Skip to main content
Top
Published in: European Radiology 6/2016

01-06-2016 | Magnetic Resonance

Assessment of Silent T1-weighted head imaging at 7 T

Authors: Mauro Costagli, Mark R. Symms, Lorenzo Angeli, Douglas A. C. Kelley, Laura Biagi, Andrea Farnetani, Catarina Rua, Graziella Donatelli, Gianluigi Tiberi, Michela Tosetti, Mirco Cosottini

Published in: European Radiology | Issue 6/2016

Login to get access

Abstract

Objectives

This study aimed to assess the performance of a “Silent” zero time of echo (ZTE) sequence for T1-weighted brain imaging using a 7 T MRI system.

Methods

The Silent sequence was evaluated qualitatively by two neuroradiologists, as well as quantitatively in terms of tissue contrast, homogeneity, signal-to-noise ratio (SNR) and acoustic noise. It was compared to conventional T1-weighted imaging (FSPGR). Adequacy for automated segmentation was evaluated in comparison with FSPGR acquired at 7 T and 1.5 T. Specific absorption rate (SAR) was also measured.

Results

Tissue contrast and homogeneity in Silent were remarkable in deep brain structures and in the occipital and temporal lobes. Mean tissue contrast was significantly (p < 0.002) higher in Silent (0.25) than in FSPGR (0.11), which favoured automated tissue segmentation. On the other hand, Silent images had lower SNR with respect to conventional imaging: average SNR of FSPGR was 2.66 times that of Silent. Silent images were affected by artefacts related to projection reconstruction, which nevertheless did not compromise the depiction of brain tissues. Silent acquisition was 35 dB(A) quieter than FSPGR and less than 2.5 dB(A) louder than ambient noise. Six-minute average SAR was <2 W/kg.

Conclusions

The ZTE Silent sequence provides high-contrast T1-weighted imaging with low acoustic noise at 7 T.

