Skip to main content
Top
Published in: Molecular Brain 1/2021

Open Access 01-12-2021 | Review

Retrosplenial cortex in spatial memory: focus on immediate early genes mapping

Authors: Edyta Balcerek, Urszula Włodkowska, Rafał Czajkowski

Published in: Molecular Brain | Issue 1/2021

Login to get access

Abstract

The ability to form, retrieve and update autobiographical memories is one of the most fascinating features of human behavior. Spatial memory, the ability to remember the layout of the external environment and to navigate within its boundaries, is closely related to the autobiographical memory domain. It is served by an overlapping brain circuit, centered around the hippocampus (HPC) where the cognitive map index is stored. Apart from the hippocampus, several cortical structures participate in this process. Their relative contribution is a subject of intense research in both humans and animal models. One of the most widely studied regions is the retrosplenial cortex (RSC), an area in the parietal lobe densely interconnected with the hippocampal formation. Several methodological approaches have been established over decades in order to investigate the cortical aspects of memory. One of the most successful techniques is based on the analysis of brain expression patterns of the immediate early genes (IEGs). The common feature of this diverse group of genes is fast upregulation of their mRNA translation upon physiologically relevant stimulus. In the central nervous system they are rapidly triggered by neuronal activity and plasticity during learning. There is a widely accepted consensus that their expression level corresponds to the engagement of individual neurons in the formation of memory trace. Imaging of the IEGs might therefore provide a picture of an emerging memory engram. In this review we present the overview of IEG mapping studies of retrosplenial cortex in rodent models. We begin with classical techniques, immunohistochemical detection of protein and fluorescent in situ hybridization of mRNA. We then proceed to advanced methods where fluorescent genetically encoded IEG reporters are chronically followed in vivo during memory formation. We end with a combination of genetic IEG labelling and optogenetic approach, where the activity of the entire engram is manipulated. We finally present a hypothesis that attempts to unify our current state of knowledge about the function of RSC.
Literature
1.
go back to reference O’Keefe J. Place units in the hippocampus of the freely moving rat. Exp Neurol. 1976;51:78–109.PubMedCrossRef O’Keefe J. Place units in the hippocampus of the freely moving rat. Exp Neurol. 1976;51:78–109.PubMedCrossRef
2.
go back to reference Taube JS, Bassett JP. Persistent neural activity in head direction cells. Cereb Cortex. 2003;13:1162–72.PubMedCrossRef Taube JS, Bassett JP. Persistent neural activity in head direction cells. Cereb Cortex. 2003;13:1162–72.PubMedCrossRef
3.
go back to reference Stackman RW, Taube JS. Firing properties of rat lateral mammillary single units: head direction, head pitch, and angular head velocity. J Neurosci. 1998;18:9020–37.PubMedPubMedCentralCrossRef Stackman RW, Taube JS. Firing properties of rat lateral mammillary single units: head direction, head pitch, and angular head velocity. J Neurosci. 1998;18:9020–37.PubMedPubMedCentralCrossRef
5.
go back to reference Taube JS, Muller RU, Ranck JB. Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis. J Neurosci. 1990;10:420–35.PubMedPubMedCentralCrossRef Taube JS, Muller RU, Ranck JB. Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis. J Neurosci. 1990;10:420–35.PubMedPubMedCentralCrossRef
6.
go back to reference Cho J, Sharp PE. Head direction, place, and movement correlates for cells in the rat retrosplenial cortex. Behav Neurosci. 2001;115:3–25.PubMedCrossRef Cho J, Sharp PE. Head direction, place, and movement correlates for cells in the rat retrosplenial cortex. Behav Neurosci. 2001;115:3–25.PubMedCrossRef
7.
go back to reference Chrastil ER. Heterogeneity in human retrosplenial cortex: a review of function and connectivity. Behav Neurosci. 2018;132:317–38.PubMedCrossRef Chrastil ER. Heterogeneity in human retrosplenial cortex: a review of function and connectivity. Behav Neurosci. 2018;132:317–38.PubMedCrossRef
8.
go back to reference Sugar J, Witter MP, van Strien NM, Cappaert NL. The retrosplenial cortex: intrinsic connectivity and connections with the (para)hippocampal region in the rat. An interactive connectome. Front Neuroinform. 2011;5:7.PubMedPubMedCentralCrossRef Sugar J, Witter MP, van Strien NM, Cappaert NL. The retrosplenial cortex: intrinsic connectivity and connections with the (para)hippocampal region in the rat. An interactive connectome. Front Neuroinform. 2011;5:7.PubMedPubMedCentralCrossRef
9.
go back to reference Aggleton JP. Understanding retrosplenial amnesia: Insights from animal studies. Neuropsychologia. 2010;48:2328–38.PubMedCrossRef Aggleton JP. Understanding retrosplenial amnesia: Insights from animal studies. Neuropsychologia. 2010;48:2328–38.PubMedCrossRef
10.
go back to reference Vann SD, Aggleton JP, Maguire EA. What does the retrosplenial cortex do? Nat Rev Neurosci. 2009;10:792–802.PubMedCrossRef Vann SD, Aggleton JP, Maguire EA. What does the retrosplenial cortex do? Nat Rev Neurosci. 2009;10:792–802.PubMedCrossRef
11.
go back to reference Miller AMP, Vedder LC, Law LM, Smith DM. Cues, context, and long-term memory: the role of the retrosplenial cortex in spatial cognition. Front Hum Neurosci. 2014;8:586.PubMedPubMedCentralCrossRef Miller AMP, Vedder LC, Law LM, Smith DM. Cues, context, and long-term memory: the role of the retrosplenial cortex in spatial cognition. Front Hum Neurosci. 2014;8:586.PubMedPubMedCentralCrossRef
12.
go back to reference Maguire EA. The retrosplenial contribution to human navigation: a review of lesion and neuroimaging findings. Scand J Psychol. 2001;42:225–38.PubMedCrossRef Maguire EA. The retrosplenial contribution to human navigation: a review of lesion and neuroimaging findings. Scand J Psychol. 2001;42:225–38.PubMedCrossRef
13.
go back to reference Sorensen KE. Ipsilateral projection from the subiculum to the retrosplenial cortex in the guinea pig. J Comp Neurol. 1980;193:893–911.PubMedCrossRef Sorensen KE. Ipsilateral projection from the subiculum to the retrosplenial cortex in the guinea pig. J Comp Neurol. 1980;193:893–911.PubMedCrossRef
14.
go back to reference Swanson LW, Cowan WM. An autoradiographic study of the organization of the efferent connections of the hippocampal formation in the rat. J Comp Neurol. 1977;172:49–84.PubMedCrossRef Swanson LW, Cowan WM. An autoradiographic study of the organization of the efferent connections of the hippocampal formation in the rat. J Comp Neurol. 1977;172:49–84.PubMedCrossRef
15.
go back to reference Kobayashi Y, Amaral DG. Macaque monkey retrosplenial cortex: III. Cortical efferents. J Comp Neurol. 2007;502:810–33.PubMedCrossRef Kobayashi Y, Amaral DG. Macaque monkey retrosplenial cortex: III. Cortical efferents. J Comp Neurol. 2007;502:810–33.PubMedCrossRef
16.
go back to reference Haugland KG, Sugar J, Witter MP. Development and topographical organization of projections from the hippocampus and parahippocampus to the retrosplenial cortex. Eur J Neurosci. 2019;50:1799–819.PubMedPubMedCentralCrossRef Haugland KG, Sugar J, Witter MP. Development and topographical organization of projections from the hippocampus and parahippocampus to the retrosplenial cortex. Eur J Neurosci. 2019;50:1799–819.PubMedPubMedCentralCrossRef
17.
go back to reference Opalka AN, Wang DV. Hippocampal efferents to retrosplenial cortex and lateral septum are required for memory acquisition. Learn Mem Cold Spring Harb N. 2020;27:310–8.CrossRef Opalka AN, Wang DV. Hippocampal efferents to retrosplenial cortex and lateral septum are required for memory acquisition. Learn Mem Cold Spring Harb N. 2020;27:310–8.CrossRef
18.
go back to reference Yamawaki N, Corcoran KA, Guedea AL, Shepherd GMG, Radulovic J. Differential contributions of glutamatergic hippocampal→retrosplenial cortical projections to the formation and persistence of context memories. Cereb Cortex N Y N 1991. 2019;29:2728–36. Yamawaki N, Corcoran KA, Guedea AL, Shepherd GMG, Radulovic J. Differential contributions of glutamatergic hippocampal→retrosplenial cortical projections to the formation and persistence of context memories. Cereb Cortex N Y N 1991. 2019;29:2728–36.
