Skip to main content
Top
Published in: Journal of Hematology & Oncology 1/2023

Open Access 01-12-2023 | Artificial Intelligence | Review

Novel research and future prospects of artificial intelligence in cancer diagnosis and treatment

Authors: Chaoyi Zhang, Jin Xu, Rong Tang, Jianhui Yang, Wei Wang, Xianjun Yu, Si Shi

Published in: Journal of Hematology & Oncology | Issue 1/2023

Login to get access

Abstract

Research into the potential benefits of artificial intelligence for comprehending the intricate biology of cancer has grown as a result of the widespread use of deep learning and machine learning in the healthcare sector and the availability of highly specialized cancer datasets. Here, we review new artificial intelligence approaches and how they are being used in oncology. We describe how artificial intelligence might be used in the detection, prognosis, and administration of cancer treatments and introduce the use of the latest large language models such as ChatGPT in oncology clinics. We highlight artificial intelligence applications for omics data types, and we offer perspectives on how the various data types might be combined to create decision-support tools. We also evaluate the present constraints and challenges to applying artificial intelligence in precision oncology. Finally, we discuss how current challenges may be surmounted to make artificial intelligence useful in clinical settings in the future.
Literature
1.
go back to reference Bray F, Jemal A, Grey N, Ferlay J, Forman D. Global cancer transitions according to the human development index (2008–2030): a population-based study. Lancet Oncol. 2012;13(8):790–801.PubMedCrossRef Bray F, Jemal A, Grey N, Ferlay J, Forman D. Global cancer transitions according to the human development index (2008–2030): a population-based study. Lancet Oncol. 2012;13(8):790–801.PubMedCrossRef
2.
go back to reference The L. Global cancer: overcoming the narrative of despondency. Lancet (London, England). 2023;401(10374):319.CrossRef The L. Global cancer: overcoming the narrative of despondency. Lancet (London, England). 2023;401(10374):319.CrossRef
3.
go back to reference Moor J. The Dartmouth College artificial intelligence conference: the next fifty years. AI Mag. 2006;27(4):87–91. Moor J. The Dartmouth College artificial intelligence conference: the next fifty years. AI Mag. 2006;27(4):87–91.
4.
go back to reference Yu KH, Beam AL, Kohane IS. Artificial intelligence in healthcare. Nat Biomed Eng. 2018;2(10):719–31.PubMedCrossRef Yu KH, Beam AL, Kohane IS. Artificial intelligence in healthcare. Nat Biomed Eng. 2018;2(10):719–31.PubMedCrossRef
6.
go back to reference Zhou P, Cao Y, Li M, Ma Y, Chen C, Gan X, et al. HCCANet: histopathological image grading of colorectal cancer using CNN based on multichannel fusion attention mechanism. Sci Rep. 2022;12(1):15103.PubMedPubMedCentralCrossRef Zhou P, Cao Y, Li M, Ma Y, Chen C, Gan X, et al. HCCANet: histopathological image grading of colorectal cancer using CNN based on multichannel fusion attention mechanism. Sci Rep. 2022;12(1):15103.PubMedPubMedCentralCrossRef
7.
go back to reference Gould MK, Huang BZ, Tammemagi MC, Kinar Y, Shiff R. Machine learning for early lung cancer identification using routine clinical and laboratory data. Am J Respir Crit Care Med. 2021;204(4):445–53.PubMedCrossRef Gould MK, Huang BZ, Tammemagi MC, Kinar Y, Shiff R. Machine learning for early lung cancer identification using routine clinical and laboratory data. Am J Respir Crit Care Med. 2021;204(4):445–53.PubMedCrossRef
8.
go back to reference Liang J, He Y, Xie J, Fan X, Liu Y, Wen Q, et al. Mining electronic health records using artificial intelligence: Bibliometric and content analyses for current research status and product conversion. J Biomed Inform. 2023;146: 104480.PubMedCrossRef Liang J, He Y, Xie J, Fan X, Liu Y, Wen Q, et al. Mining electronic health records using artificial intelligence: Bibliometric and content analyses for current research status and product conversion. J Biomed Inform. 2023;146: 104480.PubMedCrossRef
9.
go back to reference Zhang G, Jiang Z, Zhu J, Dai T, He X, Liu X, et al. Innovative integration of augmented reality and optical surface imaging: a coarse-to-precise system for radiotherapy positioning. Med Phys. 2023;50(7):4505–20.PubMedCrossRef Zhang G, Jiang Z, Zhu J, Dai T, He X, Liu X, et al. Innovative integration of augmented reality and optical surface imaging: a coarse-to-precise system for radiotherapy positioning. Med Phys. 2023;50(7):4505–20.PubMedCrossRef
10.
go back to reference Yao Y, He L, Mei L, Weng Y, Huang J, Wei S, et al. Cell damage evaluation by intelligent imaging flow cytometry. Cytometry Part A : J Int Soci Anal Cytol. 2023;103(8):646–54.CrossRef Yao Y, He L, Mei L, Weng Y, Huang J, Wei S, et al. Cell damage evaluation by intelligent imaging flow cytometry. Cytometry Part A : J Int Soci Anal Cytol. 2023;103(8):646–54.CrossRef
11.
go back to reference DiSpirito A 3rd, Vu T, Pramanik M, Yao J. Sounding out the hidden data: a concise review of deep learning in photoacoustic imaging. Exp Biol Med (Maywood). 2021;246(12):1355–67.PubMedCrossRef DiSpirito A 3rd, Vu T, Pramanik M, Yao J. Sounding out the hidden data: a concise review of deep learning in photoacoustic imaging. Exp Biol Med (Maywood). 2021;246(12):1355–67.PubMedCrossRef
12.
go back to reference Silver FH, Mesica A, Gonzalez-Mercedes M, Deshmukh T. Identification of cancerous kin lesions using vibrational optical coherence tomography (VOCT): use of VOCT in conjunction with machine learning to diagnose skin cancer remotely using telemedicine. Cancers. 2022;15(1):156.PubMedPubMedCentralCrossRef Silver FH, Mesica A, Gonzalez-Mercedes M, Deshmukh T. Identification of cancerous kin lesions using vibrational optical coherence tomography (VOCT): use of VOCT in conjunction with machine learning to diagnose skin cancer remotely using telemedicine. Cancers. 2022;15(1):156.PubMedPubMedCentralCrossRef
13.
go back to reference Pérez-Cota F, Martínez-Arellano G, La Cavera III S, Hardiman W, Thornton L, Fuentes-Domínguez R, et al. Classification of cancer cells at the sub-cellular level by phonon microscopy using deep learning. Sci Rep. 2023;13(1):16228.PubMedPubMedCentralCrossRef Pérez-Cota F, Martínez-Arellano G, La Cavera III S, Hardiman W, Thornton L, Fuentes-Domínguez R, et al. Classification of cancer cells at the sub-cellular level by phonon microscopy using deep learning. Sci Rep. 2023;13(1):16228.PubMedPubMedCentralCrossRef
14.
go back to reference Niehues JM, Quirke P, West NP, Grabsch HI, van Treeck M, Schirris Y, et al. Generalizable biomarker prediction from cancer pathology slides with self-supervised deep learning: a retrospective multi-centric study. Cell reports Medicine. 2023;4(4): 100980.PubMedPubMedCentralCrossRef Niehues JM, Quirke P, West NP, Grabsch HI, van Treeck M, Schirris Y, et al. Generalizable biomarker prediction from cancer pathology slides with self-supervised deep learning: a retrospective multi-centric study. Cell reports Medicine. 2023;4(4): 100980.PubMedPubMedCentralCrossRef
15.
go back to reference Rönnau MM, Lepper TW, Amaral LN, Rados PV, Oliveira MM. A CNN-based approach for joint segmentation and quantification of nuclei and NORs in AgNOR-stained images. Comput Methods Programs Biomed. 2023;242: 107788.PubMedCrossRef Rönnau MM, Lepper TW, Amaral LN, Rados PV, Oliveira MM. A CNN-based approach for joint segmentation and quantification of nuclei and NORs in AgNOR-stained images. Comput Methods Programs Biomed. 2023;242: 107788.PubMedCrossRef
16.
go back to reference Balasubramaniam S, Velmurugan Y, Jaganathan D, Dhanasekaran S. A modified LeNet CNN for breast cancer diagnosis in ultrasound images. Diagnostics (Basel, Switzerland). 2023;13(17):2746.PubMedPubMedCentral Balasubramaniam S, Velmurugan Y, Jaganathan D, Dhanasekaran S. A modified LeNet CNN for breast cancer diagnosis in ultrasound images. Diagnostics (Basel, Switzerland). 2023;13(17):2746.PubMedPubMedCentral
17.
go back to reference Tang Z, Li Z, Hou T, Zhang T, Yang B, Su J, et al. SiGra: single-cell spatial elucidation through an image-augmented graph transformer. Nat Commun. 2023;14(1):5618.PubMedPubMedCentralCrossRef Tang Z, Li Z, Hou T, Zhang T, Yang B, Su J, et al. SiGra: single-cell spatial elucidation through an image-augmented graph transformer. Nat Commun. 2023;14(1):5618.PubMedPubMedCentralCrossRef
18.
go back to reference Azad R, Kazerouni A, Heidari M, Aghdam EK, Molaei A, Jia Y, et al. Advances in medical image analysis with vision transformers: a comprehensive review. Med Image Anal. 2023;91: 103000.PubMedCrossRef Azad R, Kazerouni A, Heidari M, Aghdam EK, Molaei A, Jia Y, et al. Advances in medical image analysis with vision transformers: a comprehensive review. Med Image Anal. 2023;91: 103000.PubMedCrossRef
19.
go back to reference Li X, Fang X, Yang G, Su S, Zhu L, Yu Z. TransU2-Net: an effective medical image segmentation framework based on transformer and U2-Net. IEEE J Transl Eng Health Med. 2023;11:441–50.PubMedCrossRef Li X, Fang X, Yang G, Su S, Zhu L, Yu Z. TransU2-Net: an effective medical image segmentation framework based on transformer and U2-Net. IEEE J Transl Eng Health Med. 2023;11:441–50.PubMedCrossRef
20.
go back to reference Dascalu A, David EO. Skin cancer detection by deep learning and sound analysis algorithms: a prospective clinical study of an elementary dermoscope. EBioMedicine. 2019;43:107–13.PubMedPubMedCentralCrossRef Dascalu A, David EO. Skin cancer detection by deep learning and sound analysis algorithms: a prospective clinical study of an elementary dermoscope. EBioMedicine. 2019;43:107–13.PubMedPubMedCentralCrossRef
21.
go back to reference Walker BN, Rehg JM, Kalra A, Winters RM, Drews P, Dascalu J, et al. Dermoscopy diagnosis of cancerous lesions utilizing dual deep learning algorithms via visual and audio (sonification) outputs: laboratory and prospective observational studies. EBioMedicine. 2019;40:176–83.PubMedPubMedCentralCrossRef Walker BN, Rehg JM, Kalra A, Winters RM, Drews P, Dascalu J, et al. Dermoscopy diagnosis of cancerous lesions utilizing dual deep learning algorithms via visual and audio (sonification) outputs: laboratory and prospective observational studies. EBioMedicine. 2019;40:176–83.PubMedPubMedCentralCrossRef
22.
go back to reference Baltrusaitis T, Ahuja C, Morency LP. Multimodal machine learning: a survey and taxonomy. IEEE Trans Pattern Anal Mach Intell. 2019;41(2):423–43.PubMedCrossRef Baltrusaitis T, Ahuja C, Morency LP. Multimodal machine learning: a survey and taxonomy. IEEE Trans Pattern Anal Mach Intell. 2019;41(2):423–43.PubMedCrossRef
23.
go back to reference Mei X, Lee HC, Diao KY, Huang M, Lin B, Liu C, et al. Artificial intelligence-enabled rapid diagnosis of patients with COVID-19. Nat Med. 2020;26(8):1224–8.PubMedPubMedCentralCrossRef Mei X, Lee HC, Diao KY, Huang M, Lin B, Liu C, et al. Artificial intelligence-enabled rapid diagnosis of patients with COVID-19. Nat Med. 2020;26(8):1224–8.PubMedPubMedCentralCrossRef
24.
go back to reference Akselrod-Ballin A, Chorev M, Shoshan Y, Spiro A, Hazan A, Melamed R, et al. Predicting breast cancer by applying deep learning to linked health records and mammograms. Radiology. 2019;292(2):331–42.PubMedCrossRef Akselrod-Ballin A, Chorev M, Shoshan Y, Spiro A, Hazan A, Melamed R, et al. Predicting breast cancer by applying deep learning to linked health records and mammograms. Radiology. 2019;292(2):331–42.PubMedCrossRef
25.
go back to reference Zhang K, Liu X, Xu J, Yuan J, Cai W, Chen T, et al. Deep-learning models for the detection and incidence prediction of chronic kidney disease and type 2 diabetes from retinal fundus images. Nature Biomed Eng. 2021;5(6):533–45.CrossRef Zhang K, Liu X, Xu J, Yuan J, Cai W, Chen T, et al. Deep-learning models for the detection and incidence prediction of chronic kidney disease and type 2 diabetes from retinal fundus images. Nature Biomed Eng. 2021;5(6):533–45.CrossRef
26.
go back to reference Zhou HY, Yu Y, Wang C, Zhang S, Gao Y, Pan J, et al. A transformer-based representation-learning model with unified processing of multimodal input for clinical diagnostics. Nat Biomed Eng. 2023;7(6):743–55.PubMedCrossRef Zhou HY, Yu Y, Wang C, Zhang S, Gao Y, Pan J, et al. A transformer-based representation-learning model with unified processing of multimodal input for clinical diagnostics. Nat Biomed Eng. 2023;7(6):743–55.PubMedCrossRef
27.
