Skip to main content
Top

29-04-2024 | Artificial Intelligence | New Therapies for Cardiovascular Disease (AA Bavry and MR Massoomi, Section Editors)

Use of Virtual Reality and 3D Models in Contemporary Practice of Cardiology

Authors: Iva Minga, Mohammad A. Al-Ani, Sarah Moharem-Elgamal, Aswathy Vaikom House MD, Ahmed Sami Abuzaid MD, Michael Masoomi, Saima Mangi

Published in: Current Cardiology Reports

Login to get access

Abstract

Purpose of Review

To provide an overview of the impact of virtual and augmented reality in contemporary cardiovascular medical practice.

Recent Findings

The utilization of virtual and augmented reality has emerged as an innovative technique in various cardiovascular subspecialties, including interventional adult, pediatric, and adult congenital as well as structural heart disease and heart failure. In particular, electrophysiology has proven valuable for both diagnostic and therapeutic procedures. The incorporation of 3D reconstruction modeling has significantly enhanced our understanding of patient anatomy and morphology, thereby improving diagnostic accuracy and patient outcomes.

Summary

The interactive modeling of cardiac structure and function within the virtual realm plays a pivotal role in comprehending complex congenital, structural, and coronary pathology. This, in turn, contributes to safer interventions and surgical procedures. Noteworthy applications include septal defect device closure, transcatheter valvular interventions, and left atrial occlusion device implantation. The implementation of virtual reality has been shown to yield cost savings in healthcare, reduce procedure time, minimize radiation exposure, lower intravenous contrast usage, and decrease the extent of anesthesia required. These benefits collectively result in a more efficient and effective approach to patient care.
Literature
1.
2.
go back to reference Jiang Z, Guo Y, Wang Z. Digital twin to improve the virtual-real integration of industrial IoT. J Ind Inf Integr. 2021;22:100196. Jiang Z, Guo Y, Wang Z. Digital twin to improve the virtual-real integration of industrial IoT. J Ind Inf Integr. 2021;22:100196.
3.
go back to reference Haleem A, Javaid M, Vaishya R. Industry 4.0 and its applications in orthopaedics. J Clin Orthop Trauma. 2019;10(3):615–6.PubMedCrossRef Haleem A, Javaid M, Vaishya R. Industry 4.0 and its applications in orthopaedics. J Clin Orthop Trauma. 2019;10(3):615–6.PubMedCrossRef
4.
go back to reference Bao X, Mao Y, Lin Q, Qiu Y, Chen S, Li L, et al. Mechanism of Kinect-based virtual reality training for motor functional recovery of upper limbs after subacute stroke. Neural Regen Res. 2013;8(31):2904–13.PubMedPubMedCentral Bao X, Mao Y, Lin Q, Qiu Y, Chen S, Li L, et al. Mechanism of Kinect-based virtual reality training for motor functional recovery of upper limbs after subacute stroke. Neural Regen Res. 2013;8(31):2904–13.PubMedPubMedCentral
5.
go back to reference Esfahlani SS. Mixed reality and remote sensing application of unmanned aerial vehicle in fire and smoke detection. J Ind Inf Integr. 2019;15:42–9. Esfahlani SS. Mixed reality and remote sensing application of unmanned aerial vehicle in fire and smoke detection. J Ind Inf Integr. 2019;15:42–9.
6.
go back to reference Danielsson O, Holm M, Syberfeldt A. Augmented reality smart glasses in industrial assembly: Current status and future challenges. J Ind Inf Integr. 2020;20:100175. Danielsson O, Holm M, Syberfeldt A. Augmented reality smart glasses in industrial assembly: Current status and future challenges. J Ind Inf Integr. 2020;20:100175.
7.
