Skip to main content
Top
Published in: Pediatric Cardiology 7/2015

01-10-2015 | Original Article

Association of TGFBR2 rs6785358 Polymorphism with Increased Risk of Congenital Ventricular Septal Defect in a Chinese Population

Authors: Xiang-Ting Li, Chang-Qing Shen, Rui Zhang, Ji-Kui Shi, Zong-Hong Li, Hong-Yu Liu, Bo Sun, Kai Wang, Li-Ru Yan

Published in: Pediatric Cardiology | Issue 7/2015

Login to get access

Abstract

Transforming growth factor beta receptor 2 (TGFBR2) plays a central role in normal heart development, and we investigated whether TGFBR2 polymorphism confers the risk of congenital ventricular septal defect (CVSD). The case–control study included 115 CVSD children and 188 healthy children in a Chinese population. TGFBR2 rs6785358 polymorphism was genotyped with polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP). Enzyme-linked immunoassay (ELISA) was used to detect serum TGFBR2 levels. The genotype and allele frequency of TGFBR2 rs6785358 were significantly higher in the CVSD group than in the controls (all P < 0.05). The G allele carriers were associated with increased CVSD risk compared with the A allele carriers in CVSD group (OR 3.503, 95 % CI 2.670–4.596). Stratified analysis by gender revealed that the TGFBR2 rs6785358 genotype and allele frequency were significantly different between the CVSD case and controls, in both the male subgroup and the female subgroup (all P < 0.001). The G allele carriers were more susceptible to CVSD risk than the A allele carriers in both the male subgroup (OR 9.096, 95 % CI 5.398–15.33) and the female subgroup (OR 3.148, 95 % CI 1.764–5.618). Logistic regression analysis revealed that age, gender and genotype were associated with the risk of CVSD (all P < 0.05). The study findings revealed that TGFBR2 rs6785358 polymorphism contributes to CVSD susceptibility, and the G allele may increase the risk of CVSD.
Literature
1.
go back to reference Alverson CJ, Strickland MJ, Gilboa SM, Correa A (2011) Maternal smoking and congenital heart defects in the Baltimore-Washington Infant Study. Pediatrics 127(3):e647–e653CrossRefPubMed Alverson CJ, Strickland MJ, Gilboa SM, Correa A (2011) Maternal smoking and congenital heart defects in the Baltimore-Washington Infant Study. Pediatrics 127(3):e647–e653CrossRefPubMed
2.
go back to reference Azhar M, Runyan RB, Gard C, Sanford LP, Miller ML, Andringa A et al (2009) Ligand-specific function of transforming growth factor beta in epithelial-mesenchymal transition in heart development. Dev Dyn 238(2):431–442PubMedCentralCrossRefPubMed Azhar M, Runyan RB, Gard C, Sanford LP, Miller ML, Andringa A et al (2009) Ligand-specific function of transforming growth factor beta in epithelial-mesenchymal transition in heart development. Dev Dyn 238(2):431–442PubMedCentralCrossRefPubMed
3.
go back to reference Azhar M, Brown K, Gard C, Chen H, Rajan S, Elliott DA et al (2011) Transforming growth factor Beta2 is required for valve remodeling during heart development. Dev Dyn 240(9):2127–2141PubMedCentralCrossRefPubMed Azhar M, Brown K, Gard C, Chen H, Rajan S, Elliott DA et al (2011) Transforming growth factor Beta2 is required for valve remodeling during heart development. Dev Dyn 240(9):2127–2141PubMedCentralCrossRefPubMed
4.
go back to reference Barnett JV, Desgrosellier JS (2003) Early events in valvulogenesis: a signaling perspective. Birth Defects Res C Embryo Today 69(1):58–72CrossRefPubMed Barnett JV, Desgrosellier JS (2003) Early events in valvulogenesis: a signaling perspective. Birth Defects Res C Embryo Today 69(1):58–72CrossRefPubMed
5.