go back to reference Moor M, Banerjee O, Abad ZSH, Krumholz HM, Leskovec J, Topol EJ, et al. Foundation models for generalist medical artificial intelligence. Nature. 2023;616(7956):259–65.PubMedCrossRef Moor M, Banerjee O, Abad ZSH, Krumholz HM, Leskovec J, Topol EJ, et al. Foundation models for generalist medical artificial intelligence. Nature. 2023;616(7956):259–65.PubMedCrossRef
28.
go back to reference Faiella E, Vertulli D, Esperto F, Cordelli E, Soda P, Muraca RM, et al. Quantib prostate compared to an expert radiologist for the diagnosis of prostate cancer on mpMRI: a single-center preliminary study. Tomography (Ann Arbor, Mich). 2022;8(4):2010–9.PubMedCrossRef Faiella E, Vertulli D, Esperto F, Cordelli E, Soda P, Muraca RM, et al. Quantib prostate compared to an expert radiologist for the diagnosis of prostate cancer on mpMRI: a single-center preliminary study. Tomography (Ann Arbor, Mich). 2022;8(4):2010–9.PubMedCrossRef
29.
go back to reference Eloy C, Marques A, Pinto J, Pinheiro J, Campelos S, Curado M, et al. Artificial intelligence-assisted cancer diagnosis improves the efficiency of pathologists in prostatic biopsies. Virchows Archiv : Int J Pathol. 2023;482(3):595–604.CrossRef Eloy C, Marques A, Pinto J, Pinheiro J, Campelos S, Curado M, et al. Artificial intelligence-assisted cancer diagnosis improves the efficiency of pathologists in prostatic biopsies. Virchows Archiv : Int J Pathol. 2023;482(3):595–604.CrossRef
30.
go back to reference Wang JY, Qu V, Hui C, Sandhu N, Mendoza MG, Panjwani N, et al. Stratified assessment of an FDA-cleared deep learning algorithm for automated detection and contouring of metastatic brain tumors in stereotactic radiosurgery. Radiat Oncol (London, England). 2023;18(1):61.CrossRef Wang JY, Qu V, Hui C, Sandhu N, Mendoza MG, Panjwani N, et al. Stratified assessment of an FDA-cleared deep learning algorithm for automated detection and contouring of metastatic brain tumors in stereotactic radiosurgery. Radiat Oncol (London, England). 2023;18(1):61.CrossRef
31.
go back to reference Seager A, Sharp L, Hampton JS, Neilson LJ, Lee TJW, Brand A, et al. Trial protocol for COLO-DETECT: a randomized controlled trial of lesion detection comparing colonoscopy assisted by the GI Genius™ artificial intelligence endoscopy module with standard colonoscopy. Colorectal disease: The Off J Assoc Coloproctol Great Britain and Ireland. 2022;24(10):1227–37.CrossRef Seager A, Sharp L, Hampton JS, Neilson LJ, Lee TJW, Brand A, et al. Trial protocol for COLO-DETECT: a randomized controlled trial of lesion detection comparing colonoscopy assisted by the GI Genius™ artificial intelligence endoscopy module with standard colonoscopy. Colorectal disease: The Off J Assoc Coloproctol Great Britain and Ireland. 2022;24(10):1227–37.CrossRef
32.
go back to reference Glissen Brown JR, Mansour NM, Wang P, Chuchuca MA, Minchenberg SB, Chandnani M, et al. Deep learning computer-aided polyp detection reduces adenoma miss rate: a United States Multi-center randomized tandem colonoscopy study (CADeT-CS Trial). Clin Gastroenterol Hepatol: Off Clin Pract J Am Gastroenterol Assoc. 2022;20(7):1499-507.e4.CrossRef Glissen Brown JR, Mansour NM, Wang P, Chuchuca MA, Minchenberg SB, Chandnani M, et al. Deep learning computer-aided polyp detection reduces adenoma miss rate: a United States Multi-center randomized tandem colonoscopy study (CADeT-CS Trial). Clin Gastroenterol Hepatol: Off Clin Pract J Am Gastroenterol Assoc. 2022;20(7):1499-507.e4.CrossRef
33.
go back to reference Eden KB, Ivlev I, Bensching KL, Franta G, Hersh AR, Case J, et al. Use of an online breast cancer risk assessment and patient decision aid in primary care practices. J Women’s Health. 2020;29(6):763–9.CrossRef Eden KB, Ivlev I, Bensching KL, Franta G, Hersh AR, Case J, et al. Use of an online breast cancer risk assessment and patient decision aid in primary care practices. J Women’s Health. 2020;29(6):763–9.CrossRef
34.
go back to reference Niehoff JH, Kalaitzidis J, Kroeger JR, Schoenbeck D, Borggrefe J, Michael AE. Evaluation of the clinical performance of an AI-based application for the automated analysis of chest X-rays. Sci Rep. 2023;13(1):3680.PubMedPubMedCentralCrossRef Niehoff JH, Kalaitzidis J, Kroeger JR, Schoenbeck D, Borggrefe J, Michael AE. Evaluation of the clinical performance of an AI-based application for the automated analysis of chest X-rays. Sci Rep. 2023;13(1):3680.PubMedPubMedCentralCrossRef
35.
go back to reference Kung TH, Cheatham M, Medenilla A, Sillos C, De Leon L, Elepaño C, et al. Performance of ChatGPT on USMLE: potential for AI-assisted medical education using large language models. PLOS digital health. 2023;2(2): e0000198.PubMedPubMedCentralCrossRef Kung TH, Cheatham M, Medenilla A, Sillos C, De Leon L, Elepaño C, et al. Performance of ChatGPT on USMLE: potential for AI-assisted medical education using large language models. PLOS digital health. 2023;2(2): e0000198.PubMedPubMedCentralCrossRef
36.
go back to reference Conant EF, Barlow WE, Herschorn SD, Weaver DL, Beaber EF, Tosteson ANA, et al. Association of digital breast tomosynthesis vs digital mammography with cancer detection and recall rates by age and breast density. JAMA Oncol. 2019;5(5):635–42.PubMedPubMedCentralCrossRef Conant EF, Barlow WE, Herschorn SD, Weaver DL, Beaber EF, Tosteson ANA, et al. Association of digital breast tomosynthesis vs digital mammography with cancer detection and recall rates by age and breast density. JAMA Oncol. 2019;5(5):635–42.PubMedPubMedCentralCrossRef
37.
go back to reference Hofvind S, Holen ÅS, Aase HS, Houssami N, Sebuødegård S, Moger TA, et al. Two-view digital breast tomosynthesis versus digital mammography in a population-based breast cancer screening programme (To-Be): a randomised, controlled trial. Lancet Oncol. 2019;20(6):795–805.PubMedCrossRef Hofvind S, Holen ÅS, Aase HS, Houssami N, Sebuødegård S, Moger TA, et al. Two-view digital breast tomosynthesis versus digital mammography in a population-based breast cancer screening programme (To-Be): a randomised, controlled trial. Lancet Oncol. 2019;20(6):795–805.PubMedCrossRef
38.
go back to reference Pattacini P, Nitrosi A, Giorgi Rossi P, Iotti V, Ginocchi V, Ravaioli S, et al. Digital mammography versus digital mammography plus tomosynthesis for breast cancer screening: the reggio emilia tomosynthesis randomized trial. Radiology. 2018;288(2):375–85.PubMedCrossRef Pattacini P, Nitrosi A, Giorgi Rossi P, Iotti V, Ginocchi V, Ravaioli S, et al. Digital mammography versus digital mammography plus tomosynthesis for breast cancer screening: the reggio emilia tomosynthesis randomized trial. Radiology. 2018;288(2):375–85.PubMedCrossRef
39.
go back to reference Dang PA, Freer PE, Humphrey KL, Halpern EF, Rafferty EA. Addition of tomosynthesis to conventional digital mammography: effect on image interpretation time of screening examinations. Radiology. 2014;270(1):49–56.PubMedCrossRef Dang PA, Freer PE, Humphrey KL, Halpern EF, Rafferty EA. Addition of tomosynthesis to conventional digital mammography: effect on image interpretation time of screening examinations. Radiology. 2014;270(1):49–56.PubMedCrossRef
40.
go back to reference Shoshan Y, Bakalo R, Gilboa-Solomon F, Ratner V, Barkan E, Ozery-Flato M, et al. Artificial intelligence for reducing workload in breast cancer screening with digital breast tomosynthesis. Radiology. 2022;303(1):69–77.PubMedCrossRef Shoshan Y, Bakalo R, Gilboa-Solomon F, Ratner V, Barkan E, Ozery-Flato M, et al. Artificial intelligence for reducing workload in breast cancer screening with digital breast tomosynthesis. Radiology. 2022;303(1):69–77.PubMedCrossRef
41.
go back to reference Nam JG, Hwang EJ, Kim J, Park N, Lee EH, Kim HJ, et al. AI Improves nodule detection on chest radiographs in a health screening population: a randomized controlled trial. Radiology. 2023;307(2): e221894.PubMedCrossRef Nam JG, Hwang EJ, Kim J, Park N, Lee EH, Kim HJ, et al. AI Improves nodule detection on chest radiographs in a health screening population: a randomized controlled trial. Radiology. 2023;307(2): e221894.PubMedCrossRef
42.
go back to reference Sim Y, Chung MJ, Kotter E, Yune S, Kim M, Do S, et al. Deep convolutional neural network-based software improves radiologist detection of malignant lung nodules on chest radiographs. Radiology. 2020;294(1):199–209.PubMedCrossRef Sim Y, Chung MJ, Kotter E, Yune S, Kim M, Do S, et al. Deep convolutional neural network-based software improves radiologist detection of malignant lung nodules on chest radiographs. Radiology. 2020;294(1):199–209.PubMedCrossRef
43.
go back to reference Yoo H, Kim KH, Singh R, Digumarthy SR, Kalra MK. Validation of a deep learning algorithm for the detection of malignant pulmonary nodules in chest radiographs. JAMA Netw Open. 2020;3(9): e2017135.PubMedPubMedCentralCrossRef Yoo H, Kim KH, Singh R, Digumarthy SR, Kalra MK. Validation of a deep learning algorithm for the detection of malignant pulmonary nodules in chest radiographs. JAMA Netw Open. 2020;3(9): e2017135.PubMedPubMedCentralCrossRef
44.
go back to reference Aberle DR, Adams AM, Berg CD, Black WC, Clapp JD, Fagerstrom RM, et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med. 2011;365(5):395–409.PubMedCrossRef Aberle DR, Adams AM, Berg CD, Black WC, Clapp JD, Fagerstrom RM, et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med. 2011;365(5):395–409.PubMedCrossRef
45.
go back to reference Lu MT, Raghu VK, Mayrhofer T, Aerts H, Hoffmann U. Deep learning using chest radiographs to identify high-risk smokers for lung cancer screening computed tomography: development and validation of a prediction model. Ann Intern Med. 2020;173(9):704–13.PubMedPubMedCentralCrossRef Lu MT, Raghu VK, Mayrhofer T, Aerts H, Hoffmann U. Deep learning using chest radiographs to identify high-risk smokers for lung cancer screening computed tomography: development and validation of a prediction model. Ann Intern Med. 2020;173(9):704–13.PubMedPubMedCentralCrossRef
46.
go back to reference Raghu VK, Walia AS, Zinzuwadia AN, Goiffon RJ, Shepard JO, Aerts H, et al. Validation of a deep learning-based model to predict lung cancer risk using chest radiographs and electronic medical record data. JAMA Netw Open. 2022;5(12): e2248793.PubMedPubMedCentralCrossRef Raghu VK, Walia AS, Zinzuwadia AN, Goiffon RJ, Shepard JO, Aerts H, et al. Validation of a deep learning-based model to predict lung cancer risk using chest radiographs and electronic medical record data. JAMA Netw Open. 2022;5(12): e2248793.PubMedPubMedCentralCrossRef
47.
go back to reference Huang P, Lin CT, Li Y, Tammemagi MC, Brock MV, Atkar-Khattra S, et al. Prediction of lung cancer risk at follow-up screening with low-dose CT: a training and validation study of a deep learning method. The Lancet Digital health. 2019;1(7):e353–62.PubMedPubMedCentralCrossRef Huang P, Lin CT, Li Y, Tammemagi MC, Brock MV, Atkar-Khattra S, et al. Prediction of lung cancer risk at follow-up screening with low-dose CT: a training and validation study of a deep learning method. The Lancet Digital health. 2019;1(7):e353–62.PubMedPubMedCentralCrossRef
48.
go back to reference Venkadesh KV, Setio AAA, Schreuder A, Scholten ET, Chung K, Wile MMW, et al. Deep learning for malignancy risk estimation of pulmonary nodules detected at low-dose screening CT. Radiology. 2021;300(2):438–47.PubMedCrossRef Venkadesh KV, Setio AAA, Schreuder A, Scholten ET, Chung K, Wile MMW, et al. Deep learning for malignancy risk estimation of pulmonary nodules detected at low-dose screening CT. Radiology. 2021;300(2):438–47.PubMedCrossRef
49.
go back to reference Mikhael PG, Wohlwend J, Yala A, Karstens L, Xiang J, Takigami AK, et al. Sybil: a validated deep learning model to predict future lung cancer risk from a single low-dose chest computed tomography. J Clin Oncol: Off J Am Soci Clin Oncol. 2023;41(12):2191–200.CrossRef Mikhael PG, Wohlwend J, Yala A, Karstens L, Xiang J, Takigami AK, et al. Sybil: a validated deep learning model to predict future lung cancer risk from a single low-dose chest computed tomography. J Clin Oncol: Off J Am Soci Clin Oncol. 2023;41(12):2191–200.CrossRef
50.
go back to reference Yi L, Zhang L, Xu X, Guo J. Multi-label softmax networks for pulmonary nodule classification using unbalanced and dependent categories. IEEE Trans Med Imaging. 2023;42(1):317–28.PubMedCrossRef Yi L, Zhang L, Xu X, Guo J. Multi-label softmax networks for pulmonary nodule classification using unbalanced and dependent categories. IEEE Trans Med Imaging. 2023;42(1):317–28.PubMedCrossRef
51.