go back to reference Moro C, Stromberga Z, Raikos A, Stirling A. The effectiveness of virtual and augmented reality in health sciences and medical anatomy. Anat Sci Educ. 2017;10(6):549–59.PubMedCrossRef Moro C, Stromberga Z, Raikos A, Stirling A. The effectiveness of virtual and augmented reality in health sciences and medical anatomy. Anat Sci Educ. 2017;10(6):549–59.PubMedCrossRef
8.
go back to reference Plasencia DM. One step beyond virtual reality: connecting past and future developments. XRDS. 2015;22(1):18–23.CrossRef Plasencia DM. One step beyond virtual reality: connecting past and future developments. XRDS. 2015;22(1):18–23.CrossRef
10.
go back to reference Jan ANB, Joris JD. Design and quantitative resolution measurements of an optical virtual sectioning three-dimensional imaging technique for biomedical specimens, featuring two-micrometer slicing resolution. J Biomed Opt. 2007;12(1):014039.CrossRef Jan ANB, Joris JD. Design and quantitative resolution measurements of an optical virtual sectioning three-dimensional imaging technique for biomedical specimens, featuring two-micrometer slicing resolution. J Biomed Opt. 2007;12(1):014039.CrossRef
11.
go back to reference De la Peña N, Weil P, Llobera J, Spanlang B, Friedman D, Sanchez-Vives MV, et al. Immersive Journalism: Immersive Virtual Reality for the First-Person Experience of News. Presence. 2010;19(4):291–301.CrossRef De la Peña N, Weil P, Llobera J, Spanlang B, Friedman D, Sanchez-Vives MV, et al. Immersive Journalism: Immersive Virtual Reality for the First-Person Experience of News. Presence. 2010;19(4):291–301.CrossRef
12.
go back to reference Silva JNA, Southworth M, Raptis C, Silva J. Emerging Applications of Virtual Reality in Cardiovascular Medicine. JACC: Basic Transl Sci. 2018;3(3):420–30.PubMed Silva JNA, Southworth M, Raptis C, Silva J. Emerging Applications of Virtual Reality in Cardiovascular Medicine. JACC: Basic Transl Sci. 2018;3(3):420–30.PubMed
13.
go back to reference Rymuza B, Grodecki K, Kaminski J, Scislo P, Huczek Z. Holographic imaging during transcatheter aortic valve implantation procedure in bicuspid aortic valve stenosis. Kardiol Pol. 2017;75(10):1056.PubMedCrossRef Rymuza B, Grodecki K, Kaminski J, Scislo P, Huczek Z. Holographic imaging during transcatheter aortic valve implantation procedure in bicuspid aortic valve stenosis. Kardiol Pol. 2017;75(10):1056.PubMedCrossRef
14.
go back to reference Gallagher AG, Cates CU. Virtual reality training for the operating room and cardiac catheterisation laboratory. The Lancet. 2004;364(9444):1538–40.CrossRef Gallagher AG, Cates CU. Virtual reality training for the operating room and cardiac catheterisation laboratory. The Lancet. 2004;364(9444):1538–40.CrossRef
15.
go back to reference Southworth MK, Silva JR, Silva JNA. Use of extended realities in cardiology. Trends Cardiovasc Med. 2020;30(3):143–8.PubMedCrossRef Southworth MK, Silva JR, Silva JNA. Use of extended realities in cardiology. Trends Cardiovasc Med. 2020;30(3):143–8.PubMedCrossRef
16.
go back to reference Culbertson C, Nicolas S, Zaharovits I, London ED, De La Garza R, Brody AL, et al. Methamphetamine craving induced in an online virtual reality environment. Pharmacol Biochem Behav. 2010;96(4):454–60.PubMedPubMedCentralCrossRef Culbertson C, Nicolas S, Zaharovits I, London ED, De La Garza R, Brody AL, et al. Methamphetamine craving induced in an online virtual reality environment. Pharmacol Biochem Behav. 2010;96(4):454–60.PubMedPubMedCentralCrossRef
17.
go back to reference •• Arslan F, Gerckens U. Virtual support for remote proctoring in TAVR during COVID-19. Catheter Cardiovasc Interv. 2021;98(5):E733–6. This study demonstrates that virtual monitoring and proctoring of real time highly complex procedures such as TAVR is feasible and efficacious.PubMedPubMedCentralCrossRef •• Arslan F, Gerckens U. Virtual support for remote proctoring in TAVR during COVID-19. Catheter Cardiovasc Interv. 2021;98(5):E733–6. This study demonstrates that virtual monitoring and proctoring of real time highly complex procedures such as TAVR is feasible and efficacious.PubMedPubMedCentralCrossRef
