Skip to main content
Top
Published in: Cardiovascular Diabetology 1/2017

Open Access 01-12-2017 | Original article

Association between metformin use and below-the-knee arterial calcification score in type 2 diabetic patients

Authors: Aurélien Mary, Agnes Hartemann, Sophie Liabeuf, Carole Elodie Aubert, Salim Kemel, Joe Elie Salem, Philippe Cluzel, Aurélie Lenglet, Ziad A. Massy, Jean-Daniel Lalau, Romuald Mentaverri, Olivier Bourron, Saïd Kamel

Published in: Cardiovascular Diabetology | Issue 1/2017

Login to get access

Abstract

Background

Vascular calcification (VC) is common in type 2 diabetes, and is associated with cardiovascular complications. Recent preclinical data suggest that metformin inhibits VC both in vitro and in animal models. However, metformin’s effects in patients with diabetic VC have not previously been characterized. The present study investigated the association between metformin use and lower-limb arterial calcification in patients with type 2 diabetes and high cardiovascular risk.

Methods

The DIACART cross-sectional cohort study included 198 patients with type 2 diabetes but without severe chronic kidney disease. Below-the-knee calcification scores were assessed by computed tomography and supplemented by colour duplex ultrasonography. Data on anti-diabetic drugs were carefully collected from the patients’ medical records and during patient interviews. Biochemical and clinical data were studied as potential confounding factors.

Results

Metformin-treated patients had a significantly lower calcification score than metformin-free patients (mean ± standard deviation: 2033 ± 4514 and 4684 ± 9291, respectively; p = 0.01). A univariate analysis showed that metformin was associated with a significantly lower prevalence of severe below-the-knee arterial calcification (p = 0.02). VC was not significantly associated with the use of other antidiabetic drugs, including sulfonylureas, insulin, gliptin, and glucagon like peptide-1 analogues. A multivariate logistic regression analysis indicated that the association between metformin use and calcification score (odds ratio [95% confidence interval] = 0.33 [0.11–0.98]; p = 0.045) was independent of age, gender, tobacco use, renal function, previous cardiovascular disease, diabetes duration, neuropathy, retinopathy, HbA1c levels, and inflammation.

