Skip to main content
Top
Published in: Malaria Journal 1/2016

Open Access 01-12-2016 | Research

Assessment of the effectiveness of the CD3+ tool to detect counterfeit and substandard anti-malarials

Authors: JaCinta S. Batson, Daniel K. Bempong, Patrick H. Lukulay, Nicola Ranieri, R. Duane Satzger, Leigh Verbois

Published in: Malaria Journal | Issue 1/2016

Login to get access

Abstract

Background

The US FDA recently developed CD3+, a counterfeit detection tool that is based on sample illumination at specific wavelengths of light and visual comparison of suspect sample and packaging materials to an authentic sample. To test performance of the CD3+ in field conditions, a study was conducted in Ghana which compared the CD3+ side-by-side with two existing medicine quality screening technologies—TruScan™ Portable Raman spectrometer and GPHF Minilab®.

Methods

A total of 84 anti-malarial test samples comprising artemether–lumefantrine tablets and artesunate–amodiaquine tablets were used. The technologies were evaluated for sensitivity in determining counterfeit/substandard (The term counterfeit or falsified is used in this article to refer to medicines that carry a false representation of identity or source or both. The term substandard is used to refer to medicines that do not meet the quality specifications given in the accepted pharmacopeia.) medicines, specificity in determining authentic products, and reliability of the results. Authentic samples obtained from manufacturers were used as reference standards. HPLC analysis data was used as the “gold standard” for decisions regarding a sample being authentic or substandard/counterfeit.

Results

CD3+ had a sensitivity of 1.00 in detecting counterfeit/substandard products compared to Minilab (0.79) and TruScan (0.79). CD3+ had a lower specificity (0.53) in determining authentic products compared to the specificities reached by Minilab (0.99) and TruScan (1.00). High sensitivity in this context means that the technology is effective in identifying substandard/counterfeit products whereas the low specificity means that the technique can sometimes mischaracterize good products as substandard/counterfeit. Examination of dosage units only (and not packaging) using CD3+ yielded improved specificity 0.64. When only assessment of sample identification was done, the TruScan provided sensitivity (1.00) and specificity (0.99); and the Minilab provided sensitivity (1.00) and specificity (1.00). All three technologies demonstrated 100 % reliability when used to analyse the same set of samples over 3 days by a single analyst and also when used to determine the same set of samples by three different analysts. Eight of the field samples were confirmed to be counterfeits with no active pharmaceutical ingredient content. All three technologies identified these samples as counterfeits.

Conclusions

The study revealed the relative effectiveness of the technologies as quality control tools. Using a combination of CD3+, with either the Minilab or TruScan, to screen for medicine quality will allow for complete examination of both the dosage units and the packaging to decide whether it is authentic or counterfeit.
Footnotes
1
The GPHF Minilab is a trademarked property of the Global Pharma Health Fund (GPHF).
 
2
The Thermo Scientific TruScan RM analyzer is a trademarked property of Thermo Fisher Scientific Inc.
 
3
Sensitivity is defined in this study as the proportion of medicines that are detected as substandard/counterfeit by the tool out of all the tablets that are substandard/counterfeit. It is the probability that the tool will correctly detect substandard/counterfeit anti-malarial tablets.
 
4
Specificity is the proportion of anti-malarial tablets that are identified as authentic by the tool out of all the tablets that are of authentic quality. It is the probability that the tool will correctly identify good quality anti-malarial tablets.
 
5
Reliability is the ability of the tool to produce the same results with repeated measurements.
 
6
TruScan Raman spectrometers utilize an embedded decision engine containing proprietary algorithms for the comparison.
 
7
Information about these counterfeit medicines were provided to the Ghana FDA.
 
Literature
3.
go back to reference Lon CT, Tsuyuoka R, Phanouvong S, Nivanna N, Socheat D, Sokhan C, et al. Counterfeit and substandard antimalarial medicines in Cambodia. Trans R Soc Trop Med Hyg. 2006;100:1019–24.CrossRefPubMed Lon CT, Tsuyuoka R, Phanouvong S, Nivanna N, Socheat D, Sokhan C, et al. Counterfeit and substandard antimalarial medicines in Cambodia. Trans R Soc Trop Med Hyg. 2006;100:1019–24.CrossRefPubMed
6.
go back to reference Kelesidis T, Kelesidis I, Rafailidis PI, Falagas ME. Counterfeit or substandard antimicrobial drugs: a review of the scientific evidence. J Antimicrob Chemother. 2007;60:214–36.CrossRefPubMed Kelesidis T, Kelesidis I, Rafailidis PI, Falagas ME. Counterfeit or substandard antimicrobial drugs: a review of the scientific evidence. J Antimicrob Chemother. 2007;60:214–36.CrossRefPubMed
7.
go back to reference Newton PN, Green MD, Fernandez FM, Day NP, White NJ. Counterfeit anti-infective drugs. Lancet Infect Dis. 2006;6:602–13.CrossRefPubMed Newton PN, Green MD, Fernandez FM, Day NP, White NJ. Counterfeit anti-infective drugs. Lancet Infect Dis. 2006;6:602–13.CrossRefPubMed
9.
go back to reference Ranieri N, Tabernero P, Green MD, Verbois L, Herrington J, Sampson E, et al. Evaluation of a new handheld instrument for the detection of counterfeit artesunate by visual fluorescence comparison. Am J Trop Med Hyg. 2014;91:920–4.PubMedCentralCrossRefPubMed Ranieri N, Tabernero P, Green MD, Verbois L, Herrington J, Sampson E, et al. Evaluation of a new handheld instrument for the detection of counterfeit artesunate by visual fluorescence comparison. Am J Trop Med Hyg. 2014;91:920–4.PubMedCentralCrossRefPubMed
11.
go back to reference Phadke MU, Jadhav VK, Jadhav RK, Dave SS, Patil DS. Simultaneous RP-LC determination of artesunate and amodiaquine in pharmaceutical preparations. Chromatographia. 2008;68:1003–7.CrossRef Phadke MU, Jadhav VK, Jadhav RK, Dave SS, Patil DS. Simultaneous RP-LC determination of artesunate and amodiaquine in pharmaceutical preparations. Chromatographia. 2008;68:1003–7.CrossRef
Metadata
Title
Assessment of the effectiveness of the CD3+ tool to detect counterfeit and substandard anti-malarials
Authors
JaCinta S. Batson
Daniel K. Bempong
Patrick H. Lukulay
Nicola Ranieri
R. Duane Satzger
Leigh Verbois
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2016
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-016-1180-2

Other articles of this Issue 1/2016

Malaria Journal 1/2016 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.