go back to reference Luo X, Song T, Wang G, Chen J, Chen Y, Li K, et al. SCPM-Net: an anchor-free 3D lung nodule detection network using sphere representation and center points matching. Med Image Anal. 2022;75: 102287.PubMedCrossRef Luo X, Song T, Wang G, Chen J, Chen Y, Li K, et al. SCPM-Net: an anchor-free 3D lung nodule detection network using sphere representation and center points matching. Med Image Anal. 2022;75: 102287.PubMedCrossRef
52.
go back to reference Wang G, Qiu M, Xing X, Zhou J, Yao H, Li M, et al. Lung cancer scRNA-seq and lipidomics reveal aberrant lipid metabolism for early-stage diagnosis. Sci Transl Med. 2022;14(630):eabk2756.PubMedCrossRef Wang G, Qiu M, Xing X, Zhou J, Yao H, Li M, et al. Lung cancer scRNA-seq and lipidomics reveal aberrant lipid metabolism for early-stage diagnosis. Sci Transl Med. 2022;14(630):eabk2756.PubMedCrossRef
53.
go back to reference Hollon T, Jiang C, Chowdury A, Nasir-Moin M, Kondepudi A, Aabedi A, et al. Artificial-intelligence-based molecular classification of diffuse gliomas using rapid, label-free optical imaging. Nat Med. 2023;29(4):828–32.PubMedPubMedCentralCrossRef Hollon T, Jiang C, Chowdury A, Nasir-Moin M, Kondepudi A, Aabedi A, et al. Artificial-intelligence-based molecular classification of diffuse gliomas using rapid, label-free optical imaging. Nat Med. 2023;29(4):828–32.PubMedPubMedCentralCrossRef
54.
go back to reference Corley DA, Jensen CD, Marks AR, Zhao WK, Lee JK, Doubeni CA, et al. Adenoma detection rate and risk of colorectal cancer and death. N Engl J Med. 2014;370(14):1298–306.PubMedPubMedCentralCrossRef Corley DA, Jensen CD, Marks AR, Zhao WK, Lee JK, Doubeni CA, et al. Adenoma detection rate and risk of colorectal cancer and death. N Engl J Med. 2014;370(14):1298–306.PubMedPubMedCentralCrossRef
55.
go back to reference Sinonquel P, Eelbode T, Hassan C, Antonelli G, Filosofi F, Neumann H, et al. Real-time unblinding for validation of a new CADe tool for colorectal polyp detection. Gut. 2021;70(4):641–3.PubMedCrossRef Sinonquel P, Eelbode T, Hassan C, Antonelli G, Filosofi F, Neumann H, et al. Real-time unblinding for validation of a new CADe tool for colorectal polyp detection. Gut. 2021;70(4):641–3.PubMedCrossRef
56.
go back to reference Wesp P, Grosu S, Graser A, Maurus S, Schulz C, Knösel T, et al. Deep learning in CT colonography: differentiating premalignant from benign colorectal polyps. Eur Radiol. 2022;32(7):4749–59.PubMedPubMedCentralCrossRef Wesp P, Grosu S, Graser A, Maurus S, Schulz C, Knösel T, et al. Deep learning in CT colonography: differentiating premalignant from benign colorectal polyps. Eur Radiol. 2022;32(7):4749–59.PubMedPubMedCentralCrossRef
57.
go back to reference Grosu S, Wesp P, Graser A, Maurus S, Schulz C, Knösel T, et al. Machine learning-based differentiation of benign and premalignant colorectal polyps detected with CT colonography in an asymptomatic screening population: a proof-of-concept study. Radiology. 2021;299(2):326–35.PubMedCrossRef Grosu S, Wesp P, Graser A, Maurus S, Schulz C, Knösel T, et al. Machine learning-based differentiation of benign and premalignant colorectal polyps detected with CT colonography in an asymptomatic screening population: a proof-of-concept study. Radiology. 2021;299(2):326–35.PubMedCrossRef
58.
go back to reference Troya J, Krenzer A, Flisikowski K, Sudarevic B, Banck M, Hann A, et al. New concept for colonoscopy including side optics and artificial intelligence. Gastrointest Endosc. 2022;95(4):794–8.PubMedCrossRef Troya J, Krenzer A, Flisikowski K, Sudarevic B, Banck M, Hann A, et al. New concept for colonoscopy including side optics and artificial intelligence. Gastrointest Endosc. 2022;95(4):794–8.PubMedCrossRef
59.
go back to reference Zhang JK, Fanous M, Sobh N, Kajdacsy-Balla A, Popescu G. Automatic colorectal cancer screening using deep learning in spatial light interference microscopy data. Cells. 2022;11(4):716.PubMedPubMedCentralCrossRef Zhang JK, Fanous M, Sobh N, Kajdacsy-Balla A, Popescu G. Automatic colorectal cancer screening using deep learning in spatial light interference microscopy data. Cells. 2022;11(4):716.PubMedPubMedCentralCrossRef
60.
go back to reference Xu H, Tang RSY, Lam TYT, Zhao G, Lau JYW, Liu Y, et al. Artificial intelligence-assisted colonoscopy for colorectal cancer screening: a multicenter randomized controlled trial. Clin Gastroenterol Hepatol: Off Clin Pract J Am Gastroenterol Assoc. 2023;21(2):337-46.e3.CrossRef Xu H, Tang RSY, Lam TYT, Zhao G, Lau JYW, Liu Y, et al. Artificial intelligence-assisted colonoscopy for colorectal cancer screening: a multicenter randomized controlled trial. Clin Gastroenterol Hepatol: Off Clin Pract J Am Gastroenterol Assoc. 2023;21(2):337-46.e3.CrossRef
61.
go back to reference Kudo SE, Ichimasa K, Villard B, Mori Y, Misawa M, Saito S, et al. Artificial intelligence system to determine risk of t1 colorectal cancer metastasis to lymph node. Gastroenterology. 2021;160(4):1075-84.e2.PubMedCrossRef Kudo SE, Ichimasa K, Villard B, Mori Y, Misawa M, Saito S, et al. Artificial intelligence system to determine risk of t1 colorectal cancer metastasis to lymph node. Gastroenterology. 2021;160(4):1075-84.e2.PubMedCrossRef
62.
go back to reference Areia M, Mori Y, Correale L, Repici A, Bretthauer M, Sharma P, et al. Cost-effectiveness of artificial intelligence for screening colonoscopy: a modelling study. The Lancet Digital health. 2022;4(6):e436–44.PubMedCrossRef Areia M, Mori Y, Correale L, Repici A, Bretthauer M, Sharma P, et al. Cost-effectiveness of artificial intelligence for screening colonoscopy: a modelling study. The Lancet Digital health. 2022;4(6):e436–44.PubMedCrossRef
63.
go back to reference Hassan C, Balsamo G, Lorenzetti R, Zullo A, Antonelli G. Artificial intelligence allows leaving-in-situ colorectal polyps. Clin Gastroenterol Hepatol: Off Clin Pract J Am Gastroenterol Assoc. 2022;20(11):2505-13.e4.CrossRef Hassan C, Balsamo G, Lorenzetti R, Zullo A, Antonelli G. Artificial intelligence allows leaving-in-situ colorectal polyps. Clin Gastroenterol Hepatol: Off Clin Pract J Am Gastroenterol Assoc. 2022;20(11):2505-13.e4.CrossRef
64.
go back to reference Soares F, Becker K, Anzanello MJ. A hierarchical classifier based on human blood plasma fluorescence for non-invasive colorectal cancer screening. Artif Intell Med. 2017;82:1–10.PubMedCrossRef Soares F, Becker K, Anzanello MJ. A hierarchical classifier based on human blood plasma fluorescence for non-invasive colorectal cancer screening. Artif Intell Med. 2017;82:1–10.PubMedCrossRef
65.
go back to reference Konishi Y, Okumura S, Matsumoto T, Itatani Y, Nishiyama T, Okazaki Y, et al. Development and evaluation of a colorectal cancer screening method using machine learning-based gut microbiota analysis. Cancer Med. 2022;11(16):3194–206.PubMedPubMedCentralCrossRef Konishi Y, Okumura S, Matsumoto T, Itatani Y, Nishiyama T, Okazaki Y, et al. Development and evaluation of a colorectal cancer screening method using machine learning-based gut microbiota analysis. Cancer Med. 2022;11(16):3194–206.PubMedPubMedCentralCrossRef
66.
go back to reference Ji M, Zhong J, Xue R, Su W, Kong Y, Fei Y, et al. Early detection of cervical cancer by fluorescence lifetime imaging microscopy combined with unsupervised machine learning. Int J Mol Sci. 2022;23(19):11476.PubMedPubMedCentralCrossRef Ji M, Zhong J, Xue R, Su W, Kong Y, Fei Y, et al. Early detection of cervical cancer by fluorescence lifetime imaging microscopy combined with unsupervised machine learning. Int J Mol Sci. 2022;23(19):11476.PubMedPubMedCentralCrossRef
67.
go back to reference Wang S, Yin Y, Wang D, Wang Y, Jin Y. Interpretability-based multimodal convolutional neural networks for skin lesion diagnosis. IEEE Trans Cybernet. 2022;52(12):12623–37.CrossRef Wang S, Yin Y, Wang D, Wang Y, Jin Y. Interpretability-based multimodal convolutional neural networks for skin lesion diagnosis. IEEE Trans Cybernet. 2022;52(12):12623–37.CrossRef
68.
go back to reference Sangers TE, Wakkee M, Kramer-Noels EC, Nijsten T, Lugtenberg M. Views on mobile health apps for skin cancer screening in the general population: an in-depth qualitative exploration of perceived barriers and facilitators. Br J Dermatol. 2021;185(5):961–9.PubMedPubMedCentralCrossRef Sangers TE, Wakkee M, Kramer-Noels EC, Nijsten T, Lugtenberg M. Views on mobile health apps for skin cancer screening in the general population: an in-depth qualitative exploration of perceived barriers and facilitators. Br J Dermatol. 2021;185(5):961–9.PubMedPubMedCentralCrossRef
69.
go back to reference Alhazmi A, Alhazmi Y, Makrami A, Masmali A, Salawi N, Masmali K, et al. Application of artificial intelligence and machine learning for prediction of oral cancer risk. J Oral Pathol Med: Off Publ Int Assoc Oral Pathol Am Acad Oral Pathol. 2021;50(5):444–50.CrossRef Alhazmi A, Alhazmi Y, Makrami A, Masmali A, Salawi N, Masmali K, et al. Application of artificial intelligence and machine learning for prediction of oral cancer risk. J Oral Pathol Med: Off Publ Int Assoc Oral Pathol Am Acad Oral Pathol. 2021;50(5):444–50.CrossRef
70.
go back to reference Adeoye J, Zheng LW, Thomson P, Choi SW, Su YX. Explainable ensemble learning model improves identification of candidates for oral cancer screening. Oral Oncol. 2023;136: 106278.PubMedCrossRef Adeoye J, Zheng LW, Thomson P, Choi SW, Su YX. Explainable ensemble learning model improves identification of candidates for oral cancer screening. Oral Oncol. 2023;136: 106278.PubMedCrossRef
71.
go back to reference Gao Y, Xin L, Lin H, Yao B, Zhang T, Zhou AJ, et al. Machine learning-based automated sponge cytology for screening of oesophageal squamous cell carcinoma and adenocarcinoma of the oesophagogastric junction: a nationwide, multicohort, prospective study. Lancet Gastroenterol Hepatol. 2023;8(5):432–45.PubMedCrossRef Gao Y, Xin L, Lin H, Yao B, Zhang T, Zhou AJ, et al. Machine learning-based automated sponge cytology for screening of oesophageal squamous cell carcinoma and adenocarcinoma of the oesophagogastric junction: a nationwide, multicohort, prospective study. Lancet Gastroenterol Hepatol. 2023;8(5):432–45.PubMedCrossRef
72.
go back to reference Raab SS, Grzybicki DM. Quality in cancer diagnosis. CA: Cancer J Clin. 2010;60(3):139–65.PubMed Raab SS, Grzybicki DM. Quality in cancer diagnosis. CA: Cancer J Clin. 2010;60(3):139–65.PubMed
73.
go back to reference Veta M, van Diest PJ, Kornegoor R, Huisman A, Viergever MA, Pluim JP. Automatic nuclei segmentation in H&E stained breast cancer histopathology images. PLoS ONE. 2013;8(7): e70221.PubMedPubMedCentralCrossRef Veta M, van Diest PJ, Kornegoor R, Huisman A, Viergever MA, Pluim JP. Automatic nuclei segmentation in H&E stained breast cancer histopathology images. PLoS ONE. 2013;8(7): e70221.PubMedPubMedCentralCrossRef
74.
go back to reference Rezaeilouyeh H, Mahoor MH, Zhang JJ, La Rosa FG, Chang S, Werahera PN. Diagnosis of prostatic carcinoma on multiparametric magnetic resonance imaging using shearlet transform. Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual International Conference. 2014;2014:6442-5 Rezaeilouyeh H, Mahoor MH, Zhang JJ, La Rosa FG, Chang S, Werahera PN. Diagnosis of prostatic carcinoma on multiparametric magnetic resonance imaging using shearlet transform. Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual International Conference. 2014;2014:6442-5
75.
go back to reference Kim I, Kang K, Song Y, Kim TJ. Application of artificial intelligence in pathology: trends and challenges. Diagnostics (Basel, Switzerland). 2022;12(11):2794.PubMedPubMedCentral Kim I, Kang K, Song Y, Kim TJ. Application of artificial intelligence in pathology: trends and challenges. Diagnostics (Basel, Switzerland). 2022;12(11):2794.PubMedPubMedCentral
76.
go back to reference Lu MY, Chen TY, Williamson DFK, Zhao M, Shady M, Lipkova J, et al. AI-based pathology predicts origins for cancers of unknown primary. Nature. 2021;594(7861):106–10.PubMedCrossRef Lu MY, Chen TY, Williamson DFK, Zhao M, Shady M, Lipkova J, et al. AI-based pathology predicts origins for cancers of unknown primary. Nature. 2021;594(7861):106–10.PubMedCrossRef
77.