go back to reference Bettinelli AL, Mulder TJ, Funke BH, Lafferty KA, Longo SA, Niyazov DM (2013) Familial ebstein anomaly, left ventricular hypertrabeculation, and ventricular septal defect associated with a MYH7 mutation. Am J Med Genet A 161A(12):3187–3190CrossRefPubMed Bettinelli AL, Mulder TJ, Funke BH, Lafferty KA, Longo SA, Niyazov DM (2013) Familial ebstein anomaly, left ventricular hypertrabeculation, and ventricular septal defect associated with a MYH7 mutation. Am J Med Genet A 161A(12):3187–3190CrossRefPubMed
6.
go back to reference Bhowmick NA, Chytil A, Plieth D, Gorska AE, Dumont N, Shappell S et al (2004) TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 303(5659):848–851CrossRefPubMed Bhowmick NA, Chytil A, Plieth D, Gorska AE, Dumont N, Shappell S et al (2004) TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 303(5659):848–851CrossRefPubMed
7.
go back to reference Boyer AS, Runyan RB (2001) TGFbeta Type III and TGFbeta Type II receptors have distinct activities during epithelial-mesenchymal cell transformation in the embryonic heart. Dev Dyn 221(4):454–459CrossRefPubMed Boyer AS, Runyan RB (2001) TGFbeta Type III and TGFbeta Type II receptors have distinct activities during epithelial-mesenchymal cell transformation in the embryonic heart. Dev Dyn 221(4):454–459CrossRefPubMed
8.
go back to reference Boyer AS, Ayerinskas II, Vincent EB, McKinney LA, Weeks DL, Runyan RB (1999) TGFbeta2 and TGFbeta3 have separate and sequential activities during epithelial-mesenchymal cell transformation in the embryonic heart. Dev Biol 208(2):530–545CrossRefPubMed Boyer AS, Ayerinskas II, Vincent EB, McKinney LA, Weeks DL, Runyan RB (1999) TGFbeta2 and TGFbeta3 have separate and sequential activities during epithelial-mesenchymal cell transformation in the embryonic heart. Dev Biol 208(2):530–545CrossRefPubMed
9.
go back to reference Buskohl PR, Sun MJ, Thompson RP, Butcher JT (2012) Serotonin potentiates transforming growth factor-beta3 induced biomechanical remodeling in avian embryonic atrioventricular valves. PLoS One 7(8):e42527PubMedCentralCrossRefPubMed Buskohl PR, Sun MJ, Thompson RP, Butcher JT (2012) Serotonin potentiates transforming growth factor-beta3 induced biomechanical remodeling in avian embryonic atrioventricular valves. PLoS One 7(8):e42527PubMedCentralCrossRefPubMed
11.
go back to reference Cheifetz S, Andres JL, Massague J (1988) The transforming growth factor-beta receptor type III is a membrane proteoglycan. Domain structure of the receptor. J Biol Chem 263(32):16984–16991PubMed Cheifetz S, Andres JL, Massague J (1988) The transforming growth factor-beta receptor type III is a membrane proteoglycan. Domain structure of the receptor. J Biol Chem 263(32):16984–16991PubMed
12.
go back to reference Chiu YN, Norris RA, Mahler G, Recknagel A, Butcher JT (2010) Transforming growth factor beta, bone morphogenetic protein, and vascular endothelial growth factor mediate phenotype maturation and tissue remodeling by embryonic valve progenitor cells: relevance for heart valve tissue engineering. Tissue Eng Part A 16(11):3375–3383PubMedCentralCrossRefPubMed Chiu YN, Norris RA, Mahler G, Recknagel A, Butcher JT (2010) Transforming growth factor beta, bone morphogenetic protein, and vascular endothelial growth factor mediate phenotype maturation and tissue remodeling by embryonic valve progenitor cells: relevance for heart valve tissue engineering. Tissue Eng Part A 16(11):3375–3383PubMedCentralCrossRefPubMed
13.