Conclusions

In patients with type 2 diabetes, metformin use was independently associated with a lower below-the-knee arterial calcification score. This association may contribute to metformin’s well-known vascular protective effect. Further prospective investigations of metformin’s potential ability to inhibit VC in patients with and without type 2 diabetes are now needed to confirm these results.
Literature
1.
go back to reference Rennenberg RJMW, Kessels AGH, Schurgers LJ, van Engelshoven JMA, de Leeuw PW, Kroon AA. Vascular calcifications as a marker of increased cardiovascular risk: a meta-analysis. Vasc Health Risk Manag. 2009;5:185–97.CrossRefPubMedPubMedCentral Rennenberg RJMW, Kessels AGH, Schurgers LJ, van Engelshoven JMA, de Leeuw PW, Kroon AA. Vascular calcifications as a marker of increased cardiovascular risk: a meta-analysis. Vasc Health Risk Manag. 2009;5:185–97.CrossRefPubMedPubMedCentral
2.
go back to reference Agarwal S, Cox AJ, Herrington DM, Jorgensen NW, Xu J, Freedman BI, et al. Coronary calcium score predicts cardiovascular mortality in diabetes: diabetes heart study. Diabetes Care. 2013;36:972–7.CrossRefPubMedPubMedCentral Agarwal S, Cox AJ, Herrington DM, Jorgensen NW, Xu J, Freedman BI, et al. Coronary calcium score predicts cardiovascular mortality in diabetes: diabetes heart study. Diabetes Care. 2013;36:972–7.CrossRefPubMedPubMedCentral
3.
go back to reference Kovacic JC, Fuster V. Vascular calcification, diabetes and cardiovascular disease—connecting the dots. JACC Cardiovasc Imag. 2012;5:367–9.CrossRef Kovacic JC, Fuster V. Vascular calcification, diabetes and cardiovascular disease—connecting the dots. JACC Cardiovasc Imag. 2012;5:367–9.CrossRef
4.
go back to reference Chen NX, Moe SM. Arterial calcification in diabetes. Curr Diabetes Rep. 2003;3:28–32.CrossRef Chen NX, Moe SM. Arterial calcification in diabetes. Curr Diabetes Rep. 2003;3:28–32.CrossRef
6.
go back to reference Guzman RJ, Brinkley DM, Schumacher PM, Donahue RMJ, Beavers H, Qin X. Tibial artery calcification as a marker of amputation risk in patients with peripheral arterial disease. J Am Coll Cardiol. 2008;51:1967–74.CrossRefPubMedPubMedCentral Guzman RJ, Brinkley DM, Schumacher PM, Donahue RMJ, Beavers H, Qin X. Tibial artery calcification as a marker of amputation risk in patients with peripheral arterial disease. J Am Coll Cardiol. 2008;51:1967–74.CrossRefPubMedPubMedCentral
7.
8.
go back to reference Ho CY, Shanahan CM. Medial arterial calcification: an overlooked player in peripheral arterial disease. Biol: Arterioscler Thromb Vasc; 2016. Ho CY, Shanahan CM. Medial arterial calcification: an overlooked player in peripheral arterial disease. Biol: Arterioscler Thromb Vasc; 2016.
9.
go back to reference Fadini GP, Albiero M, Menegazzo L, Boscaro E, Vigili de Kreutzenberg S, Agostini C, et al. Widespread increase in myeloid calcifying cells contributes to ectopic vascular calcification in type 2 diabetes. Circ Res. 2011;108:1112–21.CrossRefPubMed Fadini GP, Albiero M, Menegazzo L, Boscaro E, Vigili de Kreutzenberg S, Agostini C, et al. Widespread increase in myeloid calcifying cells contributes to ectopic vascular calcification in type 2 diabetes. Circ Res. 2011;108:1112–21.CrossRefPubMed
10.
go back to reference Li H, Jiang L-S, Dai L-Y. High glucose potentiates collagen synthesis and bone morphogenetic protein-2-induced early osteoblast gene expression in rat spinal ligament cells. Endocrinology. 2010;151:63–74.CrossRefPubMed Li H, Jiang L-S, Dai L-Y. High glucose potentiates collagen synthesis and bone morphogenetic protein-2-induced early osteoblast gene expression in rat spinal ligament cells. Endocrinology. 2010;151:63–74.CrossRefPubMed
11.
go back to reference Tanikawa T, Okada Y, Tanikawa R, Tanaka Y. Advanced glycation end products induce calcification of vascular smooth muscle cells through RAGE/p38 MAPK. J Vasc Res. 2009;46:572–80.CrossRefPubMed Tanikawa T, Okada Y, Tanikawa R, Tanaka Y. Advanced glycation end products induce calcification of vascular smooth muscle cells through RAGE/p38 MAPK. J Vasc Res. 2009;46:572–80.CrossRefPubMed
12.