go back to reference Chen C, Lu MY, Williamson DFK, Chen TY, Schaumberg AJ, Mahmood F. Fast and scalable search of whole-slide images via self-supervised deep learning. Nature Biomed Eng. 2022;6(12):1420–34.CrossRef Chen C, Lu MY, Williamson DFK, Chen TY, Schaumberg AJ, Mahmood F. Fast and scalable search of whole-slide images via self-supervised deep learning. Nature Biomed Eng. 2022;6(12):1420–34.CrossRef
78.
go back to reference Liu P, Ji L, Ye F, Fu B. AdvMIL: adversarial multiple instance learning for the survival analysis on whole-slide images. Med Image Anal. 2023;91: 103020.PubMedCrossRef Liu P, Ji L, Ye F, Fu B. AdvMIL: adversarial multiple instance learning for the survival analysis on whole-slide images. Med Image Anal. 2023;91: 103020.PubMedCrossRef
79.
go back to reference Azevedo Tosta TA, de Faria PR, Neves LA, do Nascimento MZ. Computational normalization of H&E-stained histological images: Progress, challenges and future potential. Artif Intell Med. 2019;95:118–32.PubMedCrossRef Azevedo Tosta TA, de Faria PR, Neves LA, do Nascimento MZ. Computational normalization of H&E-stained histological images: Progress, challenges and future potential. Artif Intell Med. 2019;95:118–32.PubMedCrossRef
80.
go back to reference Rana A, Lowe A, Lithgow M, Horback K, Janovitz T, Da Silva A, et al. Use of deep learning to develop and analyze computational hematoxylin and eosin staining of prostate core biopsy images for tumor diagnosis. JAMA Netw Open. 2020;3(5): e205111.PubMedPubMedCentralCrossRef Rana A, Lowe A, Lithgow M, Horback K, Janovitz T, Da Silva A, et al. Use of deep learning to develop and analyze computational hematoxylin and eosin staining of prostate core biopsy images for tumor diagnosis. JAMA Netw Open. 2020;3(5): e205111.PubMedPubMedCentralCrossRef
81.
go back to reference Huang B, Tian S, Zhan N, Ma J, Huang Z, Zhang C, et al. Accurate diagnosis and prognosis prediction of gastric cancer using deep learning on digital pathological images: a retrospective multicentre study. EBioMedicine. 2021;73: 103631.PubMedPubMedCentralCrossRef Huang B, Tian S, Zhan N, Ma J, Huang Z, Zhang C, et al. Accurate diagnosis and prognosis prediction of gastric cancer using deep learning on digital pathological images: a retrospective multicentre study. EBioMedicine. 2021;73: 103631.PubMedPubMedCentralCrossRef
82.
go back to reference Shihabuddin AR, Beevi S. Multi CNN based automatic detection of mitotic nuclei in breast histopathological images. Comput Biol Med. 2023;158: 106815.PubMedCrossRef Shihabuddin AR, Beevi S. Multi CNN based automatic detection of mitotic nuclei in breast histopathological images. Comput Biol Med. 2023;158: 106815.PubMedCrossRef
84.
go back to reference Chang X, Wang J, Zhang G, Yang M, Xi Y, Xi C, et al. Predicting colorectal cancer microsatellite instability with a self-attention-enabled convolutional neural network. Cell reports Medicine. 2023;4(2): 100914.PubMedPubMedCentralCrossRef Chang X, Wang J, Zhang G, Yang M, Xi Y, Xi C, et al. Predicting colorectal cancer microsatellite instability with a self-attention-enabled convolutional neural network. Cell reports Medicine. 2023;4(2): 100914.PubMedPubMedCentralCrossRef
85.
go back to reference Bilal M, Raza SEA, Azam A, Graham S, Ilyas M, Cree IA, et al. Development and validation of a weakly supervised deep learning framework to predict the status of molecular pathways and key mutations in colorectal cancer from routine histology images: a retrospective study. The Lancet Digital health. 2021;3(12):e763–72.PubMedPubMedCentralCrossRef Bilal M, Raza SEA, Azam A, Graham S, Ilyas M, Cree IA, et al. Development and validation of a weakly supervised deep learning framework to predict the status of molecular pathways and key mutations in colorectal cancer from routine histology images: a retrospective study. The Lancet Digital health. 2021;3(12):e763–72.PubMedPubMedCentralCrossRef
86.
go back to reference Gerwert K, Schörner S, Großerueschkamp F, Kraeft AL, Schuhmacher D, Sternemann C, et al. Fast and label-free automated detection of microsatellite status in early colon cancer using artificial intelligence integrated infrared imaging. European J Canc (Oxford, England: 1990). 2023;182:122–31. Gerwert K, Schörner S, Großerueschkamp F, Kraeft AL, Schuhmacher D, Sternemann C, et al. Fast and label-free automated detection of microsatellite status in early colon cancer using artificial intelligence integrated infrared imaging. European J Canc (Oxford, England: 1990). 2023;182:122–31.
87.
go back to reference Blessin NC, Yang C, Mandelkow T, Raedler JB, Li W, Bady E, et al. Automated Ki-67 labeling index assessment in prostate cancer using artificial intelligence and multiplex fluorescence immunohistochemistry. J Pathol. 2023;260(1):5–16.PubMedCrossRef Blessin NC, Yang C, Mandelkow T, Raedler JB, Li W, Bady E, et al. Automated Ki-67 labeling index assessment in prostate cancer using artificial intelligence and multiplex fluorescence immunohistochemistry. J Pathol. 2023;260(1):5–16.PubMedCrossRef
88.
go back to reference Wang CW, Muzakky H, Lee YC, Lin YJ. Chao TK 2023 annotation-free deep learning-based prediction of thyroid molecular cancer biomarker BRAF (V600E) from cytological slides. Int J Mol Sci. 2023;24(3):2521.PubMedPubMedCentralCrossRef Wang CW, Muzakky H, Lee YC, Lin YJ. Chao TK 2023 annotation-free deep learning-based prediction of thyroid molecular cancer biomarker BRAF (V600E) from cytological slides. Int J Mol Sci. 2023;24(3):2521.PubMedPubMedCentralCrossRef
89.
go back to reference Abele N, Tiemann K, Krech T, Wellmann A, Schaaf C, Länger F, et al. Noninferiority of artificial intelligence-assisted analysis of ki-67 and estrogen/progesterone receptor in breast cancer routine diagnostics. Modern Pathol: Off J United States Canad Acad Pathol. 2023;36(3): 100033.CrossRef Abele N, Tiemann K, Krech T, Wellmann A, Schaaf C, Länger F, et al. Noninferiority of artificial intelligence-assisted analysis of ki-67 and estrogen/progesterone receptor in breast cancer routine diagnostics. Modern Pathol: Off J United States Canad Acad Pathol. 2023;36(3): 100033.CrossRef
90.
go back to reference Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542(7639):115–8.PubMedPubMedCentralCrossRef Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542(7639):115–8.PubMedPubMedCentralCrossRef
91.
go back to reference Khan MS, Alam KN, Dhruba AR, Zunair H, Mohammed N. Knowledge distillation approach towards melanoma detection. Comput Biol Med. 2022;146: 105581.PubMedCrossRef Khan MS, Alam KN, Dhruba AR, Zunair H, Mohammed N. Knowledge distillation approach towards melanoma detection. Comput Biol Med. 2022;146: 105581.PubMedCrossRef
92.
go back to reference Adepu AK, Sahayam S, Jayaraman U, Arramraju R. Melanoma classification from dermatoscopy images using knowledge distillation for highly imbalanced data. Comput Biol Med. 2023;154: 106571.PubMedCrossRef Adepu AK, Sahayam S, Jayaraman U, Arramraju R. Melanoma classification from dermatoscopy images using knowledge distillation for highly imbalanced data. Comput Biol Med. 2023;154: 106571.PubMedCrossRef
93.
go back to reference Wang Y, Wang Y, Cai J, Lee TK, Miao C, Wang ZJ. SSD-KD: a self-supervised diverse knowledge distillation method for lightweight skin lesion classification using dermoscopic images. Med Image Anal. 2023;84: 102693.PubMedCrossRef Wang Y, Wang Y, Cai J, Lee TK, Miao C, Wang ZJ. SSD-KD: a self-supervised diverse knowledge distillation method for lightweight skin lesion classification using dermoscopic images. Med Image Anal. 2023;84: 102693.PubMedCrossRef
94.
go back to reference Marchetti MA, Nazir ZH, Nanda JK, Dusza SW, D’Alessandro BM, DeFazio J, et al. 3D Whole-body skin imaging for automated melanoma detection. J Eur Acad Dermatol Venereol: JEADV. 2023;37(5):945–50.PubMedCrossRef Marchetti MA, Nazir ZH, Nanda JK, Dusza SW, D’Alessandro BM, DeFazio J, et al. 3D Whole-body skin imaging for automated melanoma detection. J Eur Acad Dermatol Venereol: JEADV. 2023;37(5):945–50.PubMedCrossRef
95.
go back to reference Ahmedt-Aristizabal D, Nguyen C, Tychsen-Smith L, Stacey A, Li S, Pathikulangara J, et al. Monitoring of pigmented skin lesions using 3D whole body imaging. Comput Meth Progr Biomed. 2023;232: 107451.CrossRef Ahmedt-Aristizabal D, Nguyen C, Tychsen-Smith L, Stacey A, Li S, Pathikulangara J, et al. Monitoring of pigmented skin lesions using 3D whole body imaging. Comput Meth Progr Biomed. 2023;232: 107451.CrossRef
96.
go back to reference Tajerian A, Kazemian M, Tajerian M, Akhavan MA. Design and validation of a new machine-learning-based diagnostic tool for the differentiation of dermatoscopic skin cancer images. PLoS ONE. 2023;18(4): e0284437.PubMedPubMedCentralCrossRef Tajerian A, Kazemian M, Tajerian M, Akhavan MA. Design and validation of a new machine-learning-based diagnostic tool for the differentiation of dermatoscopic skin cancer images. PLoS ONE. 2023;18(4): e0284437.PubMedPubMedCentralCrossRef
97.
go back to reference Venugopal V, Joseph J, Vipin Das M, Kumar NM. An EfficientNet-based modified sigmoid transform for enhancing dermatological macro-images of melanoma and nevi skin lesions. Comput Methods Programs Biomed. 2022;222: 106935.PubMedCrossRef Venugopal V, Joseph J, Vipin Das M, Kumar NM. An EfficientNet-based modified sigmoid transform for enhancing dermatological macro-images of melanoma and nevi skin lesions. Comput Methods Programs Biomed. 2022;222: 106935.PubMedCrossRef
98.
go back to reference Ain QU, Al-Sahaf H, Xue B, Zhang M. Automatically diagnosing skin cancers from multimodality images using two-stage genetic programming. IEEE Trans Cybernet. 2023;53(5):2727–40.CrossRef Ain QU, Al-Sahaf H, Xue B, Zhang M. Automatically diagnosing skin cancers from multimodality images using two-stage genetic programming. IEEE Trans Cybernet. 2023;53(5):2727–40.CrossRef
99.
go back to reference Kränke T, Tripolt-Droschl K, Röd L, Hofmann-Wellenhof R, Koppitz M, Tripolt M. New AI-algorithms on smartphones to detect skin cancer in a clinical setting-A validation study. PLoS ONE. 2023;18(2): e0280670.PubMedPubMedCentralCrossRef Kränke T, Tripolt-Droschl K, Röd L, Hofmann-Wellenhof R, Koppitz M, Tripolt M. New AI-algorithms on smartphones to detect skin cancer in a clinical setting-A validation study. PLoS ONE. 2023;18(2): e0280670.PubMedPubMedCentralCrossRef
100.
go back to reference Freeman K, Dinnes J, Chuchu N, Takwoingi Y, Bayliss SE, Matin RN, et al. Algorithm based smartphone apps to assess risk of skin cancer in adults: systematic review of diagnostic accuracy studies. BMJ (Clinical research ed). 2020;368: m127.PubMed Freeman K, Dinnes J, Chuchu N, Takwoingi Y, Bayliss SE, Matin RN, et al. Algorithm based smartphone apps to assess risk of skin cancer in adults: systematic review of diagnostic accuracy studies. BMJ (Clinical research ed). 2020;368: m127.PubMed
101.
go back to reference Yi Z, Hu S, Lin X, Zou Q, Zou M, Zhang Z, et al. Machine learning-based prediction of invisible intraprostatic prostate cancer lesions on (68) Ga-PSMA-11 PET/CT in patients with primary prostate cancer. Eur J Nucl Med Mol Imaging. 2022;49(5):1523–34.PubMedCrossRef Yi Z, Hu S, Lin X, Zou Q, Zou M, Zhang Z, et al. Machine learning-based prediction of invisible intraprostatic prostate cancer lesions on (68) Ga-PSMA-11 PET/CT in patients with primary prostate cancer. Eur J Nucl Med Mol Imaging. 2022;49(5):1523–34.PubMedCrossRef
102.
go back to reference Gao P, Shan W, Guo Y, Wang Y, Sun R, Cai J, et al. Development and validation of a deep learning model for brain tumor diagnosis and classification using magnetic resonance imaging. JAMA Netw Open. 2022;5(8): e2225608.PubMedPubMedCentralCrossRef Gao P, Shan W, Guo Y, Wang Y, Sun R, Cai J, et al. Development and validation of a deep learning model for brain tumor diagnosis and classification using magnetic resonance imaging. JAMA Netw Open. 2022;5(8): e2225608.PubMedPubMedCentralCrossRef
103.
go back to reference Knabe M, Welsch L, Blasberg T, Müller E, Heilani M, Bergen C, et al. Artificial intelligence-assisted staging in Barrett’s carcinoma. Endoscopy. 2022;54(12):1191–7.PubMedCrossRef Knabe M, Welsch L, Blasberg T, Müller E, Heilani M, Bergen C, et al. Artificial intelligence-assisted staging in Barrett’s carcinoma. Endoscopy. 2022;54(12):1191–7.PubMedCrossRef
104.