go back to reference Chua KN, Poon KL, Lim J, Sim WJ, Huang RY, Thiery JP (2011) Target cell movement in tumor and cardiovascular diseases based on the epithelial-mesenchymal transition concept. Adv Drug Deliv Rev 63(8):558–567CrossRefPubMed Chua KN, Poon KL, Lim J, Sim WJ, Huang RY, Thiery JP (2011) Target cell movement in tumor and cardiovascular diseases based on the epithelial-mesenchymal transition concept. Adv Drug Deliv Rev 63(8):558–567CrossRefPubMed
14.
go back to reference Correa A, Marcinkevage J (2013) Prepregnancy obesity and the risk of birth defects: an update. Nutr Rev 71(Suppl 1):S68–S77CrossRefPubMed Correa A, Marcinkevage J (2013) Prepregnancy obesity and the risk of birth defects: an update. Nutr Rev 71(Suppl 1):S68–S77CrossRefPubMed
15.
go back to reference de Caestecker M (2004) The transforming growth factor-beta superfamily of receptors. Cytokine Growth Factor Rev 15(1):1–11CrossRefPubMed de Caestecker M (2004) The transforming growth factor-beta superfamily of receptors. Cytokine Growth Factor Rev 15(1):1–11CrossRefPubMed
16.
go back to reference Dolk H, Loane M, Garne E, European Surveillance of Congenital Anomalies Working G (2011) Congenital heart defects in Europe: prevalence and perinatal mortality, 2000 to 2005. Circulation 123(8):841–849CrossRefPubMed Dolk H, Loane M, Garne E, European Surveillance of Congenital Anomalies Working G (2011) Congenital heart defects in Europe: prevalence and perinatal mortality, 2000 to 2005. Circulation 123(8):841–849CrossRefPubMed
17.
go back to reference Fahed AC, Gelb BD, Seidman JG, Seidman CE (2013) Genetics of congenital heart disease: the glass half empty. Circ Res 112(4):707–720CrossRefPubMed Fahed AC, Gelb BD, Seidman JG, Seidman CE (2013) Genetics of congenital heart disease: the glass half empty. Circ Res 112(4):707–720CrossRefPubMed
18.
go back to reference Girdauskas E, Schulz S, Borger MA, Mierzwa M, Kuntze T (2011) Transforming growth factor-beta receptor type II mutation in a patient with bicuspid aortic valve disease and intraoperative aortic dissection. Ann Thorac Surg 91(5):e70–e71CrossRefPubMed Girdauskas E, Schulz S, Borger MA, Mierzwa M, Kuntze T (2011) Transforming growth factor-beta receptor type II mutation in a patient with bicuspid aortic valve disease and intraoperative aortic dissection. Ann Thorac Surg 91(5):e70–e71CrossRefPubMed
19.
go back to reference Glas J, Seiderer J, Bues S, Stallhofer J, Fries C, Olszak T et al (2013) IRGM variants and susceptibility to inflammatory bowel disease in the German population. PLoS One 8(1):e54338PubMedCentralCrossRefPubMed Glas J, Seiderer J, Bues S, Stallhofer J, Fries C, Olszak T et al (2013) IRGM variants and susceptibility to inflammatory bowel disease in the German population. PLoS One 8(1):e54338PubMedCentralCrossRefPubMed
20.
go back to reference Greutmann M, Tobler D (2012) Changing epidemiology and mortality in adult congenital heart disease: looking into the future. Future Cardiol 8(2):171–177CrossRefPubMed Greutmann M, Tobler D (2012) Changing epidemiology and mortality in adult congenital heart disease: looking into the future. Future Cardiol 8(2):171–177CrossRefPubMed
21.
