Skip to main content
Top
Published in: World Journal of Surgical Oncology 1/2018

Open Access 01-12-2018 | Research

Assessment of expression of interferon γ (IFN-G) gene and its antisense (IFNG-AS1) in breast cancer

Authors: Hajar Yaghoobi, Hakim Azizi, Vahid Kholghi Oskooei, Mohammad Taheri, Soudeh Ghafouri-Fard

Published in: World Journal of Surgical Oncology | Issue 1/2018

Login to get access

Abstract

Background

The role of long non-coding RNAs has been extensively appreciated in the contexts of cancer. Interferon γ-antisense RNA1 (IFNG-AS1) is an lncRNA located near to IFN-γ-encoding (IFNG) gene and regulates expression of IFNG in Th1 cells.

Methods

In the present study, we evaluated expression of IFNG and IFNG-AS1 in 108 breast samples including tumoral tissues and their adjacent non-cancerous tissues (ANCTs) using real-time PCR. IFNG-AS1 was significantly upregulated in tumoral tissues compared with ANCTs (expression ratio = 2.23, P = 0.03).

Results

Although the expression of IFNG was higher in tumoral tissues compared with ANCTs (relative expression = 1.89), it did not reach the level of significance (P = 0.07). IFNG expression was significantly higher in HER2-negative tumoral tissues compared with HER2-positive ones (P = 0.01) and in grade 1 samples compared with grade 2 ones (P = 0.03). No other significant difference was found in expressions of genes between other groups.

