Skip to main content
Top
Published in: European Journal of Drug Metabolism and Pharmacokinetics 3/2024

08-03-2024 | Artificial Intelligence | Systematic Review

Predicting Pharmacokinetics of Drugs Using Artificial Intelligence Tools: A Systematic Review

Authors: Mahnaz Ahmadi, Bahareh Alizadeh, Seyed Mohammad Ayyoubzadeh, Mahdiye Abiyarghamsari

Published in: European Journal of Drug Metabolism and Pharmacokinetics | Issue 3/2024

Login to get access

Abstract

Background and objective

Pharmacokinetic studies encompass the examination of the absorption, distribution, metabolism, and excretion of bioactive compounds. The pharmacokinetics of drugs exert a substantial influence on their efficacy and safety. Consequently, the investigation of pharmacokinetics holds great importance. However, laboratory-based assessment necessitates the use of numerous animals, various materials, and significant time. To mitigate these challenges, alternative methods such as artificial intelligence have emerged as a promising approach. This systematic review aims to review existing studies, focusing on the application of artificial intelligence tools in predicting the pharmacokinetics of drugs.

Methods

A pre-prepared search strategy based on related keywords was used to search different databases (PubMed, Scopus, Web of Science). The process involved combining articles, eliminating duplicates, and screening articles based on their titles, abstracts, and full text. Articles were selected based on inclusion and exclusion criteria. Then, the quality of the included articles was assessed using an appraisal tool.

Results

Ultimately, 23 relevant articles were included in this study. The clearance parameter received the highest level of investigation, followed by the  area under the concentration-time curve (AUC) parameter, in pharmacokinetic studies. Among the various models employed in the articles, Random Forest and eXtreme Gradient Boosting (XGBoost) emerged as the most commonly utilized ones. Generalized Linear Models and Elastic Nets (GLMnet) and Random Forest models showed the most performance in predicting clearance.