18.
go back to reference Jang S-J, Liu J, Singh G, Al’Aref SJ, Caprio A, Moghadam AAA, et al. Abstract 11714: Augmented Reality Guidance for Transcatheter Septal Puncture Procedure in Structural Heart Interventions. Circulation. 2019;140(Suppl_1):A11714-A. Jang S-J, Liu J, Singh G, Al’Aref SJ, Caprio A, Moghadam AAA, et al. Abstract 11714: Augmented Reality Guidance for Transcatheter Septal Puncture Procedure in Structural Heart Interventions. Circulation. 2019;140(Suppl_1):A11714-A.
20.
go back to reference Goo HW, Park SJ, Yoo SJ. Advanced Medical Use of Three-Dimensional Imaging in Congenital Heart Disease: Augmented Reality, Mixed Reality, Virtual Reality, and Three-Dimensional Printing. Korean J Radiol. 2020;21(2):133–45.PubMedPubMedCentralCrossRef Goo HW, Park SJ, Yoo SJ. Advanced Medical Use of Three-Dimensional Imaging in Congenital Heart Disease: Augmented Reality, Mixed Reality, Virtual Reality, and Three-Dimensional Printing. Korean J Radiol. 2020;21(2):133–45.PubMedPubMedCentralCrossRef
21.
go back to reference Stepanenko A, Perez LM, Ferre JC, Ybarra Falcon C, Perez de la Sota E, San Roman JA, et al. 3D Virtual modelling, 3D printing and extended reality for planning of implant procedure of short-term and long-term mechanical circulatory support devices and heart transplantation. Front Cardiovasc Med. 2023;10:1191705.PubMedPubMedCentralCrossRef Stepanenko A, Perez LM, Ferre JC, Ybarra Falcon C, Perez de la Sota E, San Roman JA, et al. 3D Virtual modelling, 3D printing and extended reality for planning of implant procedure of short-term and long-term mechanical circulatory support devices and heart transplantation. Front Cardiovasc Med. 2023;10:1191705.PubMedPubMedCentralCrossRef
22.
go back to reference Davies RR, Hussain T, Tandon A. Using virtual reality simulated implantation for fit-testing pediatric patients for adult ventricular assist devices. JTCVS Tech. 2021;6:134–7.PubMedCrossRef Davies RR, Hussain T, Tandon A. Using virtual reality simulated implantation for fit-testing pediatric patients for adult ventricular assist devices. JTCVS Tech. 2021;6:134–7.PubMedCrossRef
23.
go back to reference Ramaswamy RK, Marimuthu SK, Ramarathnam KK, Vijayasekharan S, Rao KGS, Balakrishnan KR. Virtual reality-guided left ventricular assist device implantation in pediatric patient: Valuable presurgical tool. Ann Pediatr Cardiol. 2021;14(3):388–92.PubMedPubMedCentralCrossRef Ramaswamy RK, Marimuthu SK, Ramarathnam KK, Vijayasekharan S, Rao KGS, Balakrishnan KR. Virtual reality-guided left ventricular assist device implantation in pediatric patient: Valuable presurgical tool. Ann Pediatr Cardiol. 2021;14(3):388–92.PubMedPubMedCentralCrossRef
25.
go back to reference Liu J, Al’Aref SJ, Singh G, Caprio A, Moghadam AAA, Jang SJ, et al. An augmented reality system for image guidance of transcatheter procedures for structural heart disease. PLoS ONE. 2019;14(7):e0219174.PubMedPubMedCentralCrossRef Liu J, Al’Aref SJ, Singh G, Caprio A, Moghadam AAA, Jang SJ, et al. An augmented reality system for image guidance of transcatheter procedures for structural heart disease. PLoS ONE. 2019;14(7):e0219174.PubMedPubMedCentralCrossRef
26.
go back to reference Chu MW, Moore J, Peters T, Bainbridge D, McCarty D, Guiraudon GM, et al. Augmented reality image guidance improves navigation for beating heart mitral valve repair. Innovations (Phila). 2012;7(4):274–81.PubMedCrossRef Chu MW, Moore J, Peters T, Bainbridge D, McCarty D, Guiraudon GM, et al. Augmented reality image guidance improves navigation for beating heart mitral valve repair. Innovations (Phila). 2012;7(4):274–81.PubMedCrossRef