Key Points

“Silent” is an MRI technique allowing zero time of echo acquisition
Its feasibility and performance were assessed on a 7 T MRI system
Image quality in several regions was higher than in conventional techniques
Imaging acoustic noise was dramatically reduced compared with conventional imaging
“Silent” is suitable for T1-weighted head imaging at 7 T
Literature
1.
go back to reference Bergin CJ, Pauly JM, Macovski A (1991) Lung parenchyma: projection reconstruction MR imaging. Radiology 179:777–781CrossRefPubMed Bergin CJ, Pauly JM, Macovski A (1991) Lung parenchyma: projection reconstruction MR imaging. Radiology 179:777–781CrossRefPubMed
2.
go back to reference Madio DP, Lowe IJ (1995) Ultra‐fast imaging using low flip angles and fids. Magn Reson Med 34:525–529CrossRefPubMed Madio DP, Lowe IJ (1995) Ultra‐fast imaging using low flip angles and fids. Magn Reson Med 34:525–529CrossRefPubMed
3.
go back to reference Idiyatullin D, Corum C, Park J-Y, Garwood M (2006) Fast and quiet MRI using a swept radiofrequency. J Magn Reson 181:342–349CrossRefPubMed Idiyatullin D, Corum C, Park J-Y, Garwood M (2006) Fast and quiet MRI using a swept radiofrequency. J Magn Reson 181:342–349CrossRefPubMed
4.
go back to reference Wu Y, Dai G, Ackerman JL et al (2007) Water- and fat-suppressed proton projection MRI (WASPI) of rat femur bone. Magn Reson Med 57:554–567CrossRefPubMed Wu Y, Dai G, Ackerman JL et al (2007) Water- and fat-suppressed proton projection MRI (WASPI) of rat femur bone. Magn Reson Med 57:554–567CrossRefPubMed
5.
go back to reference Tyler DJ, Robson MD, Henkelman RM et al (2007) Magnetic resonance imaging with ultrashort TE (UTE) PULSE sequences: Technical considerations. J Magn Reson Imaging 25:279–289CrossRefPubMed Tyler DJ, Robson MD, Henkelman RM et al (2007) Magnetic resonance imaging with ultrashort TE (UTE) PULSE sequences: Technical considerations. J Magn Reson Imaging 25:279–289CrossRefPubMed
6.
go back to reference Du J, Bydder M, Takahashi AM, Chung CB (2008) Two-dimensional ultrashort echo time imaging using a spiral trajectory. Magn Reson Imaging 26:304–312CrossRefPubMed Du J, Bydder M, Takahashi AM, Chung CB (2008) Two-dimensional ultrashort echo time imaging using a spiral trajectory. Magn Reson Imaging 26:304–312CrossRefPubMed
7.
go back to reference Qian Y, Boada FE (2008) Acquisition‐weighted stack of spirals for fast high‐resolution three‐dimensional ultra‐short echo time MR imaging. Magn Reson Med 60:135–145CrossRefPubMed Qian Y, Boada FE (2008) Acquisition‐weighted stack of spirals for fast high‐resolution three‐dimensional ultra‐short echo time MR imaging. Magn Reson Med 60:135–145CrossRefPubMed
8.
9.
go back to reference Weiger M, Pruessmann KP, Hennel F (2011) MRI with zero echo time: hard versus sweep pulse excitation. Magn Reson Med 66:379–389CrossRefPubMed Weiger M, Pruessmann KP, Hennel F (2011) MRI with zero echo time: hard versus sweep pulse excitation. Magn Reson Med 66:379–389CrossRefPubMed
10.
11.
go back to reference Grodzki DM, Jakob PM, Heismann B (2012) Ultrashort echo time imaging using pointwise encoding time reduction with radial acquisition (PETRA). Magn Reson Med 67:510–518CrossRefPubMed Grodzki DM, Jakob PM, Heismann B (2012) Ultrashort echo time imaging using pointwise encoding time reduction with radial acquisition (PETRA). Magn Reson Med 67:510–518CrossRefPubMed
13.
go back to reference Weiger M, Stampanoni M, Pruessmann KP (2013) Direct depiction of bone microstructure using MRI with zero echo time. Bone 54:44–47CrossRefPubMed Weiger M, Stampanoni M, Pruessmann KP (2013) Direct depiction of bone microstructure using MRI with zero echo time. Bone 54:44–47CrossRefPubMed
14.
go back to reference Weiger M, Hennel F, Pruessmann KP (2010) Sweep MRI with algebraic reconstruction. Magn Reson Med 64:1685–1695CrossRefPubMed Weiger M, Hennel F, Pruessmann KP (2010) Sweep MRI with algebraic reconstruction. Magn Reson Med 64:1685–1695CrossRefPubMed
15.