go back to reference Liang S, Dong X, Yang K, Chu Z, Tang F, Ye F, et al. A multi-perspective information aggregation network for automatedT-staging detection of nasopharyngeal carcinoma. Phys Med Biol. 2022;67(24): 245007.CrossRef Liang S, Dong X, Yang K, Chu Z, Tang F, Ye F, et al. A multi-perspective information aggregation network for automatedT-staging detection of nasopharyngeal carcinoma. Phys Med Biol. 2022;67(24): 245007.CrossRef
105.
go back to reference Demirjian NL, Varghese BA, Cen SY, Hwang DH, Aron M, Siddiqui I, et al. CT-based radiomics stratification of tumor grade and TNM stage of clear cell renal cell carcinoma. Eur Radiol. 2022;32(4):2552–63.PubMedCrossRef Demirjian NL, Varghese BA, Cen SY, Hwang DH, Aron M, Siddiqui I, et al. CT-based radiomics stratification of tumor grade and TNM stage of clear cell renal cell carcinoma. Eur Radiol. 2022;32(4):2552–63.PubMedCrossRef
106.
go back to reference van der Voort SR, Incekara F, Wijnenga MMJ, Kapsas G, Gahrmann R, Schouten JW, et al. Combined molecular subtyping, grading, and segmentation of glioma using multi-task deep learning. Neuro Oncol. 2023;25(2):279–89.PubMedCrossRef van der Voort SR, Incekara F, Wijnenga MMJ, Kapsas G, Gahrmann R, Schouten JW, et al. Combined molecular subtyping, grading, and segmentation of glioma using multi-task deep learning. Neuro Oncol. 2023;25(2):279–89.PubMedCrossRef
107.
go back to reference Xu Y, Klyuzhin I, Harsini S, Ortiz A, Zhang S, Bénard F, et al. Automatic segmentation of prostate cancer metastases in PSMA PET/CT images using deep neural networks with weighted batch-wise dice loss. Comput Biol Med. 2023;158: 106882.PubMedCrossRef Xu Y, Klyuzhin I, Harsini S, Ortiz A, Zhang S, Bénard F, et al. Automatic segmentation of prostate cancer metastases in PSMA PET/CT images using deep neural networks with weighted batch-wise dice loss. Comput Biol Med. 2023;158: 106882.PubMedCrossRef
108.
go back to reference Wang R, Gu Y, Zhang T, Yang J. Fast cancer metastasis location based on dual magnification hard example mining network in whole-slide images. Comput Biol Med. 2023;158: 106880.PubMedCrossRef Wang R, Gu Y, Zhang T, Yang J. Fast cancer metastasis location based on dual magnification hard example mining network in whole-slide images. Comput Biol Med. 2023;158: 106880.PubMedCrossRef
109.
go back to reference Lin H, Chen H, Graham S, Dou Q, Rajpoot N, Heng PA. Fast ScanNet: fast and dense analysis of multi-gigapixel whole-slide images for cancer metastasis detection. IEEE Trans Med Imaging. 2019;38(8):1948–58.PubMedCrossRef Lin H, Chen H, Graham S, Dou Q, Rajpoot N, Heng PA. Fast ScanNet: fast and dense analysis of multi-gigapixel whole-slide images for cancer metastasis detection. IEEE Trans Med Imaging. 2019;38(8):1948–58.PubMedCrossRef
110.
go back to reference Ehteshami Bejnordi B, Veta M, van Diest PJ, van Ginneken B, Karssemeijer N, Litjens G, et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA. 2017;318(22):2199–210.PubMedPubMedCentralCrossRef Ehteshami Bejnordi B, Veta M, van Diest PJ, van Ginneken B, Karssemeijer N, Litjens G, et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA. 2017;318(22):2199–210.PubMedPubMedCentralCrossRef
111.
go back to reference Zhao J, Wang H, Zhang Y, Wang R, Liu Q, Li J, et al. Deep learning radiomics model related with genomics phenotypes for lymph node metastasis prediction in colorectal cancer. Radiotherapy Oncol: J Eur Soci Therapeut Radiol Oncol. 2022;167:195–202.CrossRef Zhao J, Wang H, Zhang Y, Wang R, Liu Q, Li J, et al. Deep learning radiomics model related with genomics phenotypes for lymph node metastasis prediction in colorectal cancer. Radiotherapy Oncol: J Eur Soci Therapeut Radiol Oncol. 2022;167:195–202.CrossRef
112.
go back to reference Wu S, Hong G, Xu A, Zeng H, Chen X, Wang Y, et al. Artificial intelligence-based model for lymph node metastases detection on whole slide images in bladder cancer: a retrospective, multicentre, diagnostic study. Lancet Oncol. 2023;24(4):360–70.PubMedCrossRef Wu S, Hong G, Xu A, Zeng H, Chen X, Wang Y, et al. Artificial intelligence-based model for lymph node metastases detection on whole slide images in bladder cancer: a retrospective, multicentre, diagnostic study. Lancet Oncol. 2023;24(4):360–70.PubMedCrossRef
113.
go back to reference Murai H, Kodama T, Maesaka K, Tange S, Motooka D, Suzuki Y, et al. Multiomics identifies the link between intratumor steatosis and the exhausted tumor immune microenvironment in hepatocellular carcinoma. Hepatology (Baltimore, MD). 2023;77(1):77–91.PubMedCrossRef Murai H, Kodama T, Maesaka K, Tange S, Motooka D, Suzuki Y, et al. Multiomics identifies the link between intratumor steatosis and the exhausted tumor immune microenvironment in hepatocellular carcinoma. Hepatology (Baltimore, MD). 2023;77(1):77–91.PubMedCrossRef
114.
go back to reference Sammut SJ, Crispin-Ortuzar M, Chin SF, Provenzano E, Bardwell HA, Ma W, et al. Multi-omic machine learning predictor of breast cancer therapy response. Nature. 2022;601(7894):623–9.PubMedCrossRef Sammut SJ, Crispin-Ortuzar M, Chin SF, Provenzano E, Bardwell HA, Ma W, et al. Multi-omic machine learning predictor of breast cancer therapy response. Nature. 2022;601(7894):623–9.PubMedCrossRef
115.
go back to reference He X, Liu X, Zuo F, Shi H, Jing J. Artificial intelligence-based multi-omics analysis fuels cancer precision medicine. Semin Cancer Biol. 2023;88:187–200.PubMedCrossRef He X, Liu X, Zuo F, Shi H, Jing J. Artificial intelligence-based multi-omics analysis fuels cancer precision medicine. Semin Cancer Biol. 2023;88:187–200.PubMedCrossRef
116.
go back to reference Srivastava R. Applications of artificial intelligence multiomics in precision oncology. J Cancer Res Clin Oncol. 2023;149(1):503–10.PubMedCrossRef Srivastava R. Applications of artificial intelligence multiomics in precision oncology. J Cancer Res Clin Oncol. 2023;149(1):503–10.PubMedCrossRef
117.
go back to reference Zafari N, Bathaei P, Velayati M, Khojasteh-Leylakoohi F, Khazaei M, Fiuji H, et al. Integrated analysis of multi-omics data for the discovery of biomarkers and therapeutic targets for colorectal cancer. Comput Biol Med. 2023;155: 106639.PubMedCrossRef Zafari N, Bathaei P, Velayati M, Khojasteh-Leylakoohi F, Khazaei M, Fiuji H, et al. Integrated analysis of multi-omics data for the discovery of biomarkers and therapeutic targets for colorectal cancer. Comput Biol Med. 2023;155: 106639.PubMedCrossRef
119.
120.
go back to reference Chen HZ, Bonneville R, Roychowdhury S. Implementing precision cancer medicine in the genomic era. Semin Cancer Biol. 2019;55:16–27.PubMedCrossRef Chen HZ, Bonneville R, Roychowdhury S. Implementing precision cancer medicine in the genomic era. Semin Cancer Biol. 2019;55:16–27.PubMedCrossRef
122.
go back to reference Sahraeian SME, Fang LT, Karagiannis K, Moos M, Smith S, Santana-Quintero L, et al. Achieving robust somatic mutation detection with deep learning models derived from reference data sets of a cancer sample. Genome Biol. 2022;23(1):12.PubMedPubMedCentralCrossRef Sahraeian SME, Fang LT, Karagiannis K, Moos M, Smith S, Santana-Quintero L, et al. Achieving robust somatic mutation detection with deep learning models derived from reference data sets of a cancer sample. Genome Biol. 2022;23(1):12.PubMedPubMedCentralCrossRef
123.
go back to reference Sun JX, He Y, Sanford E, Montesion M, Frampton GM, Vignot S, et al. A computational approach to distinguish somatic vs. germline origin of genomic alterations from deep sequencing of cancer specimens without a matched normal. PLoS Computat Biol. 2018;14(2):e1005965.CrossRef Sun JX, He Y, Sanford E, Montesion M, Frampton GM, Vignot S, et al. A computational approach to distinguish somatic vs. germline origin of genomic alterations from deep sequencing of cancer specimens without a matched normal. PLoS Computat Biol. 2018;14(2):e1005965.CrossRef
124.
go back to reference Gupta P, Jindal A, Ahuja G, Sengupta D. A new deep learning technique reveals the exclusive functional contributions of individual cancer mutations. J Biol Chem. 2022;298(8):102177.PubMedPubMedCentralCrossRef Gupta P, Jindal A, Ahuja G, Sengupta D. A new deep learning technique reveals the exclusive functional contributions of individual cancer mutations. J Biol Chem. 2022;298(8):102177.PubMedPubMedCentralCrossRef
125.
go back to reference Sengupta A, Naresh G, Mishra A, Parashar D, Narad P. Proteome analysis using machine learning approaches and its applications to diseases. Adv Protein Chem Struct Biol. 2021;127:161–216.PubMedCrossRef Sengupta A, Naresh G, Mishra A, Parashar D, Narad P. Proteome analysis using machine learning approaches and its applications to diseases. Adv Protein Chem Struct Biol. 2021;127:161–216.PubMedCrossRef
126.
go back to reference Liu Y, Sethi NS, Hinoue T, Schneider BG, Cherniack AD, Sanchez-Vega F, et al. Comparative molecular analysis of gastrointestinal adenocarcinomas. Cancer Cell. 2018;33(4):721-35.e8.PubMedPubMedCentralCrossRef Liu Y, Sethi NS, Hinoue T, Schneider BG, Cherniack AD, Sanchez-Vega F, et al. Comparative molecular analysis of gastrointestinal adenocarcinomas. Cancer Cell. 2018;33(4):721-35.e8.PubMedPubMedCentralCrossRef
127.
go back to reference Singh MP, Rai S, Pandey A, Singh NK, Srivastava S. Molecular subtypes of colorectal cancer: an emerging therapeutic opportunity for personalized medicine. Genes & diseases. 2021;8(2):133–45.CrossRef Singh MP, Rai S, Pandey A, Singh NK, Srivastava S. Molecular subtypes of colorectal cancer: an emerging therapeutic opportunity for personalized medicine. Genes & diseases. 2021;8(2):133–45.CrossRef
129.
go back to reference Ding K, Zhou M, Wang H, Zhang S, Metaxas DN. Spatially aware graph neural networks and cross-level molecular profile prediction in colon cancer histopathology: a retrospective multi-cohort study. The Lancet Digital health. 2022;4(11):e787–95.PubMedCrossRef Ding K, Zhou M, Wang H, Zhang S, Metaxas DN. Spatially aware graph neural networks and cross-level molecular profile prediction in colon cancer histopathology: a retrospective multi-cohort study. The Lancet Digital health. 2022;4(11):e787–95.PubMedCrossRef
130.
go back to reference Li N, Meng G, Yang C, Li H, Liu L, Wu Y, et al. Changes in epigenetic information during the occurrence and development of gastric cancer. Int J Biochem Cell Biol. 2022;153: 106315.PubMedCrossRef Li N, Meng G, Yang C, Li H, Liu L, Wu Y, et al. Changes in epigenetic information during the occurrence and development of gastric cancer. Int J Biochem Cell Biol. 2022;153: 106315.PubMedCrossRef
131.
go back to reference Zhou X, Chai H, Zhao H, Luo CH, Yang Y. Imputing missing RNA-sequencing data from DNA methylation by using a transfer learning-based neural network. GigaScience. 2020;9(7):giaa076.PubMedPubMedCentralCrossRef Zhou X, Chai H, Zhao H, Luo CH, Yang Y. Imputing missing RNA-sequencing data from DNA methylation by using a transfer learning-based neural network. GigaScience. 2020;9(7):giaa076.PubMedPubMedCentralCrossRef
132.
go back to reference Huang Z, Wang J, Yan Z, Guo M. Differentially expressed genes prediction by multiple self-attention on epigenetics data. Brief Bioinform. 2022;23(3):bbac117.PubMedCrossRef Huang Z, Wang J, Yan Z, Guo M. Differentially expressed genes prediction by multiple self-attention on epigenetics data. Brief Bioinform. 2022;23(3):bbac117.PubMedCrossRef
133.
go back to reference Tsimberidou AM, Fountzilas E, Bleris L, Kurzrock R. Transcriptomics and solid tumors: the next frontier in precision cancer medicine. Semin Cancer Biol. 2022;84:50–9.PubMedCrossRef Tsimberidou AM, Fountzilas E, Bleris L, Kurzrock R. Transcriptomics and solid tumors: the next frontier in precision cancer medicine. Semin Cancer Biol. 2022;84:50–9.PubMedCrossRef
134.
go back to reference Jha A, Quesnel-Vallières M, Wang D, Thomas-Tikhonenko A, Lynch KW, Barash Y. Identifying common transcriptome signatures of cancer by interpreting deep learning models. Genome Biol. 2022;23(1):117.PubMedPubMedCentralCrossRef Jha A, Quesnel-Vallières M, Wang D, Thomas-Tikhonenko A, Lynch KW, Barash Y. Identifying common transcriptome signatures of cancer by interpreting deep learning models. Genome Biol. 2022;23(1):117.PubMedPubMedCentralCrossRef
135.