19.
go back to reference Miyashita T, Rockland KS. GABAergic projections from the hippocampus to the retrosplenial cortex in the rat. Eur J Neurosci. 2007;26:1193–204.PubMedCrossRef Miyashita T, Rockland KS. GABAergic projections from the hippocampus to the retrosplenial cortex in the rat. Eur J Neurosci. 2007;26:1193–204.PubMedCrossRef
20.
go back to reference Yamawaki N, Li X, Lambot L, Ren LY, Radulovic J, Shepherd GMG. Long-range inhibitory intersection of a retrosplenial thalamocortical circuit by apical tuft-targeting CA1 neurons. Nat Neurosci. 2019;22:618–26.PubMedPubMedCentralCrossRef Yamawaki N, Li X, Lambot L, Ren LY, Radulovic J, Shepherd GMG. Long-range inhibitory intersection of a retrosplenial thalamocortical circuit by apical tuft-targeting CA1 neurons. Nat Neurosci. 2019;22:618–26.PubMedPubMedCentralCrossRef
21.
go back to reference Aggleton JP, Yanakieva S, Sengpiel F, Nelson AJ. The separate and combined properties of the granular (area 29) and dysgranular (area 30) retrosplenial cortex. Neurobiol Learn Mem. 2021;185:107516.PubMedCrossRef Aggleton JP, Yanakieva S, Sengpiel F, Nelson AJ. The separate and combined properties of the granular (area 29) and dysgranular (area 30) retrosplenial cortex. Neurobiol Learn Mem. 2021;185:107516.PubMedCrossRef
22.
go back to reference Burwell RD, Amaral DG. Cortical afferents of the perirhinal, postrhinal, and entorhinal cortices of the rat. J Comp Neurol. 1998;398:179–205.PubMedCrossRef Burwell RD, Amaral DG. Cortical afferents of the perirhinal, postrhinal, and entorhinal cortices of the rat. J Comp Neurol. 1998;398:179–205.PubMedCrossRef
23.
go back to reference Czajkowski R, Sugar J, Zhang SJ, Couey JJ, Ye J, Witter MP. Superficially projecting principal neurons in layer V of medial entorhinal cortex in the rat receive excitatory retrosplenial input. J Neurosci. 2013;33:15779–92.PubMedPubMedCentralCrossRef Czajkowski R, Sugar J, Zhang SJ, Couey JJ, Ye J, Witter MP. Superficially projecting principal neurons in layer V of medial entorhinal cortex in the rat receive excitatory retrosplenial input. J Neurosci. 2013;33:15779–92.PubMedPubMedCentralCrossRef
24.
go back to reference Robertson RT, Kaitz SS. Thalamic connections with limbic cortex. I. Thalamocortical projections. J Comp Neurol. 1981;195:501–25.PubMedCrossRef Robertson RT, Kaitz SS. Thalamic connections with limbic cortex. I. Thalamocortical projections. J Comp Neurol. 1981;195:501–25.PubMedCrossRef
25.
go back to reference Clark BJ, Harvey RE. Do the anterior and lateral thalamic nuclei make distinct contributions to spatial representation and memory? Neurobiol Learn Mem. 2016;133:69–78.PubMedCrossRef Clark BJ, Harvey RE. Do the anterior and lateral thalamic nuclei make distinct contributions to spatial representation and memory? Neurobiol Learn Mem. 2016;133:69–78.PubMedCrossRef
26.
go back to reference Clark BJ, Bassett JP, Wang SS, Taube JS. Impaired head direction cell representation in the anterodorsal thalamus after lesions of the retrosplenial cortex. J Neurosci. 2010;30:5289–302.PubMedPubMedCentralCrossRef Clark BJ, Bassett JP, Wang SS, Taube JS. Impaired head direction cell representation in the anterodorsal thalamus after lesions of the retrosplenial cortex. J Neurosci. 2010;30:5289–302.PubMedPubMedCentralCrossRef
27.
go back to reference van Groen T, Wyss JM. Connections of the retrosplenial dysgranular cortex in the rat. J Comp Neurol. 1992;315:200–16.PubMedCrossRef van Groen T, Wyss JM. Connections of the retrosplenial dysgranular cortex in the rat. J Comp Neurol. 1992;315:200–16.PubMedCrossRef
28.
go back to reference Shibata H. Descending projections to the mammillary nuclei in the rat, as studied by retrograde and anterograde transport of wheat germ agglutinin-horseradish peroxidase. J Comp Neurol. 1989;285:436–52.PubMedCrossRef Shibata H. Descending projections to the mammillary nuclei in the rat, as studied by retrograde and anterograde transport of wheat germ agglutinin-horseradish peroxidase. J Comp Neurol. 1989;285:436–52.PubMedCrossRef
29.
go back to reference Kobayashi Y, Amaral DG. Macaque monkey retrosplenial cortex: II. Cortical afferents. J Comp Neurol. 2003;466:48–79.PubMedCrossRef Kobayashi Y, Amaral DG. Macaque monkey retrosplenial cortex: II. Cortical afferents. J Comp Neurol. 2003;466:48–79.PubMedCrossRef
30.
go back to reference Morris R, Petrides M, Pandya DN. Architecture and connections of retrosplenial area 30 in the rhesus monkey (macaca mulatta). Eur J Neurosci. 1999;11:2506–18.PubMedCrossRef Morris R, Petrides M, Pandya DN. Architecture and connections of retrosplenial area 30 in the rhesus monkey (macaca mulatta). Eur J Neurosci. 1999;11:2506–18.PubMedCrossRef
31.
go back to reference Yamawaki N, Radulovic J, Shepherd GMG. A corticocortical circuit directly links retrosplenial cortex to M2 in the mouse. J Neurosci. 2016;36:9365–74.PubMedPubMedCentralCrossRef Yamawaki N, Radulovic J, Shepherd GMG. A corticocortical circuit directly links retrosplenial cortex to M2 in the mouse. J Neurosci. 2016;36:9365–74.PubMedPubMedCentralCrossRef
32.
go back to reference Valenstein E, Bowers D, Verfaellie M, Heilman KM, Day A, Watson RT. Retrosplenial amnesia. Brain. 1987;110(Pt 6):1631–46.PubMedCrossRef Valenstein E, Bowers D, Verfaellie M, Heilman KM, Day A, Watson RT. Retrosplenial amnesia. Brain. 1987;110(Pt 6):1631–46.PubMedCrossRef
33.
go back to reference Gainotti G, Almonti S, Betta AMD, Silveri MC. Retrograde amnesia in a patient with retrosplenial tumour. Neurocase. 1998;4:519–26.CrossRef Gainotti G, Almonti S, Betta AMD, Silveri MC. Retrograde amnesia in a patient with retrosplenial tumour. Neurocase. 1998;4:519–26.CrossRef
34.
go back to reference Takahashi N, Kawamura M, Shiota J, Kasahata N, Hirayama K. Pure topographic disorientation due to right retrosplenial lesion. Neurology. 1997;49:464–9.PubMedCrossRef Takahashi N, Kawamura M, Shiota J, Kasahata N, Hirayama K. Pure topographic disorientation due to right retrosplenial lesion. Neurology. 1997;49:464–9.PubMedCrossRef
35.
go back to reference Maeshima S, Ozaki F, Masuo O, Yamaga H, Okita R, Moriwaki H. Memory impairment and spatial disorientation following a left retrosplenial lesion. J Clin Neurosci. 2001;8:450–1.PubMedCrossRef Maeshima S, Ozaki F, Masuo O, Yamaga H, Okita R, Moriwaki H. Memory impairment and spatial disorientation following a left retrosplenial lesion. J Clin Neurosci. 2001;8:450–1.PubMedCrossRef
36.