go back to reference Heilmaier C, Theysohn JM, Maderwald S et al (2011) A large-scale study on subjective perception of discomfort during 7 and 1.5 T MRI examinations. Bioelectromagnetics 32:610–619CrossRefPubMed Heilmaier C, Theysohn JM, Maderwald S et al (2011) A large-scale study on subjective perception of discomfort during 7 and 1.5 T MRI examinations. Bioelectromagnetics 32:610–619CrossRefPubMed
16.
go back to reference Cosottini M, Frosini D, Biagi L et al (2014) Short-term side-effects of brain MR examination at 7 T: a single-centre experience. Eur Radiol 24:1923–1928CrossRefPubMed Cosottini M, Frosini D, Biagi L et al (2014) Short-term side-effects of brain MR examination at 7 T: a single-centre experience. Eur Radiol 24:1923–1928CrossRefPubMed
17.
go back to reference Glover GH, Pauly JM (1992) Projection reconstruction techniques for reduction of motion effects in MRI. Magn Reson Med 28:275–289CrossRefPubMed Glover GH, Pauly JM (1992) Projection reconstruction techniques for reduction of motion effects in MRI. Magn Reson Med 28:275–289CrossRefPubMed
18.
go back to reference Madio DP, Gach HM, Lowe IJ (1998) Ultra-fast velocity imaging in stenotically produced turbulent jets using RUFIS. Magn Reson Med 39:574–580CrossRefPubMed Madio DP, Gach HM, Lowe IJ (1998) Ultra-fast velocity imaging in stenotically produced turbulent jets using RUFIS. Magn Reson Med 39:574–580CrossRefPubMed
19.
go back to reference Kelley DAC, McKinnon GC, Sacolick LI et al (2014) Optimization of a Zero Echo Time (ZTE) Sequence at 7T with Phased Array Coils. Proceedings of International Society for Magnetic Resonance in Medicine ISMRM Kelley DAC, McKinnon GC, Sacolick LI et al (2014) Optimization of a Zero Echo Time (ZTE) Sequence at 7T with Phased Array Coils. Proceedings of International Society for Magnetic Resonance in Medicine ISMRM
20.
go back to reference Weiger M, Brunner DO, Wyss M et al (2014) ZTE Imaging with T1 Contrast. Proceedings of International Society for Magnetic Resonance in Medicine ISMRM Weiger M, Brunner DO, Wyss M et al (2014) ZTE Imaging with T1 Contrast. Proceedings of International Society for Magnetic Resonance in Medicine ISMRM
21.
go back to reference Hurley AC, Al-Radaideh A, Bai L et al (2010) Tailored RF pulse for magnetization inversion at ultrahigh field. Magn Reson Med 63:51–58PubMed Hurley AC, Al-Radaideh A, Bai L et al (2010) Tailored RF pulse for magnetization inversion at ultrahigh field. Magn Reson Med 63:51–58PubMed
22.
go back to reference Wrede KH, Johst S, Dammann P et al (2012) Caudal image contrast inversion in MPRAGE at 7 Tesla: problem and solution. Acad Radiol 19:172–178CrossRefPubMed Wrede KH, Johst S, Dammann P et al (2012) Caudal image contrast inversion in MPRAGE at 7 Tesla: problem and solution. Acad Radiol 19:172–178CrossRefPubMed
23.
go back to reference O'Brien KR, Magill AW, Delacoste J et al (2014) Dielectric pads and low- B1+ adiabatic pulses: complementary techniques to optimize structural T1 w whole-brain MP2RAGE scans at 7 tesla. J Magn Reson Imaging 40:804–812CrossRefPubMed O'Brien KR, Magill AW, Delacoste J et al (2014) Dielectric pads and low- B1+ adiabatic pulses: complementary techniques to optimize structural T1 w whole-brain MP2RAGE scans at 7 tesla. J Magn Reson Imaging 40:804–812CrossRefPubMed
24.
go back to reference Belaroussi B, Milles J, Carme S et al (2006) Intensity non-uniformity correction in MRI: existing methods and their validation. Med Image Anal 10:234–246CrossRefPubMed Belaroussi B, Milles J, Carme S et al (2006) Intensity non-uniformity correction in MRI: existing methods and their validation. Med Image Anal 10:234–246CrossRefPubMed
25.
go back to reference Van de Moortele P-F, Akgun C, Adriany G et al (2005) B(1) destructive interferences and spatial phase patterns at 7 T with a head transceiver array coil. Magn Reson Med 54:1503–1518CrossRefPubMed Van de Moortele P-F, Akgun C, Adriany G et al (2005) B(1) destructive interferences and spatial phase patterns at 7 T with a head transceiver array coil. Magn Reson Med 54:1503–1518CrossRefPubMed