go back to reference Gutcher I, Donkor MK, Ma Q, Rudensky AY, Flavell RA, Li MO (2011) Autocrine transforming growth factor-beta1 promotes in vivo Th17 cell differentiation. Immunity 34(3):396–408PubMedCentralCrossRefPubMed Gutcher I, Donkor MK, Ma Q, Rudensky AY, Flavell RA, Li MO (2011) Autocrine transforming growth factor-beta1 promotes in vivo Th17 cell differentiation. Immunity 34(3):396–408PubMedCentralCrossRefPubMed
22.
go back to reference Heldin CH, Miyazono K, ten Dijke P (1997) TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature 390(6659):465–471CrossRefPubMed Heldin CH, Miyazono K, ten Dijke P (1997) TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature 390(6659):465–471CrossRefPubMed
24.
go back to reference Hu Z, Shi Y, Mo X, Xu J, Zhao B, Lin Y et al (2013) A genome-wide association study identifies two risk loci for congenital heart malformations in Han Chinese populations. Nat Genet 45(7):818–821CrossRefPubMed Hu Z, Shi Y, Mo X, Xu J, Zhao B, Lin Y et al (2013) A genome-wide association study identifies two risk loci for congenital heart malformations in Han Chinese populations. Nat Genet 45(7):818–821CrossRefPubMed
25.
go back to reference Jaffe M, Sesti C, Washington IM, Du L, Dronadula N, Chin MT et al (2012) Transforming growth factor-beta signaling in myogenic cells regulates vascular morphogenesis, differentiation, and matrix synthesis. Arterioscler Thromb Vasc Biol 32(1):e1–e11CrossRefPubMed Jaffe M, Sesti C, Washington IM, Du L, Dronadula N, Chin MT et al (2012) Transforming growth factor-beta signaling in myogenic cells regulates vascular morphogenesis, differentiation, and matrix synthesis. Arterioscler Thromb Vasc Biol 32(1):e1–e11CrossRefPubMed
26.
go back to reference Jiao K, Langworthy M, Batts L, Brown CB, Moses HL, Baldwin HS (2006) Tgfbeta signaling is required for atrioventricular cushion mesenchyme remodeling during in vivo cardiac development. Development 133(22):4585–4593CrossRefPubMed Jiao K, Langworthy M, Batts L, Brown CB, Moses HL, Baldwin HS (2006) Tgfbeta signaling is required for atrioventricular cushion mesenchyme remodeling during in vivo cardiac development. Development 133(22):4585–4593CrossRefPubMed
27.
go back to reference Knapczyk-Stwora K, Grzesiak M, Duda M, Koziorowski M, Galas J, Slomczynska M (2014) TGFbeta (transforming growth factor beta) superfamily members and their receptors in the fetal porcine ovaries: effect of prenatal flutamide treatment. Folia Histochem Cytobiol 52(4):317–325CrossRefPubMed Knapczyk-Stwora K, Grzesiak M, Duda M, Koziorowski M, Galas J, Slomczynska M (2014) TGFbeta (transforming growth factor beta) superfamily members and their receptors in the fetal porcine ovaries: effect of prenatal flutamide treatment. Folia Histochem Cytobiol 52(4):317–325CrossRefPubMed
28.
go back to reference Kruithof BP, Duim SN, Moerkamp AT, Goumans MJ (2012) TGFbeta and BMP signaling in cardiac cushion formation: lessons from mice and chicken. Differentiation 84(1):89–102CrossRefPubMed Kruithof BP, Duim SN, Moerkamp AT, Goumans MJ (2012) TGFbeta and BMP signaling in cardiac cushion formation: lessons from mice and chicken. Differentiation 84(1):89–102CrossRefPubMed
29.
go back to reference Lage K, Greenway SC, Rosenfeld JA, Wakimoto H, Gorham JM, Segre AV et al (2012) Genetic and environmental risk factors in congenital heart disease functionally converge in protein networks driving heart development. Proc Natl Acad Sci USA 109(35):14035–14040PubMedCentralCrossRefPubMed Lage K, Greenway SC, Rosenfeld JA, Wakimoto H, Gorham JM, Segre AV et al (2012) Genetic and environmental risk factors in congenital heart disease functionally converge in protein networks driving heart development. Proc Natl Acad Sci USA 109(35):14035–14040PubMedCentralCrossRefPubMed
30.