38.
go back to reference Ino T, Inoue Y, Kage M, Hirose S, Kimura T, Fukuyama H. Mental navigation in humans is processed in the anterior bank of the parieto-occipital sulcus. Neurosci Lett. 2002;322:182–6.PubMedCrossRef Ino T, Inoue Y, Kage M, Hirose S, Kimura T, Fukuyama H. Mental navigation in humans is processed in the anterior bank of the parieto-occipital sulcus. Neurosci Lett. 2002;322:182–6.PubMedCrossRef
39.
go back to reference Sherrill KR, Erdem UM, Ross RS, Brown TI, Hasselmo ME, Stern CE. Hippocampus and retrosplenial cortex combine path integration signals for successful navigation. J Neurosci. 2013;33:19304–13.PubMedPubMedCentralCrossRef Sherrill KR, Erdem UM, Ross RS, Brown TI, Hasselmo ME, Stern CE. Hippocampus and retrosplenial cortex combine path integration signals for successful navigation. J Neurosci. 2013;33:19304–13.PubMedPubMedCentralCrossRef
40.
go back to reference Epstein RA, Parker WE, Feiler AM. Where am I now? Distinct roles for parahippocampal and retrosplenial cortices in place recognition. J Neurosci. 2007;27:6141–9.PubMedPubMedCentralCrossRef Epstein RA, Parker WE, Feiler AM. Where am I now? Distinct roles for parahippocampal and retrosplenial cortices in place recognition. J Neurosci. 2007;27:6141–9.PubMedPubMedCentralCrossRef
41.
go back to reference Spiers HJ, Maguire EA. Thoughts, behaviour, and brain dynamics during navigation in the real world. Neuroimage. 2006;31:1826–40.PubMedCrossRef Spiers HJ, Maguire EA. Thoughts, behaviour, and brain dynamics during navigation in the real world. Neuroimage. 2006;31:1826–40.PubMedCrossRef
42.
go back to reference Morris RG, Garrud P, Rawlins JN, O’Keefe J. Place navigation impaired in rats with hippocampal lesions. Nature. 1982;297:681–3.PubMedCrossRef Morris RG, Garrud P, Rawlins JN, O’Keefe J. Place navigation impaired in rats with hippocampal lesions. Nature. 1982;297:681–3.PubMedCrossRef
43.
go back to reference Nagahara AH, Otto T, Gallagher M. Entorhinal-perirhinal lesions impair performance of rats on two versions of place learning in the Morris water maze. Behav Neurosci. 1995;109:3–9.PubMedCrossRef Nagahara AH, Otto T, Gallagher M. Entorhinal-perirhinal lesions impair performance of rats on two versions of place learning in the Morris water maze. Behav Neurosci. 1995;109:3–9.PubMedCrossRef
44.
go back to reference Galani R, Weiss I, Cassel J-C, Kelche C. Spatial memory, habituation, and reactions to spatial and nonspatial changes in rats with selective lesions of the hippocampus, the entorhinal cortex or the subiculum. Behav Brain Res. 1998;96:1–12.PubMedCrossRef Galani R, Weiss I, Cassel J-C, Kelche C. Spatial memory, habituation, and reactions to spatial and nonspatial changes in rats with selective lesions of the hippocampus, the entorhinal cortex or the subiculum. Behav Brain Res. 1998;96:1–12.PubMedCrossRef
45.
go back to reference Alexander AS, Nitz DA. Retrosplenial cortex maps the conjunction of internal and external spaces. Nat Neurosci. 2015;18:1143–51.PubMedCrossRef Alexander AS, Nitz DA. Retrosplenial cortex maps the conjunction of internal and external spaces. Nat Neurosci. 2015;18:1143–51.PubMedCrossRef
47.
go back to reference Vann SD, Kristina Wilton LA, Muir JL, Aggleton JP. Testing the importance of the caudal retrosplenial cortex for spatial memory in rats. Behav Brain Res. 2003;140:107–18.PubMedCrossRef Vann SD, Kristina Wilton LA, Muir JL, Aggleton JP. Testing the importance of the caudal retrosplenial cortex for spatial memory in rats. Behav Brain Res. 2003;140:107–18.PubMedCrossRef
48.
go back to reference Vann SD, Aggleton JP. Extensive cytotoxic lesions of the rat retrosplenial cortex reveal consistent deficits on tasks that tax allocentric spatial memory. Behav Neurosci. 2002;116:85–94.PubMedCrossRef Vann SD, Aggleton JP. Extensive cytotoxic lesions of the rat retrosplenial cortex reveal consistent deficits on tasks that tax allocentric spatial memory. Behav Neurosci. 2002;116:85–94.PubMedCrossRef
49.
go back to reference Whishaw IQ, Maaswinkel H, Gonzalez CL, Kolb B. Deficits in allothetic and idiothetic spatial behavior in rats with posterior cingulate cortex lesions. Behav Brain Res. 2001;118:67–76.PubMedCrossRef Whishaw IQ, Maaswinkel H, Gonzalez CL, Kolb B. Deficits in allothetic and idiothetic spatial behavior in rats with posterior cingulate cortex lesions. Behav Brain Res. 2001;118:67–76.PubMedCrossRef
50.
go back to reference Wesierska M, Adamska I, Malinowska M. Retrosplenial cortex lesion affected segregation of spatial information in place avoidance task in the rat. Neurobiol Learn Mem. 2009;91:41–9.PubMedCrossRef Wesierska M, Adamska I, Malinowska M. Retrosplenial cortex lesion affected segregation of spatial information in place avoidance task in the rat. Neurobiol Learn Mem. 2009;91:41–9.PubMedCrossRef
51.
go back to reference Aggleton JP, Neave N, Nagle S, Sahgal A. A comparison of the effects of medial prefrontal, cingulate cortex, and cingulum bundle lesions on tests of spatial memory: evidence of a double dissociation between frontal and cingulum bundle contributions. J Neurosci. 1995;15:7270–81.PubMedPubMedCentralCrossRef Aggleton JP, Neave N, Nagle S, Sahgal A. A comparison of the effects of medial prefrontal, cingulate cortex, and cingulum bundle lesions on tests of spatial memory: evidence of a double dissociation between frontal and cingulum bundle contributions. J Neurosci. 1995;15:7270–81.PubMedPubMedCentralCrossRef
52.
go back to reference Warburton EC, Aggleton JP, Muir JL. Comparing the effects of selective cingulate cortex lesions and cingulum bundle lesions on water maze performance by rats. Eur J Neurosci. 1998;10:622–34.PubMedCrossRef Warburton EC, Aggleton JP, Muir JL. Comparing the effects of selective cingulate cortex lesions and cingulum bundle lesions on water maze performance by rats. Eur J Neurosci. 1998;10:622–34.PubMedCrossRef
53.
go back to reference Aggleton JP, Vann SD, Oswald CJ, Good M. Identifying cortical inputs to the rat hippocampus that subserve allocentric spatial processes: a simple problem with a complex answer. Hippocampus. 2000;10:466–74.PubMedCrossRef Aggleton JP, Vann SD, Oswald CJ, Good M. Identifying cortical inputs to the rat hippocampus that subserve allocentric spatial processes: a simple problem with a complex answer. Hippocampus. 2000;10:466–74.PubMedCrossRef
54.
go back to reference Aggleton JP, Vann SD. Testing the importance of the retrosplenial navigation system: lesion size but not strain matters: a reply to Harker and Whishaw. Neurosci Biobehav Rev. 2004;28:525–31.PubMedCrossRef Aggleton JP, Vann SD. Testing the importance of the retrosplenial navigation system: lesion size but not strain matters: a reply to Harker and Whishaw. Neurosci Biobehav Rev. 2004;28:525–31.PubMedCrossRef
55.
go back to reference Buckley MJ, Mitchell AS. Retrosplenial cortical contributions to anterograde and retrograde memory in the monkey. Cereb Cortex N Y N 1991. 2016;26:2905–18. Buckley MJ, Mitchell AS. Retrosplenial cortical contributions to anterograde and retrograde memory in the monkey. Cereb Cortex N Y N 1991. 2016;26:2905–18.
57.
go back to reference Moser EI, Kropff E, Moser M-B. Place cells, grid cells, and the brain’s spatial representation system. Annu Rev Neurosci. 2008;31:69–89.PubMedCrossRef Moser EI, Kropff E, Moser M-B. Place cells, grid cells, and the brain’s spatial representation system. Annu Rev Neurosci. 2008;31:69–89.PubMedCrossRef
58.
go back to reference Chen LL, Lin LH, Green EJ, Barnes CA, McNaughton BL. Head-direction cells in the rat posterior cortex. I. Anatomical distribution and behavioral modulation. Exp Brain Res. 1994;101:8–23.PubMedCrossRef Chen LL, Lin LH, Green EJ, Barnes CA, McNaughton BL. Head-direction cells in the rat posterior cortex. I. Anatomical distribution and behavioral modulation. Exp Brain Res. 1994;101:8–23.PubMedCrossRef
59.