go back to reference Weitz P, Wang Y, Kartasalo K, Egevad L, Lindberg J, Grönberg H, et al. Transcriptome-wide prediction of prostate cancer gene expression from histopathology images using co-expression-based convolutional neural networks. Bioinformatics (Oxford, England). 2022;38(13):3462–9.PubMed Weitz P, Wang Y, Kartasalo K, Egevad L, Lindberg J, Grönberg H, et al. Transcriptome-wide prediction of prostate cancer gene expression from histopathology images using co-expression-based convolutional neural networks. Bioinformatics (Oxford, England). 2022;38(13):3462–9.PubMed
136.
go back to reference He B, Bergenstråhle L, Stenbeck L, Abid A, Andersson A, Borg Å, et al. Integrating spatial gene expression and breast tumour morphology via deep learning. Nat Biomed Eng. 2020;4(8):827–34.PubMedCrossRef He B, Bergenstråhle L, Stenbeck L, Abid A, Andersson A, Borg Å, et al. Integrating spatial gene expression and breast tumour morphology via deep learning. Nat Biomed Eng. 2020;4(8):827–34.PubMedCrossRef
137.
go back to reference Schmauch B, Romagnoni A, Pronier E, Saillard C, Maillé P, Calderaro J, et al. A deep learning model to predict RNA-Seq expression of tumours from whole slide images. Nat Commun. 2020;11(1):3877.PubMedPubMedCentralCrossRef Schmauch B, Romagnoni A, Pronier E, Saillard C, Maillé P, Calderaro J, et al. A deep learning model to predict RNA-Seq expression of tumours from whole slide images. Nat Commun. 2020;11(1):3877.PubMedPubMedCentralCrossRef
139.
go back to reference Ståhl PL, Salmén F, Vickovic S, Lundmark A, Navarro JF, Magnusson J, et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science (New York, NY). 2016;353(6294):78–82.CrossRef Ståhl PL, Salmén F, Vickovic S, Lundmark A, Navarro JF, Magnusson J, et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science (New York, NY). 2016;353(6294):78–82.CrossRef
140.
go back to reference Lewis SM, Asselin-Labat ML, Nguyen Q, Berthelet J, Tan X, Wimmer VC, et al. Spatial omics and multiplexed imaging to explore cancer biology. Nat Methods. 2021;18(9):997–1012.PubMedCrossRef Lewis SM, Asselin-Labat ML, Nguyen Q, Berthelet J, Tan X, Wimmer VC, et al. Spatial omics and multiplexed imaging to explore cancer biology. Nat Methods. 2021;18(9):997–1012.PubMedCrossRef
141.
go back to reference Zaitsev A, Chelushkin M, Dyikanov D, Cheremushkin I, Shpak B, Nomie K, et al. Precise reconstruction of the TME using bulk RNA-seq and a machine learning algorithm trained on artificial transcriptomes. Cancer Cell. 2022;40(8):879-94.e16.PubMedCrossRef Zaitsev A, Chelushkin M, Dyikanov D, Cheremushkin I, Shpak B, Nomie K, et al. Precise reconstruction of the TME using bulk RNA-seq and a machine learning algorithm trained on artificial transcriptomes. Cancer Cell. 2022;40(8):879-94.e16.PubMedCrossRef
142.
go back to reference Bergenstråhle L, He B, Bergenstråhle J, Abalo X, Mirzazadeh R, Thrane K, et al. Super-resolved spatial transcriptomics by deep data fusion. Nat Biotechnol. 2022;40(4):476–9.PubMedCrossRef Bergenstråhle L, He B, Bergenstråhle J, Abalo X, Mirzazadeh R, Thrane K, et al. Super-resolved spatial transcriptomics by deep data fusion. Nat Biotechnol. 2022;40(4):476–9.PubMedCrossRef
143.
go back to reference Hu J, Coleman K, Zhang D, Lee EB, Kadara H, Wang L, et al. Deciphering tumor ecosystems at super resolution from spatial transcriptomics with TESLA. Cell Syst. 2023;14(5):404-17.e4.PubMedPubMedCentralCrossRef Hu J, Coleman K, Zhang D, Lee EB, Kadara H, Wang L, et al. Deciphering tumor ecosystems at super resolution from spatial transcriptomics with TESLA. Cell Syst. 2023;14(5):404-17.e4.PubMedPubMedCentralCrossRef
144.
go back to reference Zhang H, Zhang N, Wu W, Zhou R, Li S, Wang Z, et al. Machine learning-based tumor-infiltrating immune cell-associated lncRNAs for predicting prognosis and immunotherapy response in patients with glioblastoma. Brief Bioinform. 2022;23(6):bbac386.PubMedCrossRef Zhang H, Zhang N, Wu W, Zhou R, Li S, Wang Z, et al. Machine learning-based tumor-infiltrating immune cell-associated lncRNAs for predicting prognosis and immunotherapy response in patients with glioblastoma. Brief Bioinform. 2022;23(6):bbac386.PubMedCrossRef
145.
go back to reference Zhou M, Zhang Z, Bao S, Hou P, Yan C, Su J, et al. Computational recognition of lncRNA signature of tumor-infiltrating B lymphocytes with potential implications in prognosis and immunotherapy of bladder cancer. Briefings Bioinform. 2021;22(3):bbaa047.CrossRef Zhou M, Zhang Z, Bao S, Hou P, Yan C, Su J, et al. Computational recognition of lncRNA signature of tumor-infiltrating B lymphocytes with potential implications in prognosis and immunotherapy of bladder cancer. Briefings Bioinform. 2021;22(3):bbaa047.CrossRef
146.
go back to reference Zhang N, Zhang H, Wu W, Zhou R, Li S, Wang Z, et al. Machine learning-based identification of tumor-infiltrating immune cell-associated lncRNAs for improving outcomes and immunotherapy responses in patients with low-grade glioma. Theranostics. 2022;12(13):5931–48.PubMedPubMedCentralCrossRef Zhang N, Zhang H, Wu W, Zhou R, Li S, Wang Z, et al. Machine learning-based identification of tumor-infiltrating immune cell-associated lncRNAs for improving outcomes and immunotherapy responses in patients with low-grade glioma. Theranostics. 2022;12(13):5931–48.PubMedPubMedCentralCrossRef
147.
go back to reference Korfiati A, Grafanaki K, Kyriakopoulos GC, Skeparnias I, Georgiou S, Sakellaropoulos G, et al. Revisiting miRNA association with melanoma recurrence and metastasis from a machine learning point of view. Int J Mol Sci. 2022;23(3):1299.PubMedPubMedCentralCrossRef Korfiati A, Grafanaki K, Kyriakopoulos GC, Skeparnias I, Georgiou S, Sakellaropoulos G, et al. Revisiting miRNA association with melanoma recurrence and metastasis from a machine learning point of view. Int J Mol Sci. 2022;23(3):1299.PubMedPubMedCentralCrossRef
148.
go back to reference Hosseiniyan Khatibi SM, Ardalan M, Teshnehlab M, Vahed SZ, Pirmoradi S. Panels of mRNAs and miRNAs for decoding molecular mechanisms of Renal Cell Carcinoma (RCC) subtypes utilizing Artificial Intelligence approaches. Sci Rep. 2022;12(1):16393.PubMedPubMedCentralCrossRef Hosseiniyan Khatibi SM, Ardalan M, Teshnehlab M, Vahed SZ, Pirmoradi S. Panels of mRNAs and miRNAs for decoding molecular mechanisms of Renal Cell Carcinoma (RCC) subtypes utilizing Artificial Intelligence approaches. Sci Rep. 2022;12(1):16393.PubMedPubMedCentralCrossRef
149.
go back to reference Fenaux P, Mufti GJ, Hellstrom-Lindberg E, Santini V, Finelli C, Giagounidis A, et al. Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. Lancet Oncol. 2009;10(3):223–32.PubMedPubMedCentralCrossRef Fenaux P, Mufti GJ, Hellstrom-Lindberg E, Santini V, Finelli C, Giagounidis A, et al. Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. Lancet Oncol. 2009;10(3):223–32.PubMedPubMedCentralCrossRef
150.
go back to reference Keyl P, Bischoff P, Dernbach G, Bockmayr M, Fritz R, Horst D, et al. Single-cell gene regulatory network prediction by explainable AI. Nucleic Acids Res. 2023;51(4): e20.PubMedPubMedCentralCrossRef Keyl P, Bischoff P, Dernbach G, Bockmayr M, Fritz R, Horst D, et al. Single-cell gene regulatory network prediction by explainable AI. Nucleic Acids Res. 2023;51(4): e20.PubMedPubMedCentralCrossRef
151.
go back to reference Ogunleye AZ, Piyawajanusorn C, Gonçalves A, Ghislat G, Ballester PJ. Interpretable Machine Learning Models to Predict the Resistance of Breast Cancer Patients to Doxorubicin from Their microRNA Profiles. Adv Sci (Weinheim, Baden-Wurttemberg, Germany). 2022;9(24):e2201501. Ogunleye AZ, Piyawajanusorn C, Gonçalves A, Ghislat G, Ballester PJ. Interpretable Machine Learning Models to Predict the Resistance of Breast Cancer Patients to Doxorubicin from Their microRNA Profiles. Adv Sci (Weinheim, Baden-Wurttemberg, Germany). 2022;9(24):e2201501.
152.
go back to reference Wang S, Zhu H, Zhou H, Cheng J, Yang H. MSpectraAI: a powerful platform for deciphering proteome profiling of multi-tumor mass spectrometry data by using deep neural networks. BMC Bioinformatics. 2020;21(1):439.PubMedPubMedCentralCrossRef Wang S, Zhu H, Zhou H, Cheng J, Yang H. MSpectraAI: a powerful platform for deciphering proteome profiling of multi-tumor mass spectrometry data by using deep neural networks. BMC Bioinformatics. 2020;21(1):439.PubMedPubMedCentralCrossRef
153.
go back to reference Dong H, Liu Y, Zeng WF, Shu K, Zhu Y, Chang C. A deep learning-based tumor classifier directly using MS raw data. Proteomics. 2020;20(21–22): e1900344.PubMedCrossRef Dong H, Liu Y, Zeng WF, Shu K, Zhu Y, Chang C. A deep learning-based tumor classifier directly using MS raw data. Proteomics. 2020;20(21–22): e1900344.PubMedCrossRef
154.
go back to reference Ludwig C, Gillet L, Rosenberger G, Amon S, Collins BC, Aebersold R. Data-independent acquisition-based SWATH-MS for quantitative proteomics: a tutorial. Mol Syst Biol. 2018;14(8): e8126.PubMedPubMedCentralCrossRef Ludwig C, Gillet L, Rosenberger G, Amon S, Collins BC, Aebersold R. Data-independent acquisition-based SWATH-MS for quantitative proteomics: a tutorial. Mol Syst Biol. 2018;14(8): e8126.PubMedPubMedCentralCrossRef
155.
go back to reference López-Sánchez LM, Jiménez-Izquierdo R, Peñarando J, Mena R, Guil-Luna S, Toledano M, et al. SWATH-based proteomics reveals processes associated with immune evasion and metastasis in poor prognosis colorectal tumours. J Cell Mol Med. 2019;23(12):8219–32.PubMedPubMedCentralCrossRef López-Sánchez LM, Jiménez-Izquierdo R, Peñarando J, Mena R, Guil-Luna S, Toledano M, et al. SWATH-based proteomics reveals processes associated with immune evasion and metastasis in poor prognosis colorectal tumours. J Cell Mol Med. 2019;23(12):8219–32.PubMedPubMedCentralCrossRef
156.
157.
go back to reference Franciosa G, Smits JGA, Minuzzo S, Martinez-Val A, Indraccolo S, Olsen JV. Proteomics of resistance to Notch1 inhibition in acute lymphoblastic leukemia reveals targetable kinase signatures. Nat Commun. 2021;12(1):2507.PubMedPubMedCentralCrossRef Franciosa G, Smits JGA, Minuzzo S, Martinez-Val A, Indraccolo S, Olsen JV. Proteomics of resistance to Notch1 inhibition in acute lymphoblastic leukemia reveals targetable kinase signatures. Nat Commun. 2021;12(1):2507.PubMedPubMedCentralCrossRef
158.
go back to reference Ye X, Yang Y, Zhou J, Xu L, Wu L, Huang P, et al. Combinatory strategy using nanoscale proteomics and machine learning for T cell subtyping in peripheral blood of single multiple myeloma patients. Anal Chim Acta. 2021;1173: 338672.PubMedCrossRef Ye X, Yang Y, Zhou J, Xu L, Wu L, Huang P, et al. Combinatory strategy using nanoscale proteomics and machine learning for T cell subtyping in peripheral blood of single multiple myeloma patients. Anal Chim Acta. 2021;1173: 338672.PubMedCrossRef
159.
go back to reference Liang CA, Chen L, Wahed A, Nguyen AND. Proteomics analysis of FLT3-ITD mutation in acute myeloid leukemia using deep learning neural network. Ann Clin Lab Sci. 2019;49(1):119–26.PubMed Liang CA, Chen L, Wahed A, Nguyen AND. Proteomics analysis of FLT3-ITD mutation in acute myeloid leukemia using deep learning neural network. Ann Clin Lab Sci. 2019;49(1):119–26.PubMed
160.
go back to reference Kim H, Kim Y, Han B, Jang JY, Kim Y. Clinically applicable deep learning algorithm using quantitative proteomic data. J Proteome Res. 2019;18(8):3195–202.PubMedCrossRef Kim H, Kim Y, Han B, Jang JY, Kim Y. Clinically applicable deep learning algorithm using quantitative proteomic data. J Proteome Res. 2019;18(8):3195–202.PubMedCrossRef
161.