Conclusion

Overall, artificial intelligence tools offer a robust, rapid, and precise means of predicting various pharmacokinetic parameters based on a dataset containing information of patients or drugs.
Appendix
Available only for authorised users
Literature
2.
go back to reference Lucas AJ, Sproston JL, Barton P, Riley RJ. Estimating human ADME properties, pharmacokinetic parameters and likely clinical dose in drug discovery. Expert Opin Drug Discov. 2019;14(12):1313–27.CrossRefPubMed Lucas AJ, Sproston JL, Barton P, Riley RJ. Estimating human ADME properties, pharmacokinetic parameters and likely clinical dose in drug discovery. Expert Opin Drug Discov. 2019;14(12):1313–27.CrossRefPubMed
3.
go back to reference Eddershaw PJ, Beresford AP, Bayliss MK. ADME/PK as part of a rational approach to drug discovery. Drug Discov Today. 2000;5(9):409–14.CrossRefPubMed Eddershaw PJ, Beresford AP, Bayliss MK. ADME/PK as part of a rational approach to drug discovery. Drug Discov Today. 2000;5(9):409–14.CrossRefPubMed
4.
go back to reference Turfus S, Delgoda R, Picking D, Gurley B. Pharmacokinetics. In: Pharmacognosy: fundamentals, applications and strategy. The Netherlands, Amsterdam: Elsevier Inc; 2017. p. 495–512.CrossRef Turfus S, Delgoda R, Picking D, Gurley B. Pharmacokinetics. In: Pharmacognosy: fundamentals, applications and strategy. The Netherlands, Amsterdam: Elsevier Inc; 2017. p. 495–512.CrossRef
5.
go back to reference Lu Z, Kaspera R, Naritomi Y, Wang T. Dose finding in single dose studies by allometric scaling. In: Hock FJ, Gralinski MR, editors. Drug discovery and evaluation: methods in clinical pharmacology. Cham: Springer International Publishing; 2020. p. 671–81.CrossRef Lu Z, Kaspera R, Naritomi Y, Wang T. Dose finding in single dose studies by allometric scaling. In: Hock FJ, Gralinski MR, editors. Drug discovery and evaluation: methods in clinical pharmacology. Cham: Springer International Publishing; 2020. p. 671–81.CrossRef
6.
go back to reference Erhardtsen E. Pharmacokinetics of recombinant activated factor VII (rFVIIa). in Semin. Thromb. Hemost. 2000. Erhardtsen E. Pharmacokinetics of recombinant activated factor VII (rFVIIa). in Semin. Thromb. Hemost. 2000.
7.
go back to reference Kapalka GM. Nutritional and herbal therapies for children and adolescents: a handbook for mental health clinicians. Academic Press; 2009. Kapalka GM. Nutritional and herbal therapies for children and adolescents: a handbook for mental health clinicians. Academic Press; 2009.
8.
go back to reference Zhu X, Zhang M, Wen Y, Shang D. Machine learning advances the integration of covariates in population pharmacokinetic models: valproic acid as an example. Front Pharmacol. 2022;13: 994665.PubMedCentralCrossRefPubMed Zhu X, Zhang M, Wen Y, Shang D. Machine learning advances the integration of covariates in population pharmacokinetic models: valproic acid as an example. Front Pharmacol. 2022;13: 994665.PubMedCentralCrossRefPubMed
9.
go back to reference Kumar V, Faheem M, Lee KW. A decade of machine learning-based predictive models for human pharmacokinetics: advances and challenges. Drug Discov Today. 2022;27(2):529–37.CrossRefPubMed Kumar V, Faheem M, Lee KW. A decade of machine learning-based predictive models for human pharmacokinetics: advances and challenges. Drug Discov Today. 2022;27(2):529–37.CrossRefPubMed
10.
go back to reference Tang B-H, Guan Z, Allegaert K, et al. Drug clearance in neonates: a combination of population pharmacokinetic modelling and machine learning approaches to improve individual prediction. Clin Pharmacokinet. 2021;60(11):1435–48.CrossRefPubMed Tang B-H, Guan Z, Allegaert K, et al. Drug clearance in neonates: a combination of population pharmacokinetic modelling and machine learning approaches to improve individual prediction. Clin Pharmacokinet. 2021;60(11):1435–48.CrossRefPubMed
11.
go back to reference Labriffe M, Woillard J-B, Debord J, Marquet P. Machine learning algorithms to estimate everolimus exposure trained on simulated and patient pharmacokinetic profiles. CPT Pharmacomet Syst Pharmacol. 2022;11(8):1018–28.CrossRef Labriffe M, Woillard J-B, Debord J, Marquet P. Machine learning algorithms to estimate everolimus exposure trained on simulated and patient pharmacokinetic profiles. CPT Pharmacomet Syst Pharmacol. 2022;11(8):1018–28.CrossRef
12.
go back to reference Hughes JH, Keizer RJ. A hybrid machine learning/pharmacokinetic approach outperforms maximum a posteriori Bayesian estimation by selectively flattening model priors. CPT Pharmacomet Syst Pharmacol. 2021;10(10):1150–60.CrossRef Hughes JH, Keizer RJ. A hybrid machine learning/pharmacokinetic approach outperforms maximum a posteriori Bayesian estimation by selectively flattening model priors. CPT Pharmacomet Syst Pharmacol. 2021;10(10):1150–60.CrossRef