go back to reference Ribeiro-Oliveira A, Nogueira AI, Pereira RM, Boas WWV, dos Santos RAS, e Silva ACS. The renin–angiotensin system and diabetes: an update. Vasc Health Risk Manag. 2008;4:787–803.CrossRefPubMedPubMedCentral Ribeiro-Oliveira A, Nogueira AI, Pereira RM, Boas WWV, dos Santos RAS, e Silva ACS. The renin–angiotensin system and diabetes: an update. Vasc Health Risk Manag. 2008;4:787–803.CrossRefPubMedPubMedCentral
13.
go back to reference Fang Y, Ginsberg C, Sugatani T, Monier-Faugere M-C, Malluche H, Hruska KA. Early chronic kidney disease-mineral bone disorder stimulates vascular calcification. Kidney Int. 2014;85:142–50.CrossRefPubMed Fang Y, Ginsberg C, Sugatani T, Monier-Faugere M-C, Malluche H, Hruska KA. Early chronic kidney disease-mineral bone disorder stimulates vascular calcification. Kidney Int. 2014;85:142–50.CrossRefPubMed
14.
go back to reference Anand DV, Lim E, Darko D, Bassett P, Hopkins D, Lipkin D, et al. Determinants of progression of coronary artery calcification in type 2 diabetes role of glycemic control and inflammatory/vascular calcification markers. J Am Coll Cardiol. 2007;50:2218–25.CrossRefPubMed Anand DV, Lim E, Darko D, Bassett P, Hopkins D, Lipkin D, et al. Determinants of progression of coronary artery calcification in type 2 diabetes role of glycemic control and inflammatory/vascular calcification markers. J Am Coll Cardiol. 2007;50:2218–25.CrossRefPubMed
15.
go back to reference Carson AP, Steffes MW, Carr JJ, Kim Y, Gross MD, Carnethon MR, et al. Hemoglobin A1c and the progression of coronary artery calcification among adults without diabetes. Diabetes Care. 2015;38:66–71.CrossRefPubMed Carson AP, Steffes MW, Carr JJ, Kim Y, Gross MD, Carnethon MR, et al. Hemoglobin A1c and the progression of coronary artery calcification among adults without diabetes. Diabetes Care. 2015;38:66–71.CrossRefPubMed
16.
go back to reference Jung C-H, Rhee E-J, Kim K-J, Kim B-Y, Park SE, Chang Y, et al. Relationship of glycated hemoglobin A1c, coronary artery calcification and insulin resistance in males without diabetes. Arch Med Res. 2015;46:71–7.CrossRefPubMed Jung C-H, Rhee E-J, Kim K-J, Kim B-Y, Park SE, Chang Y, et al. Relationship of glycated hemoglobin A1c, coronary artery calcification and insulin resistance in males without diabetes. Arch Med Res. 2015;46:71–7.CrossRefPubMed
17.
go back to reference Ishimura E, Okuno S, Kitatani K, Kim M, Shoji T, Nakatani T, et al. Different risk factors for peripheral vascular calcification between diabetic and non-diabetic haemodialysis patients–importance of glycaemic control. Diabetologia. 2002;45:1446–8.CrossRefPubMed Ishimura E, Okuno S, Kitatani K, Kim M, Shoji T, Nakatani T, et al. Different risk factors for peripheral vascular calcification between diabetic and non-diabetic haemodialysis patients–importance of glycaemic control. Diabetologia. 2002;45:1446–8.CrossRefPubMed
18.
go back to reference Cao X, Li H, Tao H, Wu N, Yu L, Zhang D, et al. Metformin inhibits vascular calcification in female rat aortic smooth muscle cells via the AMPK-eNOS-NO pathway. Endocrinology. 2013;154:3680–9.CrossRefPubMed Cao X, Li H, Tao H, Wu N, Yu L, Zhang D, et al. Metformin inhibits vascular calcification in female rat aortic smooth muscle cells via the AMPK-eNOS-NO pathway. Endocrinology. 2013;154:3680–9.CrossRefPubMed
19.
go back to reference Zhang X, Xiao J, Li R, Qin X, Wang F, Mao Y, et al. Metformin alleviates vascular calcification induced by vitamin D3 plus nicotine in rats via the AMPK pathway. Vasc Pharmacol. 2016;81:83–90.CrossRef Zhang X, Xiao J, Li R, Qin X, Wang F, Mao Y, et al. Metformin alleviates vascular calcification induced by vitamin D3 plus nicotine in rats via the AMPK pathway. Vasc Pharmacol. 2016;81:83–90.CrossRef
20.
go back to reference Cai Z, Ding Y, Zhang M, Lu Q, Wu S, Zhu H, et al. Ablation of adenosine monophosphate-activated protein kinase α1 in vascular smooth muscle cells promotes diet-induced atherosclerotic calcification in vivo. Circ Res. 2016;119:422–33.CrossRefPubMed Cai Z, Ding Y, Zhang M, Lu Q, Wu S, Zhu H, et al. Ablation of adenosine monophosphate-activated protein kinase α1 in vascular smooth muscle cells promotes diet-induced atherosclerotic calcification in vivo. Circ Res. 2016;119:422–33.CrossRefPubMed
