRef
60.
go back to reference Andersen JV, Christensen SK, Westi EW, Diaz-delCastillo M, Tanila H, Schousboe A, Aldana BI, Waagepetersen HS. Deficient astrocyte metabolism impairs glutamine synthesis and neurotransmitter homeostasis in a mouse model of Alzheimer’s disease. Neurobiol Dis. 2021;148:105198.PubMedCrossRef Andersen JV, Christensen SK, Westi EW, Diaz-delCastillo M, Tanila H, Schousboe A, Aldana BI, Waagepetersen HS. Deficient astrocyte metabolism impairs glutamine synthesis and neurotransmitter homeostasis in a mouse model of Alzheimer’s disease. Neurobiol Dis. 2021;148:105198.PubMedCrossRef
61.
go back to reference Yoon BE, Woo J, Chun YE, Chun H, Jo S, Bae JY, An H, Min JO, Oh SJ, Han KS, et al. Glial GABA, synthesized by monoamine oxidase B, mediates tonic inhibition. J Physiol. 2014;592:4951–68.PubMedPubMedCentralCrossRef Yoon BE, Woo J, Chun YE, Chun H, Jo S, Bae JY, An H, Min JO, Oh SJ, Han KS, et al. Glial GABA, synthesized by monoamine oxidase B, mediates tonic inhibition. J Physiol. 2014;592:4951–68.PubMedPubMedCentralCrossRef
62.
go back to reference Kwak H, Koh W, Kim S, Song K, Shin JI, Lee JM, Lee EH, Bae JY, Ha GE, Oh JE, et al. Astrocytes control sensory acuity via tonic inhibition in the thalamus. Neuron. 2020;108:691-706.e610.PubMedCrossRef Kwak H, Koh W, Kim S, Song K, Shin JI, Lee JM, Lee EH, Bae JY, Ha GE, Oh JE, et al. Astrocytes control sensory acuity via tonic inhibition in the thalamus. Neuron. 2020;108:691-706.e610.PubMedCrossRef
63.
go back to reference Page KA, Williamson A, Yu N, McNay EC, Dzuira J, McCrimmon RJ, Sherwin RS. Medium-chain fatty acids improve cognitive function in intensively treated type 1 diabetic patients and support in vitro synaptic transmission during acute hypoglycemia. Diabetes. 2009;58:1237–44.PubMedPubMedCentralCrossRef Page KA, Williamson A, Yu N, McNay EC, Dzuira J, McCrimmon RJ, Sherwin RS. Medium-chain fatty acids improve cognitive function in intensively treated type 1 diabetic patients and support in vitro synaptic transmission during acute hypoglycemia. Diabetes. 2009;58:1237–44.PubMedPubMedCentralCrossRef
64.
go back to reference Warren EC, Dooves S, Lugarà E, Damstra-Oddy J, Schaf J, Heine VM, Walker MC, Williams RSB. Decanoic acid inhibits mTORC1 activity independent of glucose and insulin signaling. Proc Natl Acad Sci U S A. 2020;117:23617–25.PubMedPubMedCentralCrossRef Warren EC, Dooves S, Lugarà E, Damstra-Oddy J, Schaf J, Heine VM, Walker MC, Williams RSB. Decanoic acid inhibits mTORC1 activity independent of glucose and insulin signaling. Proc Natl Acad Sci U S A. 2020;117:23617–25.PubMedPubMedCentralCrossRef
65.
go back to reference Chang P, Augustin K, Boddum K, Williams S, Sun M, Terschak JA, Hardege JD, Chen PE, Walker MC, Williams RS. Seizure control by decanoic acid through direct AMPA receptor inhibition. Brain. 2016;139:431–43.PubMedCrossRef Chang P, Augustin K, Boddum K, Williams S, Sun M, Terschak JA, Hardege JD, Chen PE, Walker MC, Williams RS. Seizure control by decanoic acid through direct AMPA receptor inhibition. Brain. 2016;139:431–43.PubMedCrossRef
66.
go back to reference Bennett ML, Viaene AN. What are activated and reactive glia and what is their role in neurodegeneration? Neurobiol Dis. 2021;148:105172.PubMedCrossRef Bennett ML, Viaene AN. What are activated and reactive glia and what is their role in neurodegeneration? Neurobiol Dis. 2021;148:105172.PubMedCrossRef
Metadata
Title
Astrocyte metabolism of the medium-chain fatty acids octanoic acid and decanoic acid promotes GABA synthesis in neurons via elevated glutamine supply
Authors
Jens V. Andersen
Emil W. Westi
Emil Jakobsen
Nerea Urruticoechea
Karin Borges
Blanca I. Aldana
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Molecular Brain / Issue 1/2021
Electronic ISSN: 1756-6606
DOI
https://doi.org/10.1186/s13041-021-00842-2

Other articles of this Issue 1/2021

Molecular Brain 1/2021 Go to the issue