13.
go back to reference Mahesh B. Machine learning algorithms-a review. Int J Sci Res. 2020;9(1):381–6. Mahesh B. Machine learning algorithms-a review. Int J Sci Res. 2020;9(1):381–6.
14.
go back to reference Chicco D, Warrens MJ, Jurman G. The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Comput Sci. 2021;7: e623.PubMedCentralCrossRefPubMed Chicco D, Warrens MJ, Jurman G. The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Comput Sci. 2021;7: e623.PubMedCentralCrossRefPubMed
15.
go back to reference Hassan CAU, Khan MS, Shah MA. Comparison of machine learning algorithms in data classification. In 2018 24th international conference on automation and computing (ICAC). 2018. IEEE. Hassan CAU, Khan MS, Shah MA. Comparison of machine learning algorithms in data classification. In 2018 24th international conference on automation and computing (ICAC). 2018. IEEE.
16.
go back to reference Muhamedyev R, Yakunin K, Iskakov S et al. Comparative analysis of classification algorithms. In 2015 9th international conference on application of information and communication technologies (AICT). 2015. IEEE. Muhamedyev R, Yakunin K, Iskakov S et al. Comparative analysis of classification algorithms. In 2015 9th international conference on application of information and communication technologies (AICT). 2015. IEEE.
17.
go back to reference Nidhra S, Yanamadala M, Afzal W, Torkar R. Knowledge transfer challenges and mitigation strategies in global software development—a systematic literature review and industrial validation. Int J Inf Manage. 2013;33(2):333–55.CrossRef Nidhra S, Yanamadala M, Afzal W, Torkar R. Knowledge transfer challenges and mitigation strategies in global software development—a systematic literature review and industrial validation. Int J Inf Manage. 2013;33(2):333–55.CrossRef
18.
go back to reference Einarson KA, Bendtsen KM, Li K, et al. Molecular representations in machine-learning-based prediction of pk parameters for insulin analogs. ACS Omega. 2023;8(26):23566–78.PubMedCentralCrossRefPubMed Einarson KA, Bendtsen KM, Li K, et al. Molecular representations in machine-learning-based prediction of pk parameters for insulin analogs. ACS Omega. 2023;8(26):23566–78.PubMedCentralCrossRefPubMed
19.
go back to reference Obrezanova O, Martinsson A, Whitehead T, et al. Prediction of in vivo pharmacokinetic parameters and time-exposure curves in rats using machine learning from the chemical structure. Mol Pharm. 2022;19(5):1488–504.CrossRefPubMed Obrezanova O, Martinsson A, Whitehead T, et al. Prediction of in vivo pharmacokinetic parameters and time-exposure curves in rats using machine learning from the chemical structure. Mol Pharm. 2022;19(5):1488–504.CrossRefPubMed
20.
go back to reference Kwapien K, Nittinger E, He J, et al. Implications of additivity and nonadditivity for machine learning and deep learning models in drug design. ACS Omega. 2022;7(30):26573–81.PubMedCentralCrossRefPubMed Kwapien K, Nittinger E, He J, et al. Implications of additivity and nonadditivity for machine learning and deep learning models in drug design. ACS Omega. 2022;7(30):26573–81.PubMedCentralCrossRefPubMed
21.
go back to reference Destere A, Marquet P, Labriffe M, et al. A hybrid algorithm combining population pharmacokinetic and machine learning for isavuconazole exposure prediction. Pharm Res. 2023;40(4):951–9.CrossRefPubMed Destere A, Marquet P, Labriffe M, et al. A hybrid algorithm combining population pharmacokinetic and machine learning for isavuconazole exposure prediction. Pharm Res. 2023;40(4):951–9.CrossRefPubMed
22.
go back to reference Kamiya Y, Handa K, Miura T, et al. Machine learning prediction of the three main input parameters of a simplified physiologically based pharmacokinetic model subsequently used to generate time-dependent plasma concentration data in humans after oral doses of 212 disparate chemicals. Biol Pharm Bull. 2022;45(1):124–8.CrossRefPubMed Kamiya Y, Handa K, Miura T, et al. Machine learning prediction of the three main input parameters of a simplified physiologically based pharmacokinetic model subsequently used to generate time-dependent plasma concentration data in humans after oral doses of 212 disparate chemicals. Biol Pharm Bull. 2022;45(1):124–8.CrossRefPubMed
23.