60.
go back to reference Jacob P-Y, Casali G, Spieser L, Page H, Overington D, Jeffery K. An independent, landmark-dominated head-direction signal in dysgranular retrosplenial cortex. Nat Neurosci. 2017;20:173–5.PubMedCrossRef Jacob P-Y, Casali G, Spieser L, Page H, Overington D, Jeffery K. An independent, landmark-dominated head-direction signal in dysgranular retrosplenial cortex. Nat Neurosci. 2017;20:173–5.PubMedCrossRef
61.
go back to reference Mao D, Kandler S, McNaughton BL, Bonin V. Sparse orthogonal population representation of spatial context in the retrosplenial cortex. Nat Commun. 2017;8:243.PubMedPubMedCentralCrossRef Mao D, Kandler S, McNaughton BL, Bonin V. Sparse orthogonal population representation of spatial context in the retrosplenial cortex. Nat Commun. 2017;8:243.PubMedPubMedCentralCrossRef
62.
go back to reference Mao D, Neumann AR, Sun J, Bonin V, Mohajerani MH, McNaughton BL. Hippocampus-dependent emergence of spatial sequence coding in retrosplenial cortex. Proc Natl Acad Sci U S A. 2018;115:8015–8.PubMedPubMedCentralCrossRef Mao D, Neumann AR, Sun J, Bonin V, Mohajerani MH, McNaughton BL. Hippocampus-dependent emergence of spatial sequence coding in retrosplenial cortex. Proc Natl Acad Sci U S A. 2018;115:8015–8.PubMedPubMedCentralCrossRef
63.
64.
go back to reference Smith DM, Barredo J, Mizumori SJ. Complimentary roles of the hippocampus and retrosplenial cortex in behavioral context discrimination. Hippocampus. 2012;22:1121–33.PubMedCrossRef Smith DM, Barredo J, Mizumori SJ. Complimentary roles of the hippocampus and retrosplenial cortex in behavioral context discrimination. Hippocampus. 2012;22:1121–33.PubMedCrossRef
65.
go back to reference Alexander AS, Nitz DA. Spatially periodic activation patterns of retrosplenial cortex encode route sub-spaces and distance traveled. Curr Biol CB. 2017;27:1551-1560.e4.PubMedCrossRef Alexander AS, Nitz DA. Spatially periodic activation patterns of retrosplenial cortex encode route sub-spaces and distance traveled. Curr Biol CB. 2017;27:1551-1560.e4.PubMedCrossRef
66.
go back to reference Corcoran KA, Frick BJ, Radulovic J, Kay LM. Analysis of coherent activity between retrosplenial cortex, hippocampus, thalamus, and anterior cingulate cortex during retrieval of recent and remote context fear memory. Neurobiol Learn Mem. 2016;127:93–101.PubMedCrossRef Corcoran KA, Frick BJ, Radulovic J, Kay LM. Analysis of coherent activity between retrosplenial cortex, hippocampus, thalamus, and anterior cingulate cortex during retrieval of recent and remote context fear memory. Neurobiol Learn Mem. 2016;127:93–101.PubMedCrossRef
67.
go back to reference Koike BDV, Farias KS, Billwiller F, Almeida-Filho D, Libourel P-A, Tiran-Cappello A, et al. Electrophysiological evidence that the retrosplenial cortex displays a strong and specific activation phased with hippocampal theta during paradoxical (REM) sleep. J Neurosci. 2017;37:8003–13.PubMedPubMedCentralCrossRef Koike BDV, Farias KS, Billwiller F, Almeida-Filho D, Libourel P-A, Tiran-Cappello A, et al. Electrophysiological evidence that the retrosplenial cortex displays a strong and specific activation phased with hippocampal theta during paradoxical (REM) sleep. J Neurosci. 2017;37:8003–13.PubMedPubMedCentralCrossRef
68.
go back to reference Kaczmarek L, Nikołajew E. c-fos protooncogene expression and neuronal plasticity. Acta Neurobiol Exp (Warsz). 1990;50:173–9. Kaczmarek L, Nikołajew E. c-fos protooncogene expression and neuronal plasticity. Acta Neurobiol Exp (Warsz). 1990;50:173–9.
69.
70.
go back to reference Curran T, Morgan JI. Memories of fos. BioEssays News Rev Mol Cell Dev Biol. 1987;7:255–8.CrossRef Curran T, Morgan JI. Memories of fos. BioEssays News Rev Mol Cell Dev Biol. 1987;7:255–8.CrossRef
71.
go back to reference Goelet P, Castellucci VF, Schacher S, Kandel ER. The long and the short of long-term memory–a molecular framework. Nature. 1986;322:419–22.PubMedCrossRef Goelet P, Castellucci VF, Schacher S, Kandel ER. The long and the short of long-term memory–a molecular framework. Nature. 1986;322:419–22.PubMedCrossRef
72.
go back to reference Jaworski J, Kalita K, Knapska E. c-Fos and neuronal plasticity: the aftermath of Kaczmarek’s theory. Acta Neurobiol Exp (Warsz). 2018;78:287–96.CrossRef Jaworski J, Kalita K, Knapska E. c-Fos and neuronal plasticity: the aftermath of Kaczmarek’s theory. Acta Neurobiol Exp (Warsz). 2018;78:287–96.CrossRef
73.
go back to reference Dragunow M, Peterson MR, Robertson HA. Presence of c-fos-like immunoreactivity in the adult rat brain. Eur J Pharmacol. 1987;135:113–4.PubMedCrossRef Dragunow M, Peterson MR, Robertson HA. Presence of c-fos-like immunoreactivity in the adult rat brain. Eur J Pharmacol. 1987;135:113–4.PubMedCrossRef
74.
go back to reference Sagar SM, Sharp FR, Curran T. Expression of c-fos protein in brain: metabolic mapping at the cellular level. Science. 1988;240:1328–31.PubMedCrossRef Sagar SM, Sharp FR, Curran T. Expression of c-fos protein in brain: metabolic mapping at the cellular level. Science. 1988;240:1328–31.PubMedCrossRef
75.
go back to reference Kaczmarek L. Gene expression in learning processes. Acta Neurobiol Exp (Warsz). 2000;60:419–24. Kaczmarek L. Gene expression in learning processes. Acta Neurobiol Exp (Warsz). 2000;60:419–24.
76.
go back to reference Flexner JB, Flexner LB, Stellar E. Memory in mice as affected by intracerebral puromycin. Science. 1963;141:57–9.PubMedCrossRef Flexner JB, Flexner LB, Stellar E. Memory in mice as affected by intracerebral puromycin. Science. 1963;141:57–9.PubMedCrossRef
77.
78.
go back to reference Miyashita T, Kubik S, Lewandowski G, Guzowski JF. Networks of neurons, networks of genes: an integrated view of memory consolidation. Neurobiol Learn Mem. 2008;89:269–84.PubMedCrossRef Miyashita T, Kubik S, Lewandowski G, Guzowski JF. Networks of neurons, networks of genes: an integrated view of memory consolidation. Neurobiol Learn Mem. 2008;89:269–84.PubMedCrossRef
79.
go back to reference Tischmeyer W, Grimm R. Activation of immediate early genes and memory formation. Cell Mol Life Sci CMLS. 1999;55:564–74.PubMedCrossRef Tischmeyer W, Grimm R. Activation of immediate early genes and memory formation. Cell Mol Life Sci CMLS. 1999;55:564–74.PubMedCrossRef
80.
go back to reference Kaminska B, Mosieniak G, Gierdalski M, Kossut M, Kaczmarek L. Elevated AP-1 transcription factor DNA binding activity at the onset of functional plasticity during development of rat sensory cortical areas. Mol Brain Res. 1995;33:295–304.PubMedCrossRef Kaminska B, Mosieniak G, Gierdalski M, Kossut M, Kaczmarek L. Elevated AP-1 transcription factor DNA binding activity at the onset of functional plasticity during development of rat sensory cortical areas. Mol Brain Res. 1995;33:295–304.PubMedCrossRef
81.
go back to reference Kaczmarek L. Glutamate receptor-driven gene expression in learning. Acta Neurobiol Exp (Warsz). 1993;53:187–96. Kaczmarek L. Glutamate receptor-driven gene expression in learning. Acta Neurobiol Exp (Warsz). 1993;53:187–96.