21.
go back to reference Bourron O, Aubert CE, Liabeuf S, Cluzel P, Lajat-Kiss F, Dadon M, et al. Below-knee arterial calcification in type 2 diabetes: association with receptor activator of nuclear factor κB ligand, osteoprotegerin, and neuropathy. J Clin Endocrinol Metab. 2014;99:4250–8.CrossRefPubMed Bourron O, Aubert CE, Liabeuf S, Cluzel P, Lajat-Kiss F, Dadon M, et al. Below-knee arterial calcification in type 2 diabetes: association with receptor activator of nuclear factor κB ligand, osteoprotegerin, and neuropathy. J Clin Endocrinol Metab. 2014;99:4250–8.CrossRefPubMed
22.
go back to reference Levey AS, Coresh J, Greene T, Marsh J, Stevens LA, Kusek JW, et al. Expressing the modification of diet in renal disease study equation for estimating glomerular filtration rate with standardized serum creatinine values. Clin Chem. 2007;53:766–72.CrossRefPubMed Levey AS, Coresh J, Greene T, Marsh J, Stevens LA, Kusek JW, et al. Expressing the modification of diet in renal disease study equation for estimating glomerular filtration rate with standardized serum creatinine values. Clin Chem. 2007;53:766–72.CrossRefPubMed
23.
go back to reference Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M, Detrano R. Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol. 1990;15:827–32.CrossRefPubMed Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M, Detrano R. Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol. 1990;15:827–32.CrossRefPubMed
24.
go back to reference Clemens KK, Shariff S, Liu K, Hramiak I, Mahon JL, McArthur E, et al. Trends in antihyperglycemic medication prescriptions and hypoglycemia in older adults: 2002–2013. PLoS ONE. 2015;10:e0137596.CrossRefPubMedPubMedCentral Clemens KK, Shariff S, Liu K, Hramiak I, Mahon JL, McArthur E, et al. Trends in antihyperglycemic medication prescriptions and hypoglycemia in older adults: 2002–2013. PLoS ONE. 2015;10:e0137596.CrossRefPubMedPubMedCentral
25.
go back to reference Inzucchi SE, Bergenstal RM, Buse JB, Diamant M, Ferrannini E, Nauck M, et al. Management of hyperglycemia in type 2 diabetes, 2015: a patient-centered approach: update to a position statement of the american diabetes association and the European Association for the Study of Diabetes. Diabetes Care. 2015;38:140–9.CrossRefPubMed Inzucchi SE, Bergenstal RM, Buse JB, Diamant M, Ferrannini E, Nauck M, et al. Management of hyperglycemia in type 2 diabetes, 2015: a patient-centered approach: update to a position statement of the american diabetes association and the European Association for the Study of Diabetes. Diabetes Care. 2015;38:140–9.CrossRefPubMed
26.
go back to reference Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HAW. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008;359:1577–89.CrossRefPubMed Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HAW. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008;359:1577–89.CrossRefPubMed
27.
go back to reference UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet. 1998;352:854–65.CrossRef UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet. 1998;352:854–65.CrossRef
28.
go back to reference Katakami N, Yamasaki Y, Hayaishi-Okano R, Ohtoshi K, Kaneto H, Matsuhisa M, et al. Metformin or gliclazide, rather than glibenclamide, attenuate progression of carotid intima-media thickness in subjects with type 2 diabetes. Diabetologia. 2004;47:1906–13.CrossRefPubMed Katakami N, Yamasaki Y, Hayaishi-Okano R, Ohtoshi K, Kaneto H, Matsuhisa M, et al. Metformin or gliclazide, rather than glibenclamide, attenuate progression of carotid intima-media thickness in subjects with type 2 diabetes. Diabetologia. 2004;47:1906–13.CrossRefPubMed
29.
go back to reference Matsumoto K, Sera Y, Abe Y, Tominaga T, Yeki Y, Miyake S. Metformin attenuates progression of carotid arterial wall thickness in patients with type 2 diabetes. Diabetes Res Clin Pract. 2004;64:225–8.CrossRefPubMed Matsumoto K, Sera Y, Abe Y, Tominaga T, Yeki Y, Miyake S. Metformin attenuates progression of carotid arterial wall thickness in patients with type 2 diabetes. Diabetes Res Clin Pract. 2004;64:225–8.CrossRefPubMed