26.
go back to reference Vaughan JT, Garwood M, Collins CM et al (2001) 7T vs. 4T: RF power, homogeneity, and signal-to-noise comparison in head images. Magn Reson Med 46:24–30CrossRefPubMed Vaughan JT, Garwood M, Collins CM et al (2001) 7T vs. 4T: RF power, homogeneity, and signal-to-noise comparison in head images. Magn Reson Med 46:24–30CrossRefPubMed
27.
go back to reference Dietrich O, Raya JG, Reeder SB et al (2007) Measurement of signal‐to‐noise ratios in MR images: Influence of multichannel coils, parallel imaging, and reconstruction filters. J Magn Reson Imaging 26:375–385CrossRefPubMed Dietrich O, Raya JG, Reeder SB et al (2007) Measurement of signal‐to‐noise ratios in MR images: Influence of multichannel coils, parallel imaging, and reconstruction filters. J Magn Reson Imaging 26:375–385CrossRefPubMed
30.
go back to reference Kelley DAC, McKinnon GC, Sacolick LI et al (2014) Depiction of Multiple Sclerosis Lesions with Zero Echo Time (ZTE) Imaging at 7T. Proceedings of International Society for Magnetic Resonance in Medicine ISMRM Kelley DAC, McKinnon GC, Sacolick LI et al (2014) Depiction of Multiple Sclerosis Lesions with Zero Echo Time (ZTE) Imaging at 7T. Proceedings of International Society for Magnetic Resonance in Medicine ISMRM
31.
go back to reference Tourdias T, Saranathan M, Levesque IR et al (2014) Visualization of intra-thalamic nuclei with optimized white-matter-nulled MPRAGE at 7T. NeuroImage 84:534–545CrossRefPubMedPubMedCentral Tourdias T, Saranathan M, Levesque IR et al (2014) Visualization of intra-thalamic nuclei with optimized white-matter-nulled MPRAGE at 7T. NeuroImage 84:534–545CrossRefPubMedPubMedCentral
32.
go back to reference Costagli M, Kelley DAC, Symms MR et al (2014) Tissue Border Enhancement by inversion recovery MRI at 7.0 Tesla. Neuroradiology 56:517–523CrossRefPubMed Costagli M, Kelley DAC, Symms MR et al (2014) Tissue Border Enhancement by inversion recovery MRI at 7.0 Tesla. Neuroradiology 56:517–523CrossRefPubMed
33.
go back to reference De Ciantis A, Barkovich AJ, Cosottini M et al (2015) Ultra-high-field MR imaging in polymicrogyria and epilepsy. AJNR Am J Neuroradiol 36:309–316CrossRefPubMed De Ciantis A, Barkovich AJ, Cosottini M et al (2015) Ultra-high-field MR imaging in polymicrogyria and epilepsy. AJNR Am J Neuroradiol 36:309–316CrossRefPubMed
34.
go back to reference Pusey E, Lufkin RB, Brown RK et al (1986) Magnetic resonance imaging artifacts: mechanism and clinical significance. Radiographics 6:891–911CrossRefPubMed Pusey E, Lufkin RB, Brown RK et al (1986) Magnetic resonance imaging artifacts: mechanism and clinical significance. Radiographics 6:891–911CrossRefPubMed
35.
go back to reference Van de Moortele P-F, Auerbach EJ, Olman C et al (2009) T1 weighted brain images at 7 Tesla unbiased for Proton Density, T2⁎ contrast and RF coil receive B1 sensitivity with simultaneous vessel visualization. NeuroImage 46:432–446CrossRefPubMedPubMedCentral Van de Moortele P-F, Auerbach EJ, Olman C et al (2009) T1 weighted brain images at 7 Tesla unbiased for Proton Density, T2 contrast and RF coil receive B1 sensitivity with simultaneous vessel visualization. NeuroImage 46:432–446CrossRefPubMedPubMedCentral
36.
go back to reference Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis. I. Segmentation and surface reconstruction. NeuroImage 9:179–194CrossRefPubMed Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis. I. Segmentation and surface reconstruction. NeuroImage 9:179–194CrossRefPubMed
37.
go back to reference Fischl B, Sereno MI, Dale AM (1999) Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. NeuroImage 9:195–207CrossRefPubMed Fischl B, Sereno MI, Dale AM (1999) Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. NeuroImage 9:195–207CrossRefPubMed
38.