go back to reference Deeb SJ, Tyanova S, Hummel M, Schmidt-Supprian M, Cox J, Mann M. Machine learning-based classification of diffuse large B-cell lymphoma patients by their protein expression profiles. Mol Cell Prot: MCP. 2015;14(11):2947–60.CrossRef Deeb SJ, Tyanova S, Hummel M, Schmidt-Supprian M, Cox J, Mann M. Machine learning-based classification of diffuse large B-cell lymphoma patients by their protein expression profiles. Mol Cell Prot: MCP. 2015;14(11):2947–60.CrossRef
162.
go back to reference Wishart DS. Metabolomics for investigating physiological and pathophysiological processes. Physiol Rev. 2019;99(4):1819–75.PubMedCrossRef Wishart DS. Metabolomics for investigating physiological and pathophysiological processes. Physiol Rev. 2019;99(4):1819–75.PubMedCrossRef
164.
go back to reference Agarwala PK, Aneja R, Kapoor S. Lipidomic landscape in cancer: actionable insights for membrane-based therapy and diagnoses. Med Res Rev. 2022;42(2):983–1018.PubMedCrossRef Agarwala PK, Aneja R, Kapoor S. Lipidomic landscape in cancer: actionable insights for membrane-based therapy and diagnoses. Med Res Rev. 2022;42(2):983–1018.PubMedCrossRef
165.
go back to reference Rodrigues J, Amin A, Raghushaker CR, Chandra S, Joshi MB, Prasad K, et al. Exploring photoacoustic spectroscopy-based machine learning together with metabolomics to assess breast tumor progression in a xenograft model ex vivo. Laboratory Invest: J Tech Meth Pathol. 2021;101(7):952–65.CrossRef Rodrigues J, Amin A, Raghushaker CR, Chandra S, Joshi MB, Prasad K, et al. Exploring photoacoustic spectroscopy-based machine learning together with metabolomics to assess breast tumor progression in a xenograft model ex vivo. Laboratory Invest: J Tech Meth Pathol. 2021;101(7):952–65.CrossRef
166.
go back to reference Murata T, Yanagisawa T, Kurihara T, Kaneko M, Ota S, Enomoto A, et al. Salivary metabolomics with alternative decision tree-based machine learning methods for breast cancer discrimination. Breast Cancer Res Treat. 2019;177(3):591–601.PubMedCrossRef Murata T, Yanagisawa T, Kurihara T, Kaneko M, Ota S, Enomoto A, et al. Salivary metabolomics with alternative decision tree-based machine learning methods for breast cancer discrimination. Breast Cancer Res Treat. 2019;177(3):591–601.PubMedCrossRef
167.
go back to reference Ishii H, Saitoh M, Sakamoto K, Sakamoto K, Saigusa D, Kasai H, et al. Lipidome-based rapid diagnosis with machine learning for detection of TGF-β signalling activated area in head and neck cancer. Br J Cancer. 2020;122(7):995–1004.PubMedPubMedCentralCrossRef Ishii H, Saitoh M, Sakamoto K, Sakamoto K, Saigusa D, Kasai H, et al. Lipidome-based rapid diagnosis with machine learning for detection of TGF-β signalling activated area in head and neck cancer. Br J Cancer. 2020;122(7):995–1004.PubMedPubMedCentralCrossRef
168.
go back to reference Tian M, Lin Z, Wang X, Yang J, Zhao W, Lu H, et al. Pure ion chromatograms combined with advanced machine learning methods improve accuracy of discriminant models in LC-MS-based untargeted metabolomics. Molecules (Basel, Switzerland). 2021;26(9):2715.PubMedCrossRef Tian M, Lin Z, Wang X, Yang J, Zhao W, Lu H, et al. Pure ion chromatograms combined with advanced machine learning methods improve accuracy of discriminant models in LC-MS-based untargeted metabolomics. Molecules (Basel, Switzerland). 2021;26(9):2715.PubMedCrossRef
169.
go back to reference Ma Y, Zhang P, Wang F, Liu W, Yang J, Qin H. An integrated proteomics and metabolomics approach for defining oncofetal biomarkers in the colorectal cancer. Ann Surg. 2012;255(4):720–30.PubMedCrossRef Ma Y, Zhang P, Wang F, Liu W, Yang J, Qin H. An integrated proteomics and metabolomics approach for defining oncofetal biomarkers in the colorectal cancer. Ann Surg. 2012;255(4):720–30.PubMedCrossRef
170.
go back to reference Zhou J, Ji N, Wang G, Zhang Y, Song H, Yuan Y, et al. Metabolic detection of malignant brain gliomas through plasma lipidomic analysis and support vector machine-based machine learning. EBioMedicine. 2022;81: 104097.PubMedPubMedCentralCrossRef Zhou J, Ji N, Wang G, Zhang Y, Song H, Yuan Y, et al. Metabolic detection of malignant brain gliomas through plasma lipidomic analysis and support vector machine-based machine learning. EBioMedicine. 2022;81: 104097.PubMedPubMedCentralCrossRef
171.
go back to reference Yuan Y, Zhao Z, Xue L, Wang G, Song H, Pang R, et al. Identification of diagnostic markers and lipid dysregulation in oesophageal squamous cell carcinoma through lipidomic analysis and machine learning. Br J Cancer. 2021;125(3):351–7.PubMedPubMedCentralCrossRef Yuan Y, Zhao Z, Xue L, Wang G, Song H, Pang R, et al. Identification of diagnostic markers and lipid dysregulation in oesophageal squamous cell carcinoma through lipidomic analysis and machine learning. Br J Cancer. 2021;125(3):351–7.PubMedPubMedCentralCrossRef
172.
go back to reference Wang H, Yin Y, Zhu ZJ. Encoding LC-MS-based untargeted metabolomics data into images toward AI-based clinical diagnosis. Anal Chem. 2023;95(16):6533–41.PubMedCrossRef Wang H, Yin Y, Zhu ZJ. Encoding LC-MS-based untargeted metabolomics data into images toward AI-based clinical diagnosis. Anal Chem. 2023;95(16):6533–41.PubMedCrossRef
173.
go back to reference Huang L, Wang L, Hu X, Chen S, Tao Y, Su H, et al. Machine learning of serum metabolic patterns encodes early-stage lung adenocarcinoma. Nat Commun. 2020;11(1):3556.PubMedPubMedCentralCrossRef Huang L, Wang L, Hu X, Chen S, Tao Y, Su H, et al. Machine learning of serum metabolic patterns encodes early-stage lung adenocarcinoma. Nat Commun. 2020;11(1):3556.PubMedPubMedCentralCrossRef
174.
go back to reference Manzi M, Palazzo M, Knott ME, Beauseroy P, Yankilevich P, Giménez MI, et al. Coupled mass-spectrometry-based lipidomics machine learning approach for early detection of clear cell renal cell carcinoma. J Proteome Res. 2021;20(1):841–57.PubMedCrossRef Manzi M, Palazzo M, Knott ME, Beauseroy P, Yankilevich P, Giménez MI, et al. Coupled mass-spectrometry-based lipidomics machine learning approach for early detection of clear cell renal cell carcinoma. J Proteome Res. 2021;20(1):841–57.PubMedCrossRef
175.
go back to reference Wallace PW, Conrad C, Brückmann S, Pang Y, Caleiras E, Murakami M, et al. Metabolomics, machine learning and immunohistochemistry to predict succinate dehydrogenase mutational status in phaeochromocytomas and paragangliomas. J Pathol. 2020;251(4):378–87.PubMedPubMedCentralCrossRef Wallace PW, Conrad C, Brückmann S, Pang Y, Caleiras E, Murakami M, et al. Metabolomics, machine learning and immunohistochemistry to predict succinate dehydrogenase mutational status in phaeochromocytomas and paragangliomas. J Pathol. 2020;251(4):378–87.PubMedPubMedCentralCrossRef
176.
go back to reference Alakwaa FM, Chaudhary K, Garmire LX. Deep learning accurately predicts estrogen receptor status in breast cancer metabolomics data. J Proteome Res. 2018;17(1):337–47.PubMedCrossRef Alakwaa FM, Chaudhary K, Garmire LX. Deep learning accurately predicts estrogen receptor status in breast cancer metabolomics data. J Proteome Res. 2018;17(1):337–47.PubMedCrossRef
177.
go back to reference Yang J, Chen Y, Jing Y, Green MR, Han L. Advancing CAR T cell therapy through the use of multidimensional omics data. Nat Rev Clin Oncol. 2023;20(4):211–28.PubMedCrossRef Yang J, Chen Y, Jing Y, Green MR, Han L. Advancing CAR T cell therapy through the use of multidimensional omics data. Nat Rev Clin Oncol. 2023;20(4):211–28.PubMedCrossRef
178.
go back to reference Choi JM, Chae H. moBRCA-net: a breast cancer subtype classification framework based on multi-omics attention neural networks. BMC Bioinform. 2023;24(1):169.CrossRef Choi JM, Chae H. moBRCA-net: a breast cancer subtype classification framework based on multi-omics attention neural networks. BMC Bioinform. 2023;24(1):169.CrossRef
179.
go back to reference Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW. Cancer genome landscapes. Science (New York, NY). 2013;339(6127):1546–58.CrossRef Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW. Cancer genome landscapes. Science (New York, NY). 2013;339(6127):1546–58.CrossRef
180.
go back to reference Sanders LM, Chandra R, Zebarjadi N, Beale HC, Lyle AG, Rodriguez A, et al. Machine learning multi-omics analysis reveals cancer driver dysregulation in pan-cancer cell lines compared to primary tumors. Commun Biol. 2022;5(1):1367.PubMedPubMedCentralCrossRef Sanders LM, Chandra R, Zebarjadi N, Beale HC, Lyle AG, Rodriguez A, et al. Machine learning multi-omics analysis reveals cancer driver dysregulation in pan-cancer cell lines compared to primary tumors. Commun Biol. 2022;5(1):1367.PubMedPubMedCentralCrossRef
181.
go back to reference Zhang SW, Xu JY, Zhang T. DGMP: identifying cancer driver genes by jointing DGCN and MLP from multi-omics genomic data. Gen Proteom Bioinform. 2022;20(5):928–38.CrossRef Zhang SW, Xu JY, Zhang T. DGMP: identifying cancer driver genes by jointing DGCN and MLP from multi-omics genomic data. Gen Proteom Bioinform. 2022;20(5):928–38.CrossRef
182.
go back to reference Zhao W, Gu X, Chen S, Wu J, Zhou Z. MODIG: integrating multi-omics and multi-dimensional gene network for cancer driver gene identification based on graph attention network model. Bioinformatics (Oxford, England). 2022;38(21):4901–7.PubMed Zhao W, Gu X, Chen S, Wu J, Zhou Z. MODIG: integrating multi-omics and multi-dimensional gene network for cancer driver gene identification based on graph attention network model. Bioinformatics (Oxford, England). 2022;38(21):4901–7.PubMed
183.
go back to reference Yang H, Gan L, Chen R, Li D, Zhang J, Wang Z. From multi-omics data to the cancer druggable gene discovery: a novel machine learning-based approach. Brief Bioinform. 2023;24(1):bbca528.CrossRef Yang H, Gan L, Chen R, Li D, Zhang J, Wang Z. From multi-omics data to the cancer druggable gene discovery: a novel machine learning-based approach. Brief Bioinform. 2023;24(1):bbca528.CrossRef
184.
go back to reference Sharma A, Lysenko A, Boroevich KA, Tsunoda T. DeepInsight-3D architecture for anti-cancer drug response prediction with deep-learning on multi-omics. Sci Rep. 2023;13(1):2483.PubMedPubMedCentralCrossRef Sharma A, Lysenko A, Boroevich KA, Tsunoda T. DeepInsight-3D architecture for anti-cancer drug response prediction with deep-learning on multi-omics. Sci Rep. 2023;13(1):2483.PubMedPubMedCentralCrossRef
185.
go back to reference Khadirnaikar S, Shukla S, Prasanna SRM. Machine learning based combination of multi-omics data for subgroup identification in non-small cell lung cancer. Sci Rep. 2023;13(1):4636.PubMedPubMedCentralCrossRef Khadirnaikar S, Shukla S, Prasanna SRM. Machine learning based combination of multi-omics data for subgroup identification in non-small cell lung cancer. Sci Rep. 2023;13(1):4636.PubMedPubMedCentralCrossRef
186.
go back to reference Park MK, Lim JM, Jeong J, Jang Y, Lee JW, Lee JC, et al. Deep-learning algorithm and concomitant biomarker identification for NSCLC prediction using multi-omics data integration. Biomolecules. 2022;12(12):1839.PubMedPubMedCentralCrossRef Park MK, Lim JM, Jeong J, Jang Y, Lee JW, Lee JC, et al. Deep-learning algorithm and concomitant biomarker identification for NSCLC prediction using multi-omics data integration. Biomolecules. 2022;12(12):1839.PubMedPubMedCentralCrossRef
187.
go back to reference Lococo F, Boldrini L, Diepriye CD, Evangelista J, Nero C, Flamini S, et al. Lung cancer multi-omics digital human avatars for integrating precision medicine into clinical practice: the LANTERN study. BMC Cancer. 2023;23(1):540.PubMedPubMedCentralCrossRef Lococo F, Boldrini L, Diepriye CD, Evangelista J, Nero C, Flamini S, et al. Lung cancer multi-omics digital human avatars for integrating precision medicine into clinical practice: the LANTERN study. BMC Cancer. 2023;23(1):540.PubMedPubMedCentralCrossRef
188.
go back to reference Chen CC, Chu PY, Lin HY. Supervised learning and multi-omics integration reveals clinical significance of inner membrane mitochondrial protein (IMMT) in prognostic prediction, tumor immune microenvironment and precision medicine for kidney renal clear cell carcinoma. Int J Mol Sci. 2023;24(10):8807.PubMedPubMedCentralCrossRef Chen CC, Chu PY, Lin HY. Supervised learning and multi-omics integration reveals clinical significance of inner membrane mitochondrial protein (IMMT) in prognostic prediction, tumor immune microenvironment and precision medicine for kidney renal clear cell carcinoma. Int J Mol Sci. 2023;24(10):8807.PubMedPubMedCentralCrossRef
189.