82.
go back to reference Kaczmarek L. Molecular biology of vertebrate learning: is c-fos a new beginning? J Neurosci Res. 1993;34:377–81.PubMedCrossRef Kaczmarek L. Molecular biology of vertebrate learning: is c-fos a new beginning? J Neurosci Res. 1993;34:377–81.PubMedCrossRef
83.
go back to reference Lemaire P, Revelant O, Bravo R, Charnay P. Two mouse genes encoding potential transcription factors with identical DNA-binding domains are activated by growth factors in cultured cells. Proc Natl Acad Sci. 1988;85:4691–5.PubMedPubMedCentralCrossRef Lemaire P, Revelant O, Bravo R, Charnay P. Two mouse genes encoding potential transcription factors with identical DNA-binding domains are activated by growth factors in cultured cells. Proc Natl Acad Sci. 1988;85:4691–5.PubMedPubMedCentralCrossRef
84.
go back to reference Christy BA, Lau LF, Nathans D. A gene activated in mouse 3T3 cells by serum growth factors encodes a protein with ‘zinc finger’ sequences. Proc Natl Acad Sci U S A. 1988;85:7857–61.PubMedPubMedCentralCrossRef Christy BA, Lau LF, Nathans D. A gene activated in mouse 3T3 cells by serum growth factors encodes a protein with ‘zinc finger’ sequences. Proc Natl Acad Sci U S A. 1988;85:7857–61.PubMedPubMedCentralCrossRef
85.
go back to reference Saffen DW, Cole AJ, Worley PF, Christy BA, Ryder K, Baraban JM. Convulsant-induced increase in transcription factor messenger RNAs in rat brain. Proc Natl Acad Sci U S A. 1988;85:7795–9.PubMedPubMedCentralCrossRef Saffen DW, Cole AJ, Worley PF, Christy BA, Ryder K, Baraban JM. Convulsant-induced increase in transcription factor messenger RNAs in rat brain. Proc Natl Acad Sci U S A. 1988;85:7795–9.PubMedPubMedCentralCrossRef
86.
go back to reference Cole AJ, Saffen DW, Baraban JM, Worley PF. Rapid increase of an immediate early gene messenger RNA in hippocampal neurons by synaptic NMDA receptor activation. Nature. 1989;340:474–6.PubMedCrossRef Cole AJ, Saffen DW, Baraban JM, Worley PF. Rapid increase of an immediate early gene messenger RNA in hippocampal neurons by synaptic NMDA receptor activation. Nature. 1989;340:474–6.PubMedCrossRef
87.
go back to reference Lanahan A, Worley P. Immediate-early genes and synaptic function. Neurobiol Learn Mem. 1998;70:37–43.PubMedCrossRef Lanahan A, Worley P. Immediate-early genes and synaptic function. Neurobiol Learn Mem. 1998;70:37–43.PubMedCrossRef
88.
go back to reference Link W, Konietzko U, Kauselmann G, Krug M, Schwanke B, Frey U, et al. Somatodendritic expression of an immediate early gene is regulated by synaptic activity. Proc Natl Acad Sci U S A. 1995;92:5734–8.PubMedPubMedCentralCrossRef Link W, Konietzko U, Kauselmann G, Krug M, Schwanke B, Frey U, et al. Somatodendritic expression of an immediate early gene is regulated by synaptic activity. Proc Natl Acad Sci U S A. 1995;92:5734–8.PubMedPubMedCentralCrossRef
89.
go back to reference Lyford GL, Yamagata K, Kaufmann WE, Barnes CA, Sanders LK, Copeland NG, et al. Arc, a growth factor and activity-regulated gene, encodes a novel cytoskeleton-associated protein that is enriched in neuronal dendrites. Neuron. 1995;14:433–45.PubMedCrossRef Lyford GL, Yamagata K, Kaufmann WE, Barnes CA, Sanders LK, Copeland NG, et al. Arc, a growth factor and activity-regulated gene, encodes a novel cytoskeleton-associated protein that is enriched in neuronal dendrites. Neuron. 1995;14:433–45.PubMedCrossRef
90.
go back to reference Guzowski JF, McNaughton BL, Barnes CA, Worley PF. Environment-specific expression of the immediate-early gene Arc in hippocampal neuronal ensembles. Nat Neurosci. 1999;2:1120–4.PubMedCrossRef Guzowski JF, McNaughton BL, Barnes CA, Worley PF. Environment-specific expression of the immediate-early gene Arc in hippocampal neuronal ensembles. Nat Neurosci. 1999;2:1120–4.PubMedCrossRef
91.
go back to reference Vazdarjanova A, Ramirez-Amaya V, Insel N, Plummer TK, Rosi S, Chowdhury S, et al. Spatial exploration induces ARC, a plasticity-related immediate-early gene, only in calcium/calmodulin-dependent protein kinase II-positive principal excitatory and inhibitory neurons of the rat forebrain. J Comp Neurol. 2006;498:317–29.PubMedCrossRef Vazdarjanova A, Ramirez-Amaya V, Insel N, Plummer TK, Rosi S, Chowdhury S, et al. Spatial exploration induces ARC, a plasticity-related immediate-early gene, only in calcium/calmodulin-dependent protein kinase II-positive principal excitatory and inhibitory neurons of the rat forebrain. J Comp Neurol. 2006;498:317–29.PubMedCrossRef
92.
go back to reference Pastuzyn ED, Day CE, Kearns RB, Kyrke-Smith M, Taibi AV, McCormick J, et al. The neuronal gene arc encodes a repurposed retrotransposon gag protein that mediates intercellular RNA transfer. Cell. 2018;172:275-288.e18.PubMedPubMedCentralCrossRef Pastuzyn ED, Day CE, Kearns RB, Kyrke-Smith M, Taibi AV, McCormick J, et al. The neuronal gene arc encodes a repurposed retrotransposon gag protein that mediates intercellular RNA transfer. Cell. 2018;172:275-288.e18.PubMedPubMedCentralCrossRef
93.
go back to reference Brakeman PR, Lanahan AA, O’Brien R, Roche K, Barnes CA, Huganir RL, et al. Homer: a protein that selectively binds metabotropic glutamate receptors. Nature. 1997;386:284–8.PubMedCrossRef Brakeman PR, Lanahan AA, O’Brien R, Roche K, Barnes CA, Huganir RL, et al. Homer: a protein that selectively binds metabotropic glutamate receptors. Nature. 1997;386:284–8.PubMedCrossRef
94.
go back to reference Xiao B, Tu JC, Petralia RS, Yuan JP, Doan A, Breder CD, et al. Homer regulates the association of group 1 metabotropic glutamate receptors with multivalent complexes of homer-related, synaptic proteins. Neuron. 1998;21:707–16.PubMedCrossRef Xiao B, Tu JC, Petralia RS, Yuan JP, Doan A, Breder CD, et al. Homer regulates the association of group 1 metabotropic glutamate receptors with multivalent complexes of homer-related, synaptic proteins. Neuron. 1998;21:707–16.PubMedCrossRef
95.
go back to reference Xiao B, Tu JC, Worley PF. Homer: a link between neural activity and glutamate receptor function. Curr Opin Neurobiol. 2000;10:370–4.PubMedCrossRef Xiao B, Tu JC, Worley PF. Homer: a link between neural activity and glutamate receptor function. Curr Opin Neurobiol. 2000;10:370–4.PubMedCrossRef
96.
go back to reference Knapska E, Macias M, Mikosz M, Nowak A, Owczarek D, Wawrzyniak M, et al. Functional anatomy of neural circuits regulating fear and extinction. Proc Natl Acad Sci U S A. 2012;109:17093–8.PubMedPubMedCentralCrossRef Knapska E, Macias M, Mikosz M, Nowak A, Owczarek D, Wawrzyniak M, et al. Functional anatomy of neural circuits regulating fear and extinction. Proc Natl Acad Sci U S A. 2012;109:17093–8.PubMedPubMedCentralCrossRef
97.
go back to reference Tayler KK, Tanaka KZ, Reijmers LG, Wiltgen BJ. Reactivation of neural ensembles during the retrieval of recent and remote memory. Curr Biol. 2013;23:99–106.PubMedCrossRef Tayler KK, Tanaka KZ, Reijmers LG, Wiltgen BJ. Reactivation of neural ensembles during the retrieval of recent and remote memory. Curr Biol. 2013;23:99–106.PubMedCrossRef
98.
go back to reference Vann SD, Brown MW, Aggleton JP. Fos expression in the rostral thalamic nuclei and associated cortical regions in response to different spatial memory tests. Neuroscience. 2000;101:983–91.PubMedCrossRef Vann SD, Brown MW, Aggleton JP. Fos expression in the rostral thalamic nuclei and associated cortical regions in response to different spatial memory tests. Neuroscience. 2000;101:983–91.PubMedCrossRef
99.