go back to reference Langlois D, Hneino M, Bouazza L, Parlakian A, Sasaki T, Bricca G et al (2010) Conditional inactivation of TGF-beta type II receptor in smooth muscle cells and epicardium causes lethal aortic and cardiac defects. Transgenic Res 19(6):1069–1082CrossRefPubMed Langlois D, Hneino M, Bouazza L, Parlakian A, Sasaki T, Bricca G et al (2010) Conditional inactivation of TGF-beta type II receptor in smooth muscle cells and epicardium causes lethal aortic and cardiac defects. Transgenic Res 19(6):1069–1082CrossRefPubMed
31.
go back to reference Lindinger A, Schwedler G, Hense HW (2010) Prevalence of congenital heart defects in newborns in Germany: results of the first registration year of the PAN Study (July 2006–June 2007). Klin Padiatr 222(5):321–326CrossRefPubMed Lindinger A, Schwedler G, Hense HW (2010) Prevalence of congenital heart defects in newborns in Germany: results of the first registration year of the PAN Study (July 2006–June 2007). Klin Padiatr 222(5):321–326CrossRefPubMed
32.
go back to reference Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V et al (2012) Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380(9859):2095–2128CrossRefPubMed Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V et al (2012) Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380(9859):2095–2128CrossRefPubMed
33.
go back to reference Mantel PY, Schmidt-Weber CB (2011) Transforming growth factor-beta: recent advances on its role in immune tolerance. Methods Mol Biol 677:303–338CrossRefPubMed Mantel PY, Schmidt-Weber CB (2011) Transforming growth factor-beta: recent advances on its role in immune tolerance. Methods Mol Biol 677:303–338CrossRefPubMed
34.
go back to reference Marelli AJ, Ionescu-Ittu R, Mackie AS, Guo L, Dendukuri N, Kaouache M (2014) Lifetime prevalence of congenital heart disease in the general population from 2000 to 2010. Circulation 130(9):749–756CrossRefPubMed Marelli AJ, Ionescu-Ittu R, Mackie AS, Guo L, Dendukuri N, Kaouache M (2014) Lifetime prevalence of congenital heart disease in the general population from 2000 to 2010. Circulation 130(9):749–756CrossRefPubMed
35.
go back to reference Martin M, Rodriguez I, Palacin M, Rios-Gomez E, Coto E (2011) TGFBR2 gene mutational spectrum in aortic pathology. J Am Coll Cardiol 57(4):518–519 author reply 519 CrossRefPubMed Martin M, Rodriguez I, Palacin M, Rios-Gomez E, Coto E (2011) TGFBR2 gene mutational spectrum in aortic pathology. J Am Coll Cardiol 57(4):518–519 author reply 519 CrossRefPubMed
37.
go back to reference Massague J, Blain SW, Lo RS (2000) TGFbeta signaling in growth control, cancer, and heritable disorders. Cell 103(2):295–309CrossRefPubMed Massague J, Blain SW, Lo RS (2000) TGFbeta signaling in growth control, cancer, and heritable disorders. Cell 103(2):295–309CrossRefPubMed
38.
go back to reference Matyas G, Arnold E, Carrel T, Baumgartner D, Boileau C, Berger W et al (2006) Identification and in silico analyses of novel TGFBR1 and TGFBR2 mutations in Marfan syndrome-related disorders. Hum Mutat 27(8):760–769CrossRefPubMed Matyas G, Arnold E, Carrel T, Baumgartner D, Boileau C, Berger W et al (2006) Identification and in silico analyses of novel TGFBR1 and TGFBR2 mutations in Marfan syndrome-related disorders. Hum Mutat 27(8):760–769CrossRefPubMed
39.