30.
go back to reference Roussel R, Travert F, Pasquet B, Wilson PWF, Smith SC, Goto S, et al. Metformin use and mortality among patients with diabetes and atherothrombosis. Arch Intern Med. 2010;170:1892–9.CrossRefPubMed Roussel R, Travert F, Pasquet B, Wilson PWF, Smith SC, Goto S, et al. Metformin use and mortality among patients with diabetes and atherothrombosis. Arch Intern Med. 2010;170:1892–9.CrossRefPubMed
31.
go back to reference Sirtori CR, Franceschini G, Gianfranceschi G, Sirtori M, Montanari G, Bosisio E, et al. Metformin improves peripheral vascular flow in nonhyperlipidemic patients with arterial disease. J Cardiovasc Pharmacol. 1984;6:914–23.CrossRefPubMed Sirtori CR, Franceschini G, Gianfranceschi G, Sirtori M, Montanari G, Bosisio E, et al. Metformin improves peripheral vascular flow in nonhyperlipidemic patients with arterial disease. J Cardiovasc Pharmacol. 1984;6:914–23.CrossRefPubMed
32.
go back to reference Xu T, Brandmaier S, Messias AC, Herder C, Draisma HHM, Demirkan A, et al. Effects of metformin on metabolite profiles and LDL cholesterol in patients with type 2 diabetes. Diabetes Care. 2015;38:1858–67.CrossRefPubMed Xu T, Brandmaier S, Messias AC, Herder C, Draisma HHM, Demirkan A, et al. Effects of metformin on metabolite profiles and LDL cholesterol in patients with type 2 diabetes. Diabetes Care. 2015;38:1858–67.CrossRefPubMed
33.
go back to reference Batchuluun B, Inoguchi T, Sonoda N, Sasaki S, Inoue T, Fujimura Y, et al. Metformin and liraglutide ameliorate high glucose-induced oxidative stress via inhibition of PKC-NAD(P)H oxidase pathway in human aortic endothelial cells. Atherosclerosis. 2014;232:156–64.CrossRefPubMed Batchuluun B, Inoguchi T, Sonoda N, Sasaki S, Inoue T, Fujimura Y, et al. Metformin and liraglutide ameliorate high glucose-induced oxidative stress via inhibition of PKC-NAD(P)H oxidase pathway in human aortic endothelial cells. Atherosclerosis. 2014;232:156–64.CrossRefPubMed
34.
go back to reference Calvert JW, Gundewar S, Jha S, Greer JJM, Bestermann WH, Tian R, et al. Acute metformin therapy confers cardioprotection against myocardial infarction via AMPK-eNOS-mediated signaling. Diabetes. 2008;57:696–705.CrossRefPubMed Calvert JW, Gundewar S, Jha S, Greer JJM, Bestermann WH, Tian R, et al. Acute metformin therapy confers cardioprotection against myocardial infarction via AMPK-eNOS-mediated signaling. Diabetes. 2008;57:696–705.CrossRefPubMed
35.
go back to reference Yu J-W, Deng Y-P, Han X, Ren G-F, Cai J, Jiang G-J. Metformin improves the angiogenic functions of endothelial progenitor cells via activating AMPK/eNOS pathway in diabetic mice. Cardiovasc Diabetol. 2016;15:88.CrossRefPubMedPubMedCentral Yu J-W, Deng Y-P, Han X, Ren G-F, Cai J, Jiang G-J. Metformin improves the angiogenic functions of endothelial progenitor cells via activating AMPK/eNOS pathway in diabetic mice. Cardiovasc Diabetol. 2016;15:88.CrossRefPubMedPubMedCentral
36.
go back to reference Ahmed FW, Rider R, Glanville M, Narayanan K, Razvi S, Weaver JU. Metformin improves circulating endothelial cells and endothelial progenitor cells in type 1 diabetes: MERIT study. Cardiovasc Diabetol. 2016;15:116.CrossRefPubMedPubMedCentral Ahmed FW, Rider R, Glanville M, Narayanan K, Razvi S, Weaver JU. Metformin improves circulating endothelial cells and endothelial progenitor cells in type 1 diabetes: MERIT study. Cardiovasc Diabetol. 2016;15:116.CrossRefPubMedPubMedCentral
37.
go back to reference Arunachalam G, Lakshmanan AP, Samuel SM, Triggle CR, Ding H. Molecular interplay between microRNA-34a and Sirtuin1 in hyperglycemia-mediated impaired angiogenesis in endothelial cells: effects of metformin. J Pharmacol Exp Ther. 2016;356:314–23.CrossRefPubMed Arunachalam G, Lakshmanan AP, Samuel SM, Triggle CR, Ding H. Molecular interplay between microRNA-34a and Sirtuin1 in hyperglycemia-mediated impaired angiogenesis in endothelial cells: effects of metformin. J Pharmacol Exp Ther. 2016;356:314–23.CrossRefPubMed
38.