go back to reference Pothuizen HH, Davies M, Albasser MM, Aggleton JP, Vann SD. Granular and dysgranular retrosplenial cortices provide qualitatively different contributions to spatial working memory: evidence from immediate-early gene imaging in rats. Eur J Neurosci. 2009;30:877–88.PubMedCrossRef Pothuizen HH, Davies M, Albasser MM, Aggleton JP, Vann SD. Granular and dysgranular retrosplenial cortices provide qualitatively different contributions to spatial working memory: evidence from immediate-early gene imaging in rats. Eur J Neurosci. 2009;30:877–88.PubMedCrossRef
100.
go back to reference Jenkins TA, Dias R, Amin E, Brown MW, Aggleton JP. Fos imaging reveals that lesions of the anterior thalamic nuclei produce widespread limbic hypoactivity in rats. J Neurosci. 2002;22:5230–8.PubMedPubMedCentralCrossRef Jenkins TA, Dias R, Amin E, Brown MW, Aggleton JP. Fos imaging reveals that lesions of the anterior thalamic nuclei produce widespread limbic hypoactivity in rats. J Neurosci. 2002;22:5230–8.PubMedPubMedCentralCrossRef
101.
go back to reference Jenkins TA, Dias R, Amin E, Aggleton JP. Changes in Fos expression in the rat brain after unilateral lesions of the anterior thalamic nuclei. Eur J Neurosci. 2002;16:1425–32.PubMedCrossRef Jenkins TA, Dias R, Amin E, Aggleton JP. Changes in Fos expression in the rat brain after unilateral lesions of the anterior thalamic nuclei. Eur J Neurosci. 2002;16:1425–32.PubMedCrossRef
102.
go back to reference Jenkins TA, Vann SD, Amin E, Aggleton JP. Anterior thalamic lesions stop immediate early gene activation in selective laminae of the retrosplenial cortex: evidence of covert pathology in rats? Eur J Neurosci. 2004;19:3291–304.PubMedCrossRef Jenkins TA, Vann SD, Amin E, Aggleton JP. Anterior thalamic lesions stop immediate early gene activation in selective laminae of the retrosplenial cortex: evidence of covert pathology in rats? Eur J Neurosci. 2004;19:3291–304.PubMedCrossRef
103.
go back to reference Frizzati A, Milczarek MM, Sengpiel F, Thomas KL, Dillingham CM, Vann SD. Comparable reduction in Zif268 levels and cytochrome oxidase activity in the retrosplenial cortex following mammillothalamic tract lesions. Neuroscience. 2016;330:39–49.PubMedCrossRef Frizzati A, Milczarek MM, Sengpiel F, Thomas KL, Dillingham CM, Vann SD. Comparable reduction in Zif268 levels and cytochrome oxidase activity in the retrosplenial cortex following mammillothalamic tract lesions. Neuroscience. 2016;330:39–49.PubMedCrossRef
104.
go back to reference Vann SD, Albasser MM. Hippocampal, retrosplenial, and prefrontal hypoactivity in a model of diencephalic amnesia: evidence towards an interdependent subcortical-cortical memory network. Hippocampus. 2009;19:1090–102.PubMedCrossRef Vann SD, Albasser MM. Hippocampal, retrosplenial, and prefrontal hypoactivity in a model of diencephalic amnesia: evidence towards an interdependent subcortical-cortical memory network. Hippocampus. 2009;19:1090–102.PubMedCrossRef
105.
go back to reference Albasser MM, Poirier GL, Warburton EC, Aggleton JP. Hippocampal lesions halve immediate-early gene protein counts in retrosplenial cortex: distal dysfunctions in a spatial memory system. Eur J Neurosci. 2007;26:1254–66.PubMedCrossRef Albasser MM, Poirier GL, Warburton EC, Aggleton JP. Hippocampal lesions halve immediate-early gene protein counts in retrosplenial cortex: distal dysfunctions in a spatial memory system. Eur J Neurosci. 2007;26:1254–66.PubMedCrossRef
106.
go back to reference Kubik S, Miyashita T, Kubik-Zahorodna A, Guzowski JF. Loss of activity-dependent Arc gene expression in the retrosplenial cortex after hippocampal inactivation: interaction in a higher-order memory circuit. Neurobiol Learn Mem. 2012;97:124–31.PubMedCrossRef Kubik S, Miyashita T, Kubik-Zahorodna A, Guzowski JF. Loss of activity-dependent Arc gene expression in the retrosplenial cortex after hippocampal inactivation: interaction in a higher-order memory circuit. Neurobiol Learn Mem. 2012;97:124–31.PubMedCrossRef
107.
go back to reference Czajkowski R, Zglinicki B, Rejmak E, Konopka W. Strategy-Specific patterns of arc expression in the retrosplenial cortex and hippocampus during T-Maze learning in rats. Brain Sci. 2020;10. Czajkowski R, Zglinicki B, Rejmak E, Konopka W. Strategy-Specific patterns of arc expression in the retrosplenial cortex and hippocampus during T-Maze learning in rats. Brain Sci. 2020;10.
108.
go back to reference Beck CH, Fibiger HC. Conditioned fear-induced changes in behavior and in the expression of the immediate early gene c-fos: with and without diazepam pretreatment. J Neurosci. 1995;15:709–20.PubMedPubMedCentralCrossRef Beck CH, Fibiger HC. Conditioned fear-induced changes in behavior and in the expression of the immediate early gene c-fos: with and without diazepam pretreatment. J Neurosci. 1995;15:709–20.PubMedPubMedCentralCrossRef
109.
go back to reference Bucci DJ, Robinson S. Toward a conceptualization of retrohippocampal contributions to learning and memory. Neurobiol Learn Mem. 2014;116:197–207.PubMedCrossRef Bucci DJ, Robinson S. Toward a conceptualization of retrohippocampal contributions to learning and memory. Neurobiol Learn Mem. 2014;116:197–207.PubMedCrossRef
110.
go back to reference Baumgärtel K, Green A, Hornberger D, Lapira J, Rex C, Wheeler DG, et al. PDE4D regulates spine plasticity and memory in the retrosplenial cortex. Sci Rep. 2018;8:3895.PubMedPubMedCentralCrossRef Baumgärtel K, Green A, Hornberger D, Lapira J, Rex C, Wheeler DG, et al. PDE4D regulates spine plasticity and memory in the retrosplenial cortex. Sci Rep. 2018;8:3895.PubMedPubMedCentralCrossRef
111.
go back to reference Katche C, Dorman G, Gonzalez C, Kramar CP, Slipczuk L, Rossato JI, et al. On the role of retrosplenial cortex in long-lasting memory storage. Hippocampus. 2013;23:295–302.PubMedCrossRef Katche C, Dorman G, Gonzalez C, Kramar CP, Slipczuk L, Rossato JI, et al. On the role of retrosplenial cortex in long-lasting memory storage. Hippocampus. 2013;23:295–302.PubMedCrossRef
112.
go back to reference Katche C, Medina JH. Requirement of an early activation of BDNF/c-Fos cascade in the retrosplenial cortex for the persistence of a long-lasting aversive memory. Cereb Cortex N Y N 1991. 2017;27:1060–7. Katche C, Medina JH. Requirement of an early activation of BDNF/c-Fos cascade in the retrosplenial cortex for the persistence of a long-lasting aversive memory. Cereb Cortex N Y N 1991. 2017;27:1060–7.
113.
go back to reference Trask S, Pullins SE, Ferrara NC, Helmstetter FJ. The anterior retrosplenial cortex encodes event-related information and the posterior retrosplenial cortex encodes context-related information during memory formation. Neuropsychopharmacol. 2021; Trask S, Pullins SE, Ferrara NC, Helmstetter FJ. The anterior retrosplenial cortex encodes event-related information and the posterior retrosplenial cortex encodes context-related information during memory formation. Neuropsychopharmacol. 2021;
114.
go back to reference Malinowska M, Niewiadomska M, Wesierska M. Spatial memory formation differentially affects c-Fos expression in retrosplenial areas during place avoidance training in rats. Acta Neurobiol Exp (Warsz). 2016;76:244–65.CrossRef Malinowska M, Niewiadomska M, Wesierska M. Spatial memory formation differentially affects c-Fos expression in retrosplenial areas during place avoidance training in rats. Acta Neurobiol Exp (Warsz). 2016;76:244–65.CrossRef
115.
go back to reference Bontempi B, Laurent-Demir C, Destrade C, Jaffard R. Time-dependent reorganization of brain circuitry underlying long-term memory storage. Nature. 1999;400:671–5.PubMedCrossRef Bontempi B, Laurent-Demir C, Destrade C, Jaffard R. Time-dependent reorganization of brain circuitry underlying long-term memory storage. Nature. 1999;400:671–5.PubMedCrossRef
116.