go back to reference Mercado-Pimentel ME, Runyan RB (2007) Multiple transforming growth factor-beta isoforms and receptors function during epithelial-mesenchymal cell transformation in the embryonic heart. Cells Tissues Organs 185(1–3):146–156CrossRefPubMed Mercado-Pimentel ME, Runyan RB (2007) Multiple transforming growth factor-beta isoforms and receptors function during epithelial-mesenchymal cell transformation in the embryonic heart. Cells Tissues Organs 185(1–3):146–156CrossRefPubMed
40.
go back to reference Mizuguchi T, Collod-Beroud G, Akiyama T, Abifadel M, Harada N, Morisaki T et al (2004) Heterozygous TGFBR2 mutations in Marfan syndrome. Nat Genet 36(8):855–860PubMedCentralCrossRefPubMed Mizuguchi T, Collod-Beroud G, Akiyama T, Abifadel M, Harada N, Morisaki T et al (2004) Heterozygous TGFBR2 mutations in Marfan syndrome. Nat Genet 36(8):855–860PubMedCentralCrossRefPubMed
41.
go back to reference Nakajima Y, Yamagishi T, Hokari S, Nakamura H (2000) Mechanisms involved in valvuloseptal endocardial cushion formation in early cardiogenesis: roles of transforming growth factor (TGF)-beta and bone morphogenetic protein (BMP). Anat Rec 258(2):119–127CrossRefPubMed Nakajima Y, Yamagishi T, Hokari S, Nakamura H (2000) Mechanisms involved in valvuloseptal endocardial cushion formation in early cardiogenesis: roles of transforming growth factor (TGF)-beta and bone morphogenetic protein (BMP). Anat Rec 258(2):119–127CrossRefPubMed
42.
go back to reference Patel SS, Burns TL, Botto LD, Riehle-Colarusso TJ, Lin AE, Shaw GM et al (2012) Analysis of selected maternal exposures and non-syndromic atrioventricular septal defects in the National Birth Defects Prevention Study, 1997–2005. Am J Med Genet A 158A(10):2447–2455CrossRefPubMed Patel SS, Burns TL, Botto LD, Riehle-Colarusso TJ, Lin AE, Shaw GM et al (2012) Analysis of selected maternal exposures and non-syndromic atrioventricular septal defects in the National Birth Defects Prevention Study, 1997–2005. Am J Med Genet A 158A(10):2447–2455CrossRefPubMed
44.
go back to reference Person AD, Klewer SE, Runyan RB (2005) Cell biology of cardiac cushion development. Int Rev Cytol 243:287–335CrossRefPubMed Person AD, Klewer SE, Runyan RB (2005) Cell biology of cardiac cushion development. Int Rev Cytol 243:287–335CrossRefPubMed
45.
go back to reference Robson A, Allinson KR, Anderson RH, Henderson DJ, Arthur HM (2010) The TGFbeta type II receptor plays a critical role in the endothelial cells during cardiac development. Dev Dyn 239(9):2435–2442CrossRefPubMed Robson A, Allinson KR, Anderson RH, Henderson DJ, Arthur HM (2010) The TGFbeta type II receptor plays a critical role in the endothelial cells during cardiac development. Dev Dyn 239(9):2435–2442CrossRefPubMed
46.
go back to reference Rodriguez FH 3rd, Moodie DS, Parekh DR, Franklin WJ, Morales DL, Zafar F et al (2011) Outcomes of hospitalization in adults in the United States with atrial septal defect, ventricular septal defect, and atrioventricular septal defect. Am J Cardiol 108(2):290–293CrossRefPubMed Rodriguez FH 3rd, Moodie DS, Parekh DR, Franklin WJ, Morales DL, Zafar F et al (2011) Outcomes of hospitalization in adults in the United States with atrial septal defect, ventricular septal defect, and atrioventricular septal defect. Am J Cardiol 108(2):290–293CrossRefPubMed
47.