Conclusion

Significant strong correlations were detected between expression of IFNG and IFNG-AS1 in both tumoral tissues and ANCTs. The present study provides evidences for participation of IFNG and IFNG-AS1 in the pathogenesis of breast cancer and warrants future studies to elaborate the underlying mechanism.
Literature
1.
go back to reference Nikpayam E, Tasharrofi B, Sarrafzadeh S, Ghafouri-Fard S. The role of long non-coding RNAs in ovarian cancer. Iran Biomed J. 2017;21(1):3–15.CrossRef Nikpayam E, Tasharrofi B, Sarrafzadeh S, Ghafouri-Fard S. The role of long non-coding RNAs in ovarian cancer. Iran Biomed J. 2017;21(1):3–15.CrossRef
2.
go back to reference Eftekharian MM, Ghafouri-Fard S, Soudyab M, et al. Expression analysis of long non-coding RNAs in the blood of multiple sclerosis patients. J Mol Neurosci. 2017;63(3–4):333–41.CrossRef Eftekharian MM, Ghafouri-Fard S, Soudyab M, et al. Expression analysis of long non-coding RNAs in the blood of multiple sclerosis patients. J Mol Neurosci. 2017;63(3–4):333–41.CrossRef
3.
go back to reference Collier SP, Collins PL, Williams CL, Boothby MR, Aune TM. Cutting edge: influence of Tmevpg1, a long intergenic noncoding RNA, on the expression of Ifng by Th1 cells. J Immunol. 2012;189(5):2084–8.CrossRef Collier SP, Collins PL, Williams CL, Boothby MR, Aune TM. Cutting edge: influence of Tmevpg1, a long intergenic noncoding RNA, on the expression of Ifng by Th1 cells. J Immunol. 2012;189(5):2084–8.CrossRef
4.
go back to reference Smolle MA, Calin HN, Pichler M, Calin GA. Noncoding RNAs and immune checkpoints-clinical implications as cancer therapeutics. FEBS J. 2017;284(13):1952–66.CrossRef Smolle MA, Calin HN, Pichler M, Calin GA. Noncoding RNAs and immune checkpoints-clinical implications as cancer therapeutics. FEBS J. 2017;284(13):1952–66.CrossRef
5.
go back to reference Peng HY, Liu YZ, Tian J, et al. The long noncoding RNA IFNG-AS1 promotes T helper type 1 cells response in patients with Hashimoto’s thyroiditis. Sci Rep. 2015;5:17702.CrossRef Peng HY, Liu YZ, Tian J, et al. The long noncoding RNA IFNG-AS1 promotes T helper type 1 cells response in patients with Hashimoto’s thyroiditis. Sci Rep. 2015;5:17702.CrossRef
6.
go back to reference Mandai M, Hamanishi J, Abiko K, Matsumura N, Baba T, Konishi I. Dual faces of IFNgamma in cancer progression: a role of PD-L1 induction in the determination of pro- and antitumor immunity. Clin Cancer Res. 2016;22(10):2329–34.CrossRef Mandai M, Hamanishi J, Abiko K, Matsumura N, Baba T, Konishi I. Dual faces of IFNgamma in cancer progression: a role of PD-L1 induction in the determination of pro- and antitumor immunity. Clin Cancer Res. 2016;22(10):2329–34.CrossRef
7.
go back to reference Legrier ME, Bieche I, Gaston J, et al. Activation of IFN/STAT1 signalling predicts response to chemotherapy in oestrogen receptor-negative breast cancer. Br J Cancer. 2016;114(2):177–87.CrossRef Legrier ME, Bieche I, Gaston J, et al. Activation of IFN/STAT1 signalling predicts response to chemotherapy in oestrogen receptor-negative breast cancer. Br J Cancer. 2016;114(2):177–87.CrossRef
8.
go back to reference Nagai Y, Tsuchiya H, Ji MQ, Zhang H, Greene MI. Synergistic effect of IFN-γ on breast cancer targeted therapy. (2017). Nagai Y, Tsuchiya H, Ji MQ, Zhang H, Greene MI. Synergistic effect of IFN-γ on breast cancer targeted therapy. (2017).
9.
go back to reference García-Tuñón I, Ricote M, Ruiz A, Fraile B, Paniagua R, Royuela M. Influence of IFN-gamma and its receptors in human breast cancer. BMC Cancer. 2007;7(1):158.CrossRef García-Tuñón I, Ricote M, Ruiz A, Fraile B, Paniagua R, Royuela M. Influence of IFN-gamma and its receptors in human breast cancer. BMC Cancer. 2007;7(1):158.CrossRef
10.
go back to reference Kominsky SL, Hobeika AC, Lake FA, Torres BA, Johnson HM. Down-regulation of neu/HER-2 by interferon-gamma in prostate cancer cells. Cancer Res. 2000;60(14):3904–8.PubMed Kominsky SL, Hobeika AC, Lake FA, Torres BA, Johnson HM. Down-regulation of neu/HER-2 by interferon-gamma in prostate cancer cells. Cancer Res. 2000;60(14):3904–8.PubMed
11.
go back to reference Nagai Y, Tsuchiya H, Runkle EA, et al. Disabling of the erbB pathway followed by IFN-γ modifies phenotype and enhances genotoxic eradication of breast tumors. Cell Rep. 2015;12(12):2049–59.CrossRef Nagai Y, Tsuchiya H, Runkle EA, et al. Disabling of the erbB pathway followed by IFN-γ modifies phenotype and enhances genotoxic eradication of breast tumors. Cell Rep. 2015;12(12):2049–59.CrossRef
12.
go back to reference Mostafa AA, Codner D, Hirasawa K, et al. Activation of ERα signaling differentially modulates IFN-γ induced HLA-class II expression in breast cancer cells. PLoS One. 2014;9(1):e87377.CrossRef Mostafa AA, Codner D, Hirasawa K, et al. Activation of ERα signaling differentially modulates IFN-γ induced HLA-class II expression in breast cancer cells. PLoS One. 2014;9(1):e87377.CrossRef
13.
go back to reference Critchley-Thorne RJ, Simons DL, Yan N, et al. Impaired interferon signaling is a common immune defect in human cancer. Proc Natl Acad Sci. 2009;106(22):9010–5.CrossRef Critchley-Thorne RJ, Simons DL, Yan N, et al. Impaired interferon signaling is a common immune defect in human cancer. Proc Natl Acad Sci. 2009;106(22):9010–5.CrossRef
Metadata
Title
Assessment of expression of interferon γ (IFN-G) gene and its antisense (IFNG-AS1) in breast cancer
Authors
Hajar Yaghoobi
Hakim Azizi
Vahid Kholghi Oskooei
Mohammad Taheri
Soudeh Ghafouri-Fard
Publication date
01-12-2018
Publisher
BioMed Central
Published in
World Journal of Surgical Oncology / Issue 1/2018
Electronic ISSN: 1477-7819
DOI
https://doi.org/10.1186/s12957-018-1508-1

Other articles of this Issue 1/2018

World Journal of Surgical Oncology 1/2018 Go to the issue