go back to reference Ueno K, Cheng K (2014) Model-Free Spatial Intensity Non-Uniformity Correction Algorithm for MR Images. Proceedings of International Society for Magnetic Resonance in Medicine ISMRM Ueno K, Cheng K (2014) Model-Free Spatial Intensity Non-Uniformity Correction Algorithm for MR Images. Proceedings of International Society for Magnetic Resonance in Medicine ISMRM
39.
go back to reference Jenkinson M, Bannister P, Brady M, Smith S (2002) Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage 17:825–841CrossRefPubMed Jenkinson M, Bannister P, Brady M, Smith S (2002) Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage 17:825–841CrossRefPubMed
40.
go back to reference Klauschen F, Goldman A, Barra V et al (2009) Evaluation of automated brain MR image segmentation and volumetry methods. Hum Brain Mapp 30:1310–1327CrossRefPubMed Klauschen F, Goldman A, Barra V et al (2009) Evaluation of automated brain MR image segmentation and volumetry methods. Hum Brain Mapp 30:1310–1327CrossRefPubMed
42.
go back to reference van Osch MJP, Webb AG (2014) Safety of ultra-high field MRI: what are the specific risks? Curr Radiol Rep 2:1–8 van Osch MJP, Webb AG (2014) Safety of ultra-high field MRI: what are the specific risks? Curr Radiol Rep 2:1–8
43.
go back to reference Marques JP, Kober T, Krueger G et al (2010) MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field. NeuroImage 49:1271–1281CrossRefPubMed Marques JP, Kober T, Krueger G et al (2010) MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field. NeuroImage 49:1271–1281CrossRefPubMed
45.
46.
go back to reference Whitwell JL (2009) Voxel-based morphometry: an automated technique for assessing structural changes in the brain. J Neurosci 29:9661–9664CrossRefPubMed Whitwell JL (2009) Voxel-based morphometry: an automated technique for assessing structural changes in the brain. J Neurosci 29:9661–9664CrossRefPubMed
48.
go back to reference Gatehouse PD, Bydder GM (2003) Magnetic resonance imaging of short T2 components in tissue. Clin Radiol 58:1–19CrossRefPubMed Gatehouse PD, Bydder GM (2003) Magnetic resonance imaging of short T2 components in tissue. Clin Radiol 58:1–19CrossRefPubMed
49.
go back to reference Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42:952–962CrossRefPubMed Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42:952–962CrossRefPubMed
50.
go back to reference Griswold MA, Jakob PM, Heidemann RM et al (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47:1202–1210CrossRefPubMed Griswold MA, Jakob PM, Heidemann RM et al (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47:1202–1210CrossRefPubMed
51.
go back to reference Tiberi G, Costagli M, Stara R, Cosottini M (2013) Electromagnetic characterization of an MR volume coil with multilayered cylindrical load using a 2-D analytical approach. J Magn Reson 230:186–197CrossRefPubMed Tiberi G, Costagli M, Stara R, Cosottini M (2013) Electromagnetic characterization of an MR volume coil with multilayered cylindrical load using a 2-D analytical approach. J Magn Reson 230:186–197CrossRefPubMed
52.
go back to reference Tiberi G, Fontana N, Costagli M et al (2015) Investigation of maximum local specific absorption rate in 7 T magnetic resonance with respect to load size by use of electromagnetic simulations. Bioelectromagnetics 36:358–366CrossRefPubMed Tiberi G, Fontana N, Costagli M et al (2015) Investigation of maximum local specific absorption rate in 7 T magnetic resonance with respect to load size by use of electromagnetic simulations. Bioelectromagnetics 36:358–366CrossRefPubMed
Metadata
Title
Assessment of Silent T1-weighted head imaging at 7 T
Authors
Mauro Costagli
Mark R. Symms
Lorenzo Angeli
Douglas A. C. Kelley
Laura Biagi
Andrea Farnetani
Catarina Rua
Graziella Donatelli
Gianluigi Tiberi
Michela Tosetti
Mirco Cosottini
Publication date
01-06-2016
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 6/2016
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-015-3954-2

Other articles of this Issue 6/2016

European Radiology 6/2016 Go to the issue