go back to reference Wang X, Liu M, Zhang L, et al. Optimizing pharmacokinetic property prediction based on integrated datasets and a deep learning approach. J Chem Inf Model. 2020;60(10):4603–13.CrossRefPubMed Wang X, Liu M, Zhang L, et al. Optimizing pharmacokinetic property prediction based on integrated datasets and a deep learning approach. J Chem Inf Model. 2020;60(10):4603–13.CrossRefPubMed
24.
go back to reference Karalis VD. Machine learning in bioequivalence: towards identifying an appropriate measure of absorption rate. Appl Sci. 2022;13(1):418.CrossRef Karalis VD. Machine learning in bioequivalence: towards identifying an appropriate measure of absorption rate. Appl Sci. 2022;13(1):418.CrossRef
25.
go back to reference Hsiao Y-W, Fagerholm U, Norinder U. In silico categorization of in vivo intrinsic clearance using machine learning. Mol Pharm. 2013;10(4):1318–21.CrossRefPubMed Hsiao Y-W, Fagerholm U, Norinder U. In silico categorization of in vivo intrinsic clearance using machine learning. Mol Pharm. 2013;10(4):1318–21.CrossRefPubMed
26.
go back to reference Li X, Tang L, Li Z, et al. Prediction of ADMET properties of anti-breast cancer compounds using three machine learning algorithms. Molecules. 2023;28(5):2326.PubMedCentralCrossRefPubMed Li X, Tang L, Li Z, et al. Prediction of ADMET properties of anti-breast cancer compounds using three machine learning algorithms. Molecules. 2023;28(5):2326.PubMedCentralCrossRefPubMed
27.
go back to reference Yang L, Jin C, Yang G, et al. Transformer-based deep learning method for optimizing ADMET properties of lead compounds. Phys Chem Chem Phys. 2023;25(3):2377–85.CrossRefPubMed Yang L, Jin C, Yang G, et al. Transformer-based deep learning method for optimizing ADMET properties of lead compounds. Phys Chem Chem Phys. 2023;25(3):2377–85.CrossRefPubMed
28.
go back to reference Destere A, Marquet P, Gandonnière CS, et al. A hybrid model associating population pharmacokinetics with machine learning: a case study with iohexol clearance estimation. Clin Pharmacokinet. 2022;61(8):1157–65.CrossRefPubMed Destere A, Marquet P, Gandonnière CS, et al. A hybrid model associating population pharmacokinetics with machine learning: a case study with iohexol clearance estimation. Clin Pharmacokinet. 2022;61(8):1157–65.CrossRefPubMed
29.
go back to reference Brereton AE, MacKinnon S, Safikhani Z, et al. Predicting drug properties with parameter-free machine learning: pareto-optimal embedded modeling (POEM). Mach Learn Sci Technol. 2020;1(2):025008.CrossRef Brereton AE, MacKinnon S, Safikhani Z, et al. Predicting drug properties with parameter-free machine learning: pareto-optimal embedded modeling (POEM). Mach Learn Sci Technol. 2020;1(2):025008.CrossRef
30.
go back to reference Wang X, Sun Y, Ling L, et al. Gaultheria leucocarpa var. yunnanensis for treating rheumatoid arthritis—an assessment combining machine learning-guided ADME properties prediction, network pharmacology, and pharmacological assessment. Front Pharmacol. 2021;12:704040.PubMedCentralCrossRefPubMed Wang X, Sun Y, Ling L, et al. Gaultheria leucocarpa var. yunnanensis for treating rheumatoid arthritis—an assessment combining machine learning-guided ADME properties prediction, network pharmacology, and pharmacological assessment. Front Pharmacol. 2021;12:704040.PubMedCentralCrossRefPubMed
31.
32.
go back to reference Keutzer L, You H, Farnoud A, et al. Machine learning and pharmacometrics for prediction of pharmacokinetic data: differences, similarities and challenges illustrated with rifampicin. Pharmaceutics. 2022;14(8):1530.PubMedCentralCrossRefPubMed Keutzer L, You H, Farnoud A, et al. Machine learning and pharmacometrics for prediction of pharmacokinetic data: differences, similarities and challenges illustrated with rifampicin. Pharmaceutics. 2022;14(8):1530.PubMedCentralCrossRefPubMed
33.
go back to reference Cobre A, Böger B, Fachi MM, et al. Machine learning-based virtual screening, molecular docking, drug-likeness, pharmacokinetics and toxicity analyses to identify new natural inhibitors of the glycoprotein spike (S1) of SARS-CoV-2. Quím Nova. 2023;46(5):450–59. Cobre A, Böger B, Fachi MM, et al. Machine learning-based virtual screening, molecular docking, drug-likeness, pharmacokinetics and toxicity analyses to identify new natural inhibitors of the glycoprotein spike (S1) of SARS-CoV-2. Quím Nova. 2023;46(5):450–59.
34.
go back to reference Hughes JH, Keizer RJ. A hybrid machine learning/pharmacokinetic approach outperforms maximum a posteriori Bayesian estimation by selectively flattening model priors. Cpt-Pharmacomet Syst Pharmacol. 2021;10(10):1150–60.CrossRef Hughes JH, Keizer RJ. A hybrid machine learning/pharmacokinetic approach outperforms maximum a posteriori Bayesian estimation by selectively flattening model priors. Cpt-Pharmacomet Syst Pharmacol. 2021;10(10):1150–60.CrossRef