go back to reference Santibanez JF, Quintanilla M, Bernabeu C (2011) TGF-beta/TGF-beta receptor system and its role in physiological and pathological conditions. Clin Sci 121(6):233–251CrossRefPubMed Santibanez JF, Quintanilla M, Bernabeu C (2011) TGF-beta/TGF-beta receptor system and its role in physiological and pathological conditions. Clin Sci 121(6):233–251CrossRefPubMed
48.
go back to reference Savagner P (2010) The epithelial-mesenchymal transition (EMT) phenomenon. Ann Oncol 21(Suppl 7):vii89–vii92PubMed Savagner P (2010) The epithelial-mesenchymal transition (EMT) phenomenon. Ann Oncol 21(Suppl 7):vii89–vii92PubMed
49.
go back to reference Shi Y, Massague J (2003) Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113(6):685–700CrossRefPubMed Shi Y, Massague J (2003) Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113(6):685–700CrossRefPubMed
50.
go back to reference Stevens MV, Broka DM, Parker P, Rogowitz E, Vaillancourt RR, Camenisch TD (2008) MEKK3 initiates transforming growth factor beta 2-dependent epithelial-to-mesenchymal transition during endocardial cushion morphogenesis. Circ Res 103(12):1430–1440PubMedCentralCrossRefPubMed Stevens MV, Broka DM, Parker P, Rogowitz E, Vaillancourt RR, Camenisch TD (2008) MEKK3 initiates transforming growth factor beta 2-dependent epithelial-to-mesenchymal transition during endocardial cushion morphogenesis. Circ Res 103(12):1430–1440PubMedCentralCrossRefPubMed
51.
go back to reference Takenoshita S, Hagiwara K, Nagashima M, Gemma A, Bennett WP, Harris CC (1996) The genomic structure of the gene encoding the human transforming growth factor beta type II receptor (TGF-beta RII). Genomics 36(2):341–344CrossRefPubMed Takenoshita S, Hagiwara K, Nagashima M, Gemma A, Bennett WP, Harris CC (1996) The genomic structure of the gene encoding the human transforming growth factor beta type II receptor (TGF-beta RII). Genomics 36(2):341–344CrossRefPubMed
52.
go back to reference Thiery JP, Acloque H, Huang RY, Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139(5):871–890CrossRefPubMed Thiery JP, Acloque H, Huang RY, Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139(5):871–890CrossRefPubMed
53.
go back to reference Townsend TA, Robinson JY, How T, DeLaughter DM, Blobe GC, Barnett JV (2012) Endocardial cell epithelial-mesenchymal transformation requires Type III TGFbeta receptor interaction with GIPC. Cell Signal 24(1):247–256PubMedCentralCrossRefPubMed Townsend TA, Robinson JY, How T, DeLaughter DM, Blobe GC, Barnett JV (2012) Endocardial cell epithelial-mesenchymal transformation requires Type III TGFbeta receptor interaction with GIPC. Cell Signal 24(1):247–256PubMedCentralCrossRefPubMed
54.
go back to reference van der Bom T, Zomer AC, Zwinderman AH, Meijboom FJ, Bouma BJ, Mulder BJ (2011) The changing epidemiology of congenital heart disease. Nat Rev Cardiol 8(1):50–60CrossRefPubMed van der Bom T, Zomer AC, Zwinderman AH, Meijboom FJ, Bouma BJ, Mulder BJ (2011) The changing epidemiology of congenital heart disease. Nat Rev Cardiol 8(1):50–60CrossRefPubMed
55.
go back to reference van der Linde D, Konings EE, Slager MA, Witsenburg M, Helbing WA, Takkenberg JJ et al (2011) Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis. J Am Coll Cardiol 58(21):2241–2247CrossRefPubMed van der Linde D, Konings EE, Slager MA, Witsenburg M, Helbing WA, Takkenberg JJ et al (2011) Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis. J Am Coll Cardiol 58(21):2241–2247CrossRefPubMed
56.