go back to reference Wiltgen BJ, Brown RAM, Talton LE, Silva AJ. New circuits for old memories: the role of the neocortex in consolidation. Neuron. 2004;44:101–8.PubMedCrossRef Wiltgen BJ, Brown RAM, Talton LE, Silva AJ. New circuits for old memories: the role of the neocortex in consolidation. Neuron. 2004;44:101–8.PubMedCrossRef
117.
go back to reference Maviel T, Durkin TP, Menzaghi F, Bontempi B. Sites of neocortical reorganization critical for remote spatial memory. Science. 2004;305:96–9.PubMedCrossRef Maviel T, Durkin TP, Menzaghi F, Bontempi B. Sites of neocortical reorganization critical for remote spatial memory. Science. 2004;305:96–9.PubMedCrossRef
118.
go back to reference Barry DN, Coogan AN, Commins S. The time course of systems consolidation of spatial memory from recent to remote retention: a comparison of the Immediate Early Genes Zif268, c-Fos and Arc. Neurobiol Learn Mem. 2016;128:46–55.PubMedCrossRef Barry DN, Coogan AN, Commins S. The time course of systems consolidation of spatial memory from recent to remote retention: a comparison of the Immediate Early Genes Zif268, c-Fos and Arc. Neurobiol Learn Mem. 2016;128:46–55.PubMedCrossRef
119.
go back to reference Gusev PA, Gubin AN. Arc/Arg3.1 mRNA global expression patterns elicited by memory recall in cerebral cortex differ for remote versus recent spatial memories. Front Integr Neurosci. 2010;4:15.PubMedPubMedCentralCrossRef Gusev PA, Gubin AN. Arc/Arg3.1 mRNA global expression patterns elicited by memory recall in cerebral cortex differ for remote versus recent spatial memories. Front Integr Neurosci. 2010;4:15.PubMedPubMedCentralCrossRef
120.
121.
go back to reference Tse D, Langston RF, Kakeyama M, Bethus I, Spooner PA, Wood ER, et al. Schemas and memory consolidation. Science. 2007;316:76–82.PubMedCrossRef Tse D, Langston RF, Kakeyama M, Bethus I, Spooner PA, Wood ER, et al. Schemas and memory consolidation. Science. 2007;316:76–82.PubMedCrossRef
122.
go back to reference Tse D, Takeuchi T, Kakeyama M, Kajii Y, Okuno H, Tohyama C, et al. Schema-dependent gene activation and memory encoding in neocortex. Science. 2011;333:891–5.PubMedCrossRef Tse D, Takeuchi T, Kakeyama M, Kajii Y, Okuno H, Tohyama C, et al. Schema-dependent gene activation and memory encoding in neocortex. Science. 2011;333:891–5.PubMedCrossRef
123.
go back to reference Alonso A, van der Meij J, Tse D, Genzel L. Naïve to expert: considering the role of previous knowledge in memory. Brain Neurosci Adv. 2020;4:2398212820948686.PubMedPubMedCentralCrossRef Alonso A, van der Meij J, Tse D, Genzel L. Naïve to expert: considering the role of previous knowledge in memory. Brain Neurosci Adv. 2020;4:2398212820948686.PubMedPubMedCentralCrossRef
124.
go back to reference Skelin I, Kilianski S, McNaughton BL. Hippocampal coupling with cortical and subcortical structures in the context of memory consolidation. Neurobiol Learn Mem. 2019;160:21–31.PubMedCrossRef Skelin I, Kilianski S, McNaughton BL. Hippocampal coupling with cortical and subcortical structures in the context of memory consolidation. Neurobiol Learn Mem. 2019;160:21–31.PubMedCrossRef
125.
go back to reference Powell AL, Vann SD, Olarte-Sánchez CM, Kinnavane L, Davies M, Amin E, et al. The retrosplenial cortex and object recency memory in the rat. Eur J Neurosci. 2017;45:1451–64.PubMedPubMedCentralCrossRef Powell AL, Vann SD, Olarte-Sánchez CM, Kinnavane L, Davies M, Amin E, et al. The retrosplenial cortex and object recency memory in the rat. Eur J Neurosci. 2017;45:1451–64.PubMedPubMedCentralCrossRef
126.
go back to reference de Landeta AB, Pereyra M, Medina JH, Katche C. Anterior retrosplenial cortex is required for long-term object recognition memory. Sci Rep. 2020;10:4002.PubMedPubMedCentralCrossRef de Landeta AB, Pereyra M, Medina JH, Katche C. Anterior retrosplenial cortex is required for long-term object recognition memory. Sci Rep. 2020;10:4002.PubMedPubMedCentralCrossRef
128.
go back to reference Wang KH, Majewska A, Schummers J, Farley B, Hu C, Sur M, et al. In vivo two-photon imaging reveals a role of arc in enhancing orientation specificity in visual cortex. Cell. 2006;126:389–402.PubMedCrossRef Wang KH, Majewska A, Schummers J, Farley B, Hu C, Sur M, et al. In vivo two-photon imaging reveals a role of arc in enhancing orientation specificity in visual cortex. Cell. 2006;126:389–402.PubMedCrossRef
129.
go back to reference Barth AL, Gerkin RC, Dean KL. Alteration of neuronal firing properties after in vivo experience in a FosGFP transgenic mouse. J Neurosci. 2004;24:6466–75.PubMedPubMedCentralCrossRef Barth AL, Gerkin RC, Dean KL. Alteration of neuronal firing properties after in vivo experience in a FosGFP transgenic mouse. J Neurosci. 2004;24:6466–75.PubMedPubMedCentralCrossRef
130.
go back to reference Łukasiewicz K, Robacha M, Bożycki Ł, Radwanska K, Czajkowski R. Simultaneous two-photon in vivo imaging of synaptic inputs and postsynaptic targets in the mouse retrosplenial cortex. J. Vis. Exp. JoVE 2016; Łukasiewicz K, Robacha M, Bożycki Ł, Radwanska K, Czajkowski R. Simultaneous two-photon in vivo imaging of synaptic inputs and postsynaptic targets in the mouse retrosplenial cortex. J. Vis. Exp. JoVE 2016;
131.
go back to reference Czajkowski R, Jayaprakash B, Wiltgen B, Rogerson T, Guzman-Karlsson MC, Barth AL, et al. Encoding and storage of spatial information in the retrosplenial cortex. Proc Natl Acad Sci U S A. 2014;111:8661–6.PubMedPubMedCentralCrossRef Czajkowski R, Jayaprakash B, Wiltgen B, Rogerson T, Guzman-Karlsson MC, Barth AL, et al. Encoding and storage of spatial information in the retrosplenial cortex. Proc Natl Acad Sci U S A. 2014;111:8661–6.PubMedPubMedCentralCrossRef
132.
go back to reference Milczarek MM, Vann SD, Sengpiel F. Spatial memory engram in the mouse retrosplenial cortex. Curr Biol CB. 2018;28:1975-1980.e6.PubMedCrossRef Milczarek MM, Vann SD, Sengpiel F. Spatial memory engram in the mouse retrosplenial cortex. Curr Biol CB. 2018;28:1975-1980.e6.PubMedCrossRef
133.
go back to reference Reijmers LG, Perkins BL, Matsuo N, Mayford M. Localization of a stable neural correlate of associative memory. Science. 2007;317:1230–3.PubMedCrossRef Reijmers LG, Perkins BL, Matsuo N, Mayford M. Localization of a stable neural correlate of associative memory. Science. 2007;317:1230–3.PubMedCrossRef
134.
go back to reference Meenakshi P, Kumar S, Balaji J. In vivo imaging of immediate early gene expression dynamics segregates neuronal ensemble of memories of dual events. Mol Brain. 2021;14:102.PubMedPubMedCentralCrossRef Meenakshi P, Kumar S, Balaji J. In vivo imaging of immediate early gene expression dynamics segregates neuronal ensemble of memories of dual events. Mol Brain. 2021;14:102.PubMedPubMedCentralCrossRef
135.
go back to reference Cai DJ, Aharoni D, Shuman T, Shobe J, Biane J, Song W, et al. A shared neural ensemble links distinct contextual memories encoded close in time. Nature. 2016;534:115–8.PubMedPubMedCentralCrossRef Cai DJ, Aharoni D, Shuman T, Shobe J, Biane J, Song W, et al. A shared neural ensemble links distinct contextual memories encoded close in time. Nature. 2016;534:115–8.PubMedPubMedCentralCrossRef
136.
go back to reference Wang G, Xie H, Wang L, Luo W, Wang Y, Jiang J, et al. Switching from fear to no fear by different neural ensembles in mouse retrosplenial cortex. Cereb Cortex N Y N. 1991;2019(29):5085–97. Wang G, Xie H, Wang L, Luo W, Wang Y, Jiang J, et al. Switching from fear to no fear by different neural ensembles in mouse retrosplenial cortex. Cereb Cortex N Y N. 1991;2019(29):5085–97.