go back to reference Bakhashab S, Ahmed FW, Schulten H-J, Bashir A, Karim S, Al-Malki AL, et al. Metformin improves the angiogenic potential of human CD34+ cells co-incident with downregulating CXCL10 and TIMP1 gene expression and increasing VEGFA under hyperglycemia and hypoxia within a therapeutic window for myocardial infarction. Cardiovasc Diabetol. 2016;15:27.CrossRefPubMedPubMedCentral Bakhashab S, Ahmed FW, Schulten H-J, Bashir A, Karim S, Al-Malki AL, et al. Metformin improves the angiogenic potential of human CD34+ cells co-incident with downregulating CXCL10 and TIMP1 gene expression and increasing VEGFA under hyperglycemia and hypoxia within a therapeutic window for myocardial infarction. Cardiovasc Diabetol. 2016;15:27.CrossRefPubMedPubMedCentral
39.
go back to reference Fadini GP. A reappraisal of the role of circulating (progenitor) cells in the pathobiology of diabetic complications. Diabetologia. 2014;57:4–15.CrossRefPubMed Fadini GP. A reappraisal of the role of circulating (progenitor) cells in the pathobiology of diabetic complications. Diabetologia. 2014;57:4–15.CrossRefPubMed
40.
go back to reference Hippisley-Cox J, Coupland C. Diabetes treatments and risk of amputation, blindness, severe kidney failure, hyperglycaemia, and hypoglycaemia: open cohort study in primary care. BMJ. 2016;352:i1450.CrossRefPubMedPubMedCentral Hippisley-Cox J, Coupland C. Diabetes treatments and risk of amputation, blindness, severe kidney failure, hyperglycaemia, and hypoglycaemia: open cohort study in primary care. BMJ. 2016;352:i1450.CrossRefPubMedPubMedCentral
41.
go back to reference Byon CH, Javed A, Dai Q, Kappes JC, Clemens TL, Darley-Usmar VM, et al. Oxidative stress induces vascular calcification through modulation of the osteogenic transcription factor Runx2 by AKT signaling. J Biol Chem. 2008;283:15319–27.CrossRefPubMedPubMedCentral Byon CH, Javed A, Dai Q, Kappes JC, Clemens TL, Darley-Usmar VM, et al. Oxidative stress induces vascular calcification through modulation of the osteogenic transcription factor Runx2 by AKT signaling. J Biol Chem. 2008;283:15319–27.CrossRefPubMedPubMedCentral
42.
go back to reference Huang N-L, Chiang S-H, Hsueh C-H, Liang Y-J, Chen Y-J, Lai L-P. Metformin inhibits TNF-α-induced IκB kinase phosphorylation, IκB-α degradation and IL-6 production in endothelial cells through PI3 K-dependent AMPK phosphorylation. Int J Cardiol. 2009;134:169–75.CrossRefPubMed Huang N-L, Chiang S-H, Hsueh C-H, Liang Y-J, Chen Y-J, Lai L-P. Metformin inhibits TNF-α-induced IκB kinase phosphorylation, IκB-α degradation and IL-6 production in endothelial cells through PI3 K-dependent AMPK phosphorylation. Int J Cardiol. 2009;134:169–75.CrossRefPubMed
43.
go back to reference Tsilchorozidou T, Mohamed-Ali V, Conway GS. Determinants of interleukin-6 and C-reactive protein vary in polycystic ovary syndrome, as do effects of short- and long-term metformin therapy. Horm Res. 2009;71:148–54.CrossRefPubMed Tsilchorozidou T, Mohamed-Ali V, Conway GS. Determinants of interleukin-6 and C-reactive protein vary in polycystic ovary syndrome, as do effects of short- and long-term metformin therapy. Horm Res. 2009;71:148–54.CrossRefPubMed
44.
go back to reference Nye HJ, Herrington WG. Metformin: the safest hypoglycaemic agent in chronic kidney disease? Nephron Clin Pract. 2011;118:c380–3.CrossRefPubMed Nye HJ, Herrington WG. Metformin: the safest hypoglycaemic agent in chronic kidney disease? Nephron Clin Pract. 2011;118:c380–3.CrossRefPubMed
45.
Metadata
Title
Association between metformin use and below-the-knee arterial calcification score in type 2 diabetic patients
Authors
Aurélien Mary
Agnes Hartemann
Sophie Liabeuf
Carole Elodie Aubert
Salim Kemel
Joe Elie Salem
Philippe Cluzel
Aurélie Lenglet
Ziad A. Massy
Jean-Daniel Lalau
Romuald Mentaverri
Olivier Bourron
Saïd Kamel
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Cardiovascular Diabetology / Issue 1/2017
Electronic ISSN: 1475-2840
DOI
https://doi.org/10.1186/s12933-017-0509-7

Other articles of this Issue 1/2017

Cardiovascular Diabetology 1/2017 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.