go back to reference Wang J, Luo XJ, Xin YF, Liu Y, Liu ZM, Wang Q et al (2012) Novel GATA6 mutations associated with congenital ventricular septal defect or tetralogy of fallot. DNA Cell Biol 31(11):1610–1617PubMedCentralCrossRefPubMed Wang J, Luo XJ, Xin YF, Liu Y, Liu ZM, Wang Q et al (2012) Novel GATA6 mutations associated with congenital ventricular septal defect or tetralogy of fallot. DNA Cell Biol 31(11):1610–1617PubMedCentralCrossRefPubMed
57.
go back to reference Wik E, Raeder MB, Krakstad C, Trovik J, Birkeland E, Hoivik EA et al (2013) Lack of estrogen receptor-alpha is associated with epithelial-mesenchymal transition and PI3K alterations in endometrial carcinoma. Clin Cancer Res 19(5):1094–1105CrossRefPubMed Wik E, Raeder MB, Krakstad C, Trovik J, Birkeland E, Hoivik EA et al (2013) Lack of estrogen receptor-alpha is associated with epithelial-mesenchymal transition and PI3K alterations in endometrial carcinoma. Clin Cancer Res 19(5):1094–1105CrossRefPubMed
58.
go back to reference Xie J, Chen Y, Li H, Zhou B, Rao L (2012) Association between rs6658835 polymorphism of transforming growth factor beta 2 gene and congenital heart diseases in Chinese Han population. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 29(2):210–213PubMed Xie J, Chen Y, Li H, Zhou B, Rao L (2012) Association between rs6658835 polymorphism of transforming growth factor beta 2 gene and congenital heart diseases in Chinese Han population. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 29(2):210–213PubMed
59.
go back to reference Yamagishi T, Ando K, Nakamura H (2009) Roles of TGFbeta and BMP during valvulo-septal endocardial cushion formation. Anat Sci Int 84(3):77–87CrossRefPubMed Yamagishi T, Ando K, Nakamura H (2009) Roles of TGFbeta and BMP during valvulo-septal endocardial cushion formation. Anat Sci Int 84(3):77–87CrossRefPubMed
60.
go back to reference Yao G, Yin M, Lian J, Tian H, Liu L, Li X et al (2010) MicroRNA-224 is involved in transforming growth factor-beta-mediated mouse granulosa cell proliferation and granulosa cell function by targeting Smad4. Mol Endocrinol 24(3):540–551CrossRefPubMed Yao G, Yin M, Lian J, Tian H, Liu L, Li X et al (2010) MicroRNA-224 is involved in transforming growth factor-beta-mediated mouse granulosa cell proliferation and granulosa cell function by targeting Smad4. Mol Endocrinol 24(3):540–551CrossRefPubMed
61.
go back to reference Zhu X, Deng X, Huang G, Wang J, Yang J, Chen S et al (2014) A novel mutation of Hyaluronan synthase 2 gene in Chinese children with ventricular septal defect. PLoS One 9(2):e87437PubMedCentralCrossRefPubMed Zhu X, Deng X, Huang G, Wang J, Yang J, Chen S et al (2014) A novel mutation of Hyaluronan synthase 2 gene in Chinese children with ventricular septal defect. PLoS One 9(2):e87437PubMedCentralCrossRefPubMed
Metadata
Title
Association of TGFBR2 rs6785358 Polymorphism with Increased Risk of Congenital Ventricular Septal Defect in a Chinese Population
Authors
Xiang-Ting Li
Chang-Qing Shen
Rui Zhang
Ji-Kui Shi
Zong-Hong Li
Hong-Yu Liu
Bo Sun
Kai Wang
Li-Ru Yan
Publication date
01-10-2015
Publisher
Springer US
Published in
Pediatric Cardiology / Issue 7/2015
Print ISSN: 0172-0643
Electronic ISSN: 1432-1971
DOI
https://doi.org/10.1007/s00246-015-1189-2

Other articles of this Issue 7/2015

Pediatric Cardiology 7/2015 Go to the issue