27.
go back to reference Bruckheimer E, Rotschild C. Holography for imaging in structural heart disease. EuroIntervention. 2016;12 Suppl X:X81–X4.PubMedCrossRef Bruckheimer E, Rotschild C. Holography for imaging in structural heart disease. EuroIntervention. 2016;12 Suppl X:X81–X4.PubMedCrossRef
28.
go back to reference Currie ME, McLeod AJ, Moore JT, Chu MW, Patel R, Kiaii B, et al. Augmented reality system for ultrasound guidance of transcatheter aortic valve implantation. Innovations (Phila). 2016;11(1):31–9; discussion 9. Currie ME, McLeod AJ, Moore JT, Chu MW, Patel R, Kiaii B, et al. Augmented reality system for ultrasound guidance of transcatheter aortic valve implantation. Innovations (Phila). 2016;11(1):31–9; discussion 9.
29.
go back to reference Butera G, Sturla F, Pluchinotta FR, Caimi A, Carminati M. Holographic augmented reality and 3D printing for advanced planning of sinus venosus ASD/partial anomalous pulmonary venous return percutaneous management. JACC Cardiovasc Interv. 2019;12(14):1389–91.PubMedCrossRef Butera G, Sturla F, Pluchinotta FR, Caimi A, Carminati M. Holographic augmented reality and 3D printing for advanced planning of sinus venosus ASD/partial anomalous pulmonary venous return percutaneous management. JACC Cardiovasc Interv. 2019;12(14):1389–91.PubMedCrossRef
30.
go back to reference Zbronski K, Rymuza B, Scislo P, Kochman J, Huczek Z. Augmented reality in left atrial appendage occlusion. Kardiol Pol. 2018;76(1):212.PubMedCrossRef Zbronski K, Rymuza B, Scislo P, Kochman J, Huczek Z. Augmented reality in left atrial appendage occlusion. Kardiol Pol. 2018;76(1):212.PubMedCrossRef
31.
go back to reference Bruckheimer E, Rotschild C. Holography in congenital heart disease: Diagnosis and transcatheter treatment. In: Butera G, Chessa M, Eicken A, Thomson JD, editors. Atlas of cardiac catheterization for congenital heart disease. Cham: Springer International Publishing; 2019. p. 383–6.CrossRef Bruckheimer E, Rotschild C. Holography in congenital heart disease: Diagnosis and transcatheter treatment. In: Butera G, Chessa M, Eicken A, Thomson JD, editors. Atlas of cardiac catheterization for congenital heart disease. Cham: Springer International Publishing; 2019. p. 383–6.CrossRef
33.
go back to reference Deng S, Wheeler G, Toussaint N, Munroe L, Bhattacharya S, Sajith G, et al. A virtual reality system for improved image-based planning of complex cardiac procedures. J Imaging. 2021;7(8). Deng S, Wheeler G, Toussaint N, Munroe L, Bhattacharya S, Sajith G, et al. A virtual reality system for improved image-based planning of complex cardiac procedures. J Imaging. 2021;7(8).
34.
go back to reference Raimondi F, Vida V, Godard C, Bertelli F, Reffo E, Boddaert N, et al. Fast-track virtual reality for cardiac imaging in congenital heart disease. J Card Surg. 2021;36(7):2598–602.PubMedCrossRef Raimondi F, Vida V, Godard C, Bertelli F, Reffo E, Boddaert N, et al. Fast-track virtual reality for cardiac imaging in congenital heart disease. J Card Surg. 2021;36(7):2598–602.PubMedCrossRef
35.
go back to reference Kim B, Loke YH, Mass P, Irwin MR, Capeland C, Olivieri L, et al. A novel virtual reality medical image display system for group discussions of congenital heart disease: Development and usability testing. JMIR Cardio. 2020;4(1):e20633.PubMedPubMedCentralCrossRef Kim B, Loke YH, Mass P, Irwin MR, Capeland C, Olivieri L, et al. A novel virtual reality medical image display system for group discussions of congenital heart disease: Development and usability testing. JMIR Cardio. 2020;4(1):e20633.PubMedPubMedCentralCrossRef
36.