137.
go back to reference Xie H, Liu Y, Zhu Y, Ding X, Yang Y, Guan J-S. In vivo imaging of immediate early gene expression reveals layer-specific memory traces in the mammalian brain. Proc Natl Acad Sci. 2014;111:2788–93.PubMedPubMedCentralCrossRef Xie H, Liu Y, Zhu Y, Ding X, Yang Y, Guan J-S. In vivo imaging of immediate early gene expression reveals layer-specific memory traces in the mammalian brain. Proc Natl Acad Sci. 2014;111:2788–93.PubMedPubMedCentralCrossRef
138.
go back to reference Demchuk AM, Dube ST, Mesina L, McNaughton BL. Limitations of the GENSAT Egr1-EGFP transgenic mouse strain for neural circuit activity mapping. Neurosci Lett. 2020;732:135072–135072.PubMedCrossRef Demchuk AM, Dube ST, Mesina L, McNaughton BL. Limitations of the GENSAT Egr1-EGFP transgenic mouse strain for neural circuit activity mapping. Neurosci Lett. 2020;732:135072–135072.PubMedCrossRef
139.
go back to reference Minatohara K, Akiyoshi M, Okuno H. Role of immediate-early genes in synaptic plasticity and neuronal ensembles underlying the memory trace. Front Mol Neurosci. 2016;8:78.PubMedPubMedCentralCrossRef Minatohara K, Akiyoshi M, Okuno H. Role of immediate-early genes in synaptic plasticity and neuronal ensembles underlying the memory trace. Front Mol Neurosci. 2016;8:78.PubMedPubMedCentralCrossRef
140.
go back to reference Tanaka KZ, Pevzner A, Hamidi AB, Nakazawa Y, Graham J, Wiltgen BJ. Cortical representations are reinstated by the hippocampus during memory retrieval. Neuron. 2014;84:347–54.PubMedCrossRef Tanaka KZ, Pevzner A, Hamidi AB, Nakazawa Y, Graham J, Wiltgen BJ. Cortical representations are reinstated by the hippocampus during memory retrieval. Neuron. 2014;84:347–54.PubMedCrossRef
141.
go back to reference Cowansage KK, Shuman T, Dillingham BC, Chang A, Golshani P, Mayford M. Direct reactivation of a coherent neocortical memory of context. Neuron. 2014;84:432–41.PubMedPubMedCentralCrossRef Cowansage KK, Shuman T, Dillingham BC, Chang A, Golshani P, Mayford M. Direct reactivation of a coherent neocortical memory of context. Neuron. 2014;84:432–41.PubMedPubMedCentralCrossRef
142.
go back to reference de Sousa AF, Cowansage KK, Zutshi I, Cardozo LM, Yoo EJ, Leutgeb S, et al. Optogenetic reactivation of memory ensembles in the retrosplenial cortex induces systems consolidation. Proc Natl Acad Sci U S A. 2019;116:8576–81.PubMedPubMedCentralCrossRef de Sousa AF, Cowansage KK, Zutshi I, Cardozo LM, Yoo EJ, Leutgeb S, et al. Optogenetic reactivation of memory ensembles in the retrosplenial cortex induces systems consolidation. Proc Natl Acad Sci U S A. 2019;116:8576–81.PubMedPubMedCentralCrossRef
143.
go back to reference Guenthner CJ, Miyamichi K, Yang HH, Heller HC, Luo L. Permanent genetic access to transiently active neurons via TRAP: targeted recombination in active populations. Neuron. 2013;78:773–84.PubMedPubMedCentralCrossRef Guenthner CJ, Miyamichi K, Yang HH, Heller HC, Luo L. Permanent genetic access to transiently active neurons via TRAP: targeted recombination in active populations. Neuron. 2013;78:773–84.PubMedPubMedCentralCrossRef
144.
go back to reference Mitchell AS, Czajkowski R, Zhang N, Jeffery K, Nelson AJD. Retrosplenial cortex and its role in spatial cognition. Brain Neurosci Adv. 2018;2:2398212818757098.PubMedPubMedCentralCrossRef Mitchell AS, Czajkowski R, Zhang N, Jeffery K, Nelson AJD. Retrosplenial cortex and its role in spatial cognition. Brain Neurosci Adv. 2018;2:2398212818757098.PubMedPubMedCentralCrossRef
145.
go back to reference Frankland PW, Bontempi B. The organization of recent and remote memories. Nat Rev Neurosci. 2005;6:119–30.PubMedCrossRef Frankland PW, Bontempi B. The organization of recent and remote memories. Nat Rev Neurosci. 2005;6:119–30.PubMedCrossRef
146.
go back to reference Miller AMP, Serrichio AC, Smith DM. Dual-factor representation of the environmental context in the retrosplenial cortex. Cereb. Cortex N. Y. N 1991 2020; Miller AMP, Serrichio AC, Smith DM. Dual-factor representation of the environmental context in the retrosplenial cortex. Cereb. Cortex N. Y. N 1991 2020;
147.
go back to reference Miller AMP, Mau W, Smith DM. Retrosplenial cortical representations of space and future goal locations develop with learning. Curr Biol CB. 2019;29:2083-2090.e4.PubMedCrossRef Miller AMP, Mau W, Smith DM. Retrosplenial cortical representations of space and future goal locations develop with learning. Curr Biol CB. 2019;29:2083-2090.e4.PubMedCrossRef
148.
go back to reference Nelson AJD, Powell AL, Holmes JD, Vann SD, Aggleton JP. What does spatial alternation tell us about retrosplenial cortex function? Front Behav Neurosci. 2015;9:126.PubMedPubMedCentralCrossRef Nelson AJD, Powell AL, Holmes JD, Vann SD, Aggleton JP. What does spatial alternation tell us about retrosplenial cortex function? Front Behav Neurosci. 2015;9:126.PubMedPubMedCentralCrossRef
149.
go back to reference Spiers HJ, Maguire EA. The neuroscience of remote spatial memory: a tale of two cities. Neuroscience. 2007;149:7–27.PubMedCrossRef Spiers HJ, Maguire EA. The neuroscience of remote spatial memory: a tale of two cities. Neuroscience. 2007;149:7–27.PubMedCrossRef
150.
go back to reference Wiltgen BJ, Sanders MJ, Anagnostaras SG, Sage JR, Fanselow MS. Context fear learning in the absence of the hippocampus. J Neurosci Off J Soc Neurosci. 2006;26:5484–91.CrossRef Wiltgen BJ, Sanders MJ, Anagnostaras SG, Sage JR, Fanselow MS. Context fear learning in the absence of the hippocampus. J Neurosci Off J Soc Neurosci. 2006;26:5484–91.CrossRef
151.
go back to reference Opalka AN, Huang W-Q, Liu J, Liang H, Wang DV. Hippocampal ripple coordinates retrosplenial inhibitory neurons during slow-wave sleep. Cell Rep. 2020;30:432-441.e3.PubMedPubMedCentralCrossRef Opalka AN, Huang W-Q, Liu J, Liang H, Wang DV. Hippocampal ripple coordinates retrosplenial inhibitory neurons during slow-wave sleep. Cell Rep. 2020;30:432-441.e3.PubMedPubMedCentralCrossRef
152.
go back to reference Pothuizen HHJ, Aggleton JP, Vann SD. Do rats with retrosplenial cortex lesions lack direction? Eur J Neurosci. 2008;28:2486–98.PubMedCrossRef Pothuizen HHJ, Aggleton JP, Vann SD. Do rats with retrosplenial cortex lesions lack direction? Eur J Neurosci. 2008;28:2486–98.PubMedCrossRef
Metadata
Title
Retrosplenial cortex in spatial memory: focus on immediate early genes mapping
Authors
Edyta Balcerek
Urszula Włodkowska
Rafał Czajkowski
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Molecular Brain / Issue 1/2021
Electronic ISSN: 1756-6606
DOI
https://doi.org/10.1186/s13041-021-00880-w

Other articles of this Issue 1/2021

Molecular Brain 1/2021 Go to the issue