35.
go back to reference Iwata H, Matsuo T, Mamada H, et al. Prediction of total drug clearance in humans using animal data: proposal of a multimodal learning method based on deep learning. J Pharm Sci. 2021;110(4):1834–41.CrossRefPubMed Iwata H, Matsuo T, Mamada H, et al. Prediction of total drug clearance in humans using animal data: proposal of a multimodal learning method based on deep learning. J Pharm Sci. 2021;110(4):1834–41.CrossRefPubMed
36.
go back to reference Iwata H, Matsuo T, Mamada H, et al. Predicting total drug clearance and volumes of distribution using the machine learning-mediated multimodal method through the imputation of various nonclinical data. J Chem Inf Model. 2022;62(17):4057–65.PubMedCentralCrossRefPubMed Iwata H, Matsuo T, Mamada H, et al. Predicting total drug clearance and volumes of distribution using the machine learning-mediated multimodal method through the imputation of various nonclinical data. J Chem Inf Model. 2022;62(17):4057–65.PubMedCentralCrossRefPubMed
38.
go back to reference Ponthier L, Marquet P, Moes DJA, et al. Application of machine learning to predict tacrolimus exposure in liver and kidney transplant patients given the MeltDose formulation. Eur J Clin Pharmacol. 2023;79(2):311–9.CrossRefPubMed Ponthier L, Marquet P, Moes DJA, et al. Application of machine learning to predict tacrolimus exposure in liver and kidney transplant patients given the MeltDose formulation. Eur J Clin Pharmacol. 2023;79(2):311–9.CrossRefPubMed
39.
go back to reference Hirsh J, Warkentin TE, Dalen JE, et al. Heparin: mechanism of action, pharmacokinetics, dosing considerations, monitoring, efficacy, and safety. Chest. 1995;108(4):258S-275S.CrossRefPubMed Hirsh J, Warkentin TE, Dalen JE, et al. Heparin: mechanism of action, pharmacokinetics, dosing considerations, monitoring, efficacy, and safety. Chest. 1995;108(4):258S-275S.CrossRefPubMed
40.
go back to reference Benedetti MS, Whomsley R, Poggesi I, et al. Drug metabolism and pharmacokinetics. Drug Metab Rev. 2009;41(3):344–90.CrossRefPubMed Benedetti MS, Whomsley R, Poggesi I, et al. Drug metabolism and pharmacokinetics. Drug Metab Rev. 2009;41(3):344–90.CrossRefPubMed
41.
go back to reference Rowland M, Benet LZ, Graham GG. Clearance concepts in pharmacokinetics. J Pharmacokinet Biopharm. 1973;1(2):123–36.CrossRefPubMed Rowland M, Benet LZ, Graham GG. Clearance concepts in pharmacokinetics. J Pharmacokinet Biopharm. 1973;1(2):123–36.CrossRefPubMed
42.
go back to reference Urso R, Blardi P, Giorgi G. A short introduction to pharmacokinetics. Eur Rev Med Pharmacol Sci. 2002;6:33–44.PubMed Urso R, Blardi P, Giorgi G. A short introduction to pharmacokinetics. Eur Rev Med Pharmacol Sci. 2002;6:33–44.PubMed
43.
go back to reference Han YR, Lee PI, Pang KS. Finding Tmax and Cmax in multicompartmental models. Drug Metab Disposition. 2018;46(11):1796–804.CrossRef Han YR, Lee PI, Pang KS. Finding Tmax and Cmax in multicompartmental models. Drug Metab Disposition. 2018;46(11):1796–804.CrossRef
44.
go back to reference Smith DA, Beaumont K, Maurer TS, Di L. Volume of distribution in drug design. J Med Chem. 2015;58(15):5691–8.CrossRefPubMed Smith DA, Beaumont K, Maurer TS, Di L. Volume of distribution in drug design. J Med Chem. 2015;58(15):5691–8.CrossRefPubMed
45.
go back to reference Krauss C, Do XA, Huck N. Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500. Eur J Oper Res. 2017;259(2):689–702.CrossRef Krauss C, Do XA, Huck N. Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500. Eur J Oper Res. 2017;259(2):689–702.CrossRef
47.
go back to reference Gupta B, Rawat A, Jain A, et al. Analysis of various decision tree algorithms for classification in data mining. Int J Comput Appl. 2017;163(8):15–9. Gupta B, Rawat A, Jain A, et al. Analysis of various decision tree algorithms for classification in data mining. Int J Comput Appl. 2017;163(8):15–9.
Metadata
Title
Predicting Pharmacokinetics of Drugs Using Artificial Intelligence Tools: A Systematic Review
Authors
Mahnaz Ahmadi
Bahareh Alizadeh
Seyed Mohammad Ayyoubzadeh
Mahdiye Abiyarghamsari
Publication date
08-03-2024
Publisher
Springer International Publishing
Published in
European Journal of Drug Metabolism and Pharmacokinetics / Issue 3/2024
Print ISSN: 0378-7966
Electronic ISSN: 2107-0180
DOI
https://doi.org/10.1007/s13318-024-00883-7

Other articles of this Issue 3/2024

European Journal of Drug Metabolism and Pharmacokinetics 3/2024 Go to the issue