go back to reference Patel N, Costa A, Sanders SP, Ezon D. Stereoscopic virtual reality does not improve knowledge acquisition of congenital heart disease. Int J Cardiovasc Imaging. 2021;37(7):2283–90.PubMedCrossRef Patel N, Costa A, Sanders SP, Ezon D. Stereoscopic virtual reality does not improve knowledge acquisition of congenital heart disease. Int J Cardiovasc Imaging. 2021;37(7):2283–90.PubMedCrossRef
37.
go back to reference Lau I, Gupta A, Sun Z. Clinical value of virtual reality versus 3D printing in congenital heart disease. Biomolecules. 2021;11(6). Lau I, Gupta A, Sun Z. Clinical value of virtual reality versus 3D printing in congenital heart disease. Biomolecules. 2021;11(6).
38.
go back to reference Milano EG, Pajaziti E, Schievano S, Cook A, Capelli C. P369 Patient specific virtual reality for education in congenital heart disease. Eur Heart J Cardiovasc Imaging. 2020;21(Supplement_1). Milano EG, Pajaziti E, Schievano S, Cook A, Capelli C. P369 Patient specific virtual reality for education in congenital heart disease. Eur Heart J Cardiovasc Imaging. 2020;21(Supplement_1).
39.
go back to reference Ong CS, Krishnan A, Huang CY, Spevak P, Vricella L, Hibino N, et al. Role of virtual reality in congenital heart disease. Congenit Heart Dis. 2018;13(3):357–61.PubMedCrossRef Ong CS, Krishnan A, Huang CY, Spevak P, Vricella L, Hibino N, et al. Role of virtual reality in congenital heart disease. Congenit Heart Dis. 2018;13(3):357–61.PubMedCrossRef
40.
go back to reference Sadeghi AH, Maat A, Taverne Y, Cornelissen R, Dingemans AC, Bogers A, et al. Virtual reality and artificial intelligence for 3-dimensional planning of lung segmentectomies. JTCVS Tech. 2021;7:309–21.PubMedPubMedCentralCrossRef Sadeghi AH, Maat A, Taverne Y, Cornelissen R, Dingemans AC, Bogers A, et al. Virtual reality and artificial intelligence for 3-dimensional planning of lung segmentectomies. JTCVS Tech. 2021;7:309–21.PubMedPubMedCentralCrossRef
41.
go back to reference van de Woestijne PC, Bakhuis W, Sadeghi AH, Peek JJ, Taverne Y, Bogers A. 3D virtual reality imaging of major aortopulmonary collateral arteries: A novel diagnostic modality. World J Pediatr Congenit Heart Surg. 2021;12(6):765–72.PubMedPubMedCentralCrossRef van de Woestijne PC, Bakhuis W, Sadeghi AH, Peek JJ, Taverne Y, Bogers A. 3D virtual reality imaging of major aortopulmonary collateral arteries: A novel diagnostic modality. World J Pediatr Congenit Heart Surg. 2021;12(6):765–72.PubMedPubMedCentralCrossRef
42.
go back to reference • Franson D, Dupuis A, Gulani V, Griswold M, Seiberlich N. A system for real-time, online mixed-reality visualization of cardiac magnetic resonance images. J Imaging. 2021;7(12):274. The work from this paper demonstrates real time system which allows users to view a mixed-reality with cardaic MRI that is shorter than the acquisition time.PubMedPubMedCentralCrossRef • Franson D, Dupuis A, Gulani V, Griswold M, Seiberlich N. A system for real-time, online mixed-reality visualization of cardiac magnetic resonance images. J Imaging. 2021;7(12):274. The work from this paper demonstrates real time system which allows users to view a mixed-reality with cardaic MRI that is shorter than the acquisition time.PubMedPubMedCentralCrossRef
43.
go back to reference Bindschadler M, Buddhe S, Ferguson MR, Jones T, Friedman SD, Otto RK. HEARTBEAT4D: An open-source toolbox for turning 4D cardiac CT into VR/AR. J Digit Imaging. 2022;35(6):1759–67.PubMedPubMedCentralCrossRef Bindschadler M, Buddhe S, Ferguson MR, Jones T, Friedman SD, Otto RK. HEARTBEAT4D: An open-source toolbox for turning 4D cardiac CT into VR/AR. J Digit Imaging. 2022;35(6):1759–67.PubMedPubMedCentralCrossRef
44.
go back to reference Aeckersberg G, Gkremoutis A, Schmitz-Rixen T, Kaiser E. The relevance of low-fidelity virtual reality simulators compared with other learning methods in basic endovascular skills training. J Vasc Surg. 2019;69(1):227–35.PubMedCrossRef Aeckersberg G, Gkremoutis A, Schmitz-Rixen T, Kaiser E. The relevance of low-fidelity virtual reality simulators compared with other learning methods in basic endovascular skills training. J Vasc Surg. 2019;69(1):227–35.PubMedCrossRef
45.
go back to reference Andersen NL, Jensen RO, Posth S, Laursen CB, Jørgensen R, Graumann O. Teaching ultrasound-guided peripheral venous catheter placement through immersive virtual reality: An explorative pilot study. Medicine (Baltimore). 2021;100(27):e26394.PubMedCrossRef Andersen NL, Jensen RO, Posth S, Laursen CB, Jørgensen R, Graumann O. Teaching ultrasound-guided peripheral venous catheter placement through immersive virtual reality: An explorative pilot study. Medicine (Baltimore). 2021;100(27):e26394.PubMedCrossRef
46.
go back to reference Arshad I, De Mello P, Ender M, McEwen JD, Ferré ER. Reducing cybersickness in 360-degree virtual reality. Multisens Res. 2021:1–17. Arshad I, De Mello P, Ender M, McEwen JD, Ferré ER. Reducing cybersickness in 360-degree virtual reality. Multisens Res. 2021:1–17.
47.
go back to reference Jung C, Wolff G, Wernly B, Bruno RR, Franz M, Schulze PC, et al. Virtual and augmented reality in cardiovascular care: State-of-the-art and future perspectives. JACC Cardiovasc Imaging. 2022;15(3):519–32.PubMedCrossRef Jung C, Wolff G, Wernly B, Bruno RR, Franz M, Schulze PC, et al. Virtual and augmented reality in cardiovascular care: State-of-the-art and future perspectives. JACC Cardiovasc Imaging. 2022;15(3):519–32.PubMedCrossRef
48.
go back to reference Mahtab EAF, Egorova AD. Current and future applications of virtual reality technology for cardiac interventions. Nat Rev Cardiol. 2022;19(12):779–80.PubMedPubMedCentralCrossRef Mahtab EAF, Egorova AD. Current and future applications of virtual reality technology for cardiac interventions. Nat Rev Cardiol. 2022;19(12):779–80.PubMedPubMedCentralCrossRef
49.
go back to reference •• Pezel T, Coisne A, Bonnet G, Martins RP, Adjedj J, Biere L, et al. Simulation-based training in cardiology: State-of-the-art review from the French Commission of Simulation Teaching (Commission d’enseignement par simulation-COMSI) of the French Society of Cardiology. Arch Cardiovasc Dis. 2021;114(1):73–84. This study showed that simulation learning is an important learning tool in different aspects of cardiology.PubMedCrossRef •• Pezel T, Coisne A, Bonnet G, Martins RP, Adjedj J, Biere L, et al. Simulation-based training in cardiology: State-of-the-art review from the French Commission of Simulation Teaching (Commission d’enseignement par simulation-COMSI) of the French Society of Cardiology. Arch Cardiovasc Dis. 2021;114(1):73–84. This study showed that simulation learning is an important learning tool in different aspects of cardiology.PubMedCrossRef
50.
go back to reference Spiegel B, Fuller G, Lopez M, Dupuy T, Noah B, Howard A, et al. Virtual reality for management of pain in hospitalized patients: A randomized comparative effectiveness trial. PLoS ONE. 2019;14(8):e0219115.PubMedPubMedCentralCrossRef Spiegel B, Fuller G, Lopez M, Dupuy T, Noah B, Howard A, et al. Virtual reality for management of pain in hospitalized patients: A randomized comparative effectiveness trial. PLoS ONE. 2019;14(8):e0219115.PubMedPubMedCentralCrossRef
Metadata
Title
Use of Virtual Reality and 3D Models in Contemporary Practice of Cardiology
Authors
Iva Minga
Mohammad A. Al-Ani
Sarah Moharem-Elgamal
Aswathy Vaikom House MD
Ahmed Sami Abuzaid MD
Michael Masoomi
Saima Mangi
Publication date
29-04-2024
Publisher
Springer US
Published in
Current Cardiology Reports
Print ISSN: 1523-3782
Electronic ISSN: 1534-3170
DOI
https://doi.org/10.1007/s11886-024-02061-2