go back to reference Zhu J, Kong W, Huang L, Bi S, Jiao X, Zhu S. Identification of immunotherapy and chemotherapy-related molecular subtypes in colon cancer by integrated multi-omics data analysis. Front Immunol. 2023;14:1142609.PubMedPubMedCentralCrossRef Zhu J, Kong W, Huang L, Bi S, Jiao X, Zhu S. Identification of immunotherapy and chemotherapy-related molecular subtypes in colon cancer by integrated multi-omics data analysis. Front Immunol. 2023;14:1142609.PubMedPubMedCentralCrossRef
190.
go back to reference Li Y, Wu Y, Huang M, Zhang Y, Bai Z. Attention-guided multi-scale learning network for automatic prostate and tumor segmentation on MRI. Comput Biol Med. 2023;165: 107374.PubMedCrossRef Li Y, Wu Y, Huang M, Zhang Y, Bai Z. Attention-guided multi-scale learning network for automatic prostate and tumor segmentation on MRI. Comput Biol Med. 2023;165: 107374.PubMedCrossRef
191.
go back to reference Wang J, Peng Y, Jing S, Han L, Li T, Luo J. A deep-learning approach for segmentation of liver tumors in magnetic resonance imaging using UNet+. BMC Cancer. 2023;23(1):1060.PubMedPubMedCentralCrossRef Wang J, Peng Y, Jing S, Han L, Li T, Luo J. A deep-learning approach for segmentation of liver tumors in magnetic resonance imaging using UNet+. BMC Cancer. 2023;23(1):1060.PubMedPubMedCentralCrossRef
192.
go back to reference Vermeulen C, Pagès-Gallego M, Kester L, Kranendonk MEG, Wesseling P, Verburg N, et al. Ultra-fast deep-learned CNS tumour classification during surgery. Nature. 2023;622(7984):842–9.PubMedPubMedCentralCrossRef Vermeulen C, Pagès-Gallego M, Kester L, Kranendonk MEG, Wesseling P, Verburg N, et al. Ultra-fast deep-learned CNS tumour classification during surgery. Nature. 2023;622(7984):842–9.PubMedPubMedCentralCrossRef
193.
go back to reference Raju S, Peddireddy Veera VR. Classification of brain tumours from MRI images using deep learning-enabled hybrid optimization algorithm. Network (Bristol, England). 2023;34(4):408–37.PubMedCrossRef Raju S, Peddireddy Veera VR. Classification of brain tumours from MRI images using deep learning-enabled hybrid optimization algorithm. Network (Bristol, England). 2023;34(4):408–37.PubMedCrossRef
194.
go back to reference Wong CC, Li W, Chan B, Yu J. Epigenomic biomarkers for prognostication and diagnosis of gastrointestinal cancers. Semin Cancer Biol. 2019;55:90–105.PubMedCrossRef Wong CC, Li W, Chan B, Yu J. Epigenomic biomarkers for prognostication and diagnosis of gastrointestinal cancers. Semin Cancer Biol. 2019;55:90–105.PubMedCrossRef
195.
go back to reference Huang HH, Liang Y. A novel cox proportional hazards model for high-dimensional genomic data in cancer prognosis. IEEE/ACM Trans Comput Biol Bioinf. 2021;18(5):1821–30.CrossRef Huang HH, Liang Y. A novel cox proportional hazards model for high-dimensional genomic data in cancer prognosis. IEEE/ACM Trans Comput Biol Bioinf. 2021;18(5):1821–30.CrossRef
196.
go back to reference Tian T, Sun J. Variable selection for nonparametric additive Cox model with interval-censored data. Biometr J Biometrische Zeitschrift. 2023;65(1): e2100310.CrossRef Tian T, Sun J. Variable selection for nonparametric additive Cox model with interval-censored data. Biometr J Biometrische Zeitschrift. 2023;65(1): e2100310.CrossRef
197.
go back to reference Tong R, Zhu Z, Ling J. Comparison of linear and non-linear machine learning models for time-dependent readmission or mortality prediction among hospitalized heart failure patients. Heliyon. 2023;9(5): e16068.PubMedPubMedCentralCrossRef Tong R, Zhu Z, Ling J. Comparison of linear and non-linear machine learning models for time-dependent readmission or mortality prediction among hospitalized heart failure patients. Heliyon. 2023;9(5): e16068.PubMedPubMedCentralCrossRef
198.
go back to reference Baralou V, Kalpourtzi N, Touloumi G. Individual risk prediction: comparing random forests with Cox proportional-hazards model by a simulation study. Biometrical J Biometrische Zeitschrift. 2022;65(6):2100380.CrossRef Baralou V, Kalpourtzi N, Touloumi G. Individual risk prediction: comparing random forests with Cox proportional-hazards model by a simulation study. Biometrical J Biometrische Zeitschrift. 2022;65(6):2100380.CrossRef
199.
go back to reference Fanizzi A, Pomarico D, Rizzo A, Bove S, Comes MC, Didonna V, et al. Machine learning survival models trained on clinical data to identify high risk patients with hormone responsive HER2 negative breast cancer. Sci Rep. 2023;13(1):8575.PubMedPubMedCentralCrossRef Fanizzi A, Pomarico D, Rizzo A, Bove S, Comes MC, Didonna V, et al. Machine learning survival models trained on clinical data to identify high risk patients with hormone responsive HER2 negative breast cancer. Sci Rep. 2023;13(1):8575.PubMedPubMedCentralCrossRef
200.
go back to reference Li X, Zhai Z, Ding W, Chen L, Zhao Y, Xiong W, et al. An artificial intelligence model to predict survival and chemotherapy benefits for gastric cancer patients after gastrectomy development and validation in international multicenter cohorts. Int J Surg (London, England). 2022;105: 106889.CrossRef Li X, Zhai Z, Ding W, Chen L, Zhao Y, Xiong W, et al. An artificial intelligence model to predict survival and chemotherapy benefits for gastric cancer patients after gastrectomy development and validation in international multicenter cohorts. Int J Surg (London, England). 2022;105: 106889.CrossRef
201.
go back to reference Afrash MR, Mirbagheri E, Mashoufi M, Kazemi-Arpanahi H. Optimizing prognostic factors of five-year survival in gastric cancer patients using feature selection techniques with machine learning algorithms: a comparative study. BMC Med Inform Decis Mak. 2023;23(1):54.PubMedPubMedCentralCrossRef Afrash MR, Mirbagheri E, Mashoufi M, Kazemi-Arpanahi H. Optimizing prognostic factors of five-year survival in gastric cancer patients using feature selection techniques with machine learning algorithms: a comparative study. BMC Med Inform Decis Mak. 2023;23(1):54.PubMedPubMedCentralCrossRef
202.
go back to reference Arya N, Saha S, Mathur A, Saha S. Improving the robustness and stability of a machine learning model for breast cancer prognosis through the use of multi-modal classifiers. Sci Rep. 2023;13(1):4079.PubMedPubMedCentralCrossRef Arya N, Saha S, Mathur A, Saha S. Improving the robustness and stability of a machine learning model for breast cancer prognosis through the use of multi-modal classifiers. Sci Rep. 2023;13(1):4079.PubMedPubMedCentralCrossRef
203.
go back to reference Kim Y, Kim KH, Park J, Yoon HI, Sung W. Prognosis prediction for glioblastoma multiforme patients using machine learning approaches: development of the clinically applicable model. Radiother Oncol: J Eur Soci Therap Radiol Oncol. 2023;183: 109617.CrossRef Kim Y, Kim KH, Park J, Yoon HI, Sung W. Prognosis prediction for glioblastoma multiforme patients using machine learning approaches: development of the clinically applicable model. Radiother Oncol: J Eur Soci Therap Radiol Oncol. 2023;183: 109617.CrossRef
204.
go back to reference Lv W, Zhou Z, Peng J, Peng L, Lin G, Wu H, et al. Functional-structural sub-region graph convolutional network (FSGCN): application to the prognosis of head and neck cancer with PET/CT imaging. Comput Methods Progr Biomed. 2023;230: 107341.CrossRef Lv W, Zhou Z, Peng J, Peng L, Lin G, Wu H, et al. Functional-structural sub-region graph convolutional network (FSGCN): application to the prognosis of head and neck cancer with PET/CT imaging. Comput Methods Progr Biomed. 2023;230: 107341.CrossRef
205.
go back to reference Chen S, Xiang J, Wang X, Zhang J, Yang S, Yang W, et al. Deep learning-based pathology signature could reveal lymph node status and act as a novel prognostic marker across multiple cancer types. Br J Cancer. 2023;129(1):46–53.PubMedCrossRef Chen S, Xiang J, Wang X, Zhang J, Yang S, Yang W, et al. Deep learning-based pathology signature could reveal lymph node status and act as a novel prognostic marker across multiple cancer types. Br J Cancer. 2023;129(1):46–53.PubMedCrossRef
206.
go back to reference Lee W, Park HJ, Lee HJ, Jun E, Song KB, Hwang DW, et al. Preoperative data-based deep learning model for predicting postoperative survival in pancreatic cancer patients. Int J Surg (London, England). 2022;105: 106851.CrossRef Lee W, Park HJ, Lee HJ, Jun E, Song KB, Hwang DW, et al. Preoperative data-based deep learning model for predicting postoperative survival in pancreatic cancer patients. Int J Surg (London, England). 2022;105: 106851.CrossRef
207.
go back to reference Khazaee Fadafen M, Rezaee K. Ensemble-based multi-tissue classification approach of colorectal cancer histology images using a novel hybrid deep learning framework. Sci Rep. 2023;13(1):8823.PubMedPubMedCentralCrossRef Khazaee Fadafen M, Rezaee K. Ensemble-based multi-tissue classification approach of colorectal cancer histology images using a novel hybrid deep learning framework. Sci Rep. 2023;13(1):8823.PubMedPubMedCentralCrossRef
208.
go back to reference Li C, Liu M, Zhang Y, Wang Y, Li J, Sun S, et al. Novel models by machine learning to predict prognosis of breast cancer brain metastases. J Transl Med. 2023;21(1):404.PubMedPubMedCentralCrossRef Li C, Liu M, Zhang Y, Wang Y, Li J, Sun S, et al. Novel models by machine learning to predict prognosis of breast cancer brain metastases. J Transl Med. 2023;21(1):404.PubMedPubMedCentralCrossRef
209.
go back to reference Li J, Liang Y, Zhao X, Wu C. Integrating machine learning algorithms to systematically assess reactive oxygen species levels to aid prognosis and novel treatments for triple -negative breast cancer patients. Front Immunol. 2023;14:1196054.PubMedPubMedCentralCrossRef Li J, Liang Y, Zhao X, Wu C. Integrating machine learning algorithms to systematically assess reactive oxygen species levels to aid prognosis and novel treatments for triple -negative breast cancer patients. Front Immunol. 2023;14:1196054.PubMedPubMedCentralCrossRef
210.
go back to reference Verghese G, Li M, Liu F, Lohan A, Kurian NC, Meena S, et al. Multiscale deep learning framework captures systemic immune features in lymph nodes predictive of triple negative breast cancer outcome in large-scale studies. J Pathol. 2023;260(4):376–89.PubMedCrossRef Verghese G, Li M, Liu F, Lohan A, Kurian NC, Meena S, et al. Multiscale deep learning framework captures systemic immune features in lymph nodes predictive of triple negative breast cancer outcome in large-scale studies. J Pathol. 2023;260(4):376–89.PubMedCrossRef
211.
go back to reference Li J, Qiao H, Wu F, Sun S, Feng C, Li C, et al. A novel hypoxia- and lactate metabolism-related signature to predict prognosis and immunotherapy responses for breast cancer by integrating machine learning and bioinformatic analyses. Front Immunol. 2022;13: 998140.PubMedPubMedCentralCrossRef Li J, Qiao H, Wu F, Sun S, Feng C, Li C, et al. A novel hypoxia- and lactate metabolism-related signature to predict prognosis and immunotherapy responses for breast cancer by integrating machine learning and bioinformatic analyses. Front Immunol. 2022;13: 998140.PubMedPubMedCentralCrossRef
212.
go back to reference Wang Y, Acs B, Robertson S, Liu B, Solorzano L, Wählby C, et al. Improved breast cancer histological grading using deep learning. Ann Oncol: Off J Eur Soci Med Oncol. 2022;33(1):89–98.CrossRef Wang Y, Acs B, Robertson S, Liu B, Solorzano L, Wählby C, et al. Improved breast cancer histological grading using deep learning. Ann Oncol: Off J Eur Soci Med Oncol. 2022;33(1):89–98.CrossRef
213.
go back to reference Ding H, Feng Y, Huang X, Xu J, Zhang T, Liang Y, et al. Deep learning-based classification and spatial prognosis risk score on whole-slide images of lung adenocarcinoma. Histopathology. 2023;83(2):211–28.PubMedCrossRef Ding H, Feng Y, Huang X, Xu J, Zhang T, Liang Y, et al. Deep learning-based classification and spatial prognosis risk score on whole-slide images of lung adenocarcinoma. Histopathology. 2023;83(2):211–28.PubMedCrossRef
214.
go back to reference She Y, Jin Z, Wu J, Deng J, Zhang L, Su H, et al. Development and validation of a deep learning model for non-small cell lung cancer survival. JAMA Netw Open. 2020;3(6): e205842.PubMedPubMedCentralCrossRef She Y, Jin Z, Wu J, Deng J, Zhang L, Su H, et al. Development and validation of a deep learning model for non-small cell lung cancer survival. JAMA Netw Open. 2020;3(6): e205842.PubMedPubMedCentralCrossRef
215.
go back to reference Hosny A, Parmar C, Coroller TP, Grossmann P, Zeleznik R, Kumar A, et al. Deep learning for lung cancer prognostication: a retrospective multi-cohort radiomics study. PLoS Med. 2018;15(11): e1002711.PubMedPubMedCentralCrossRef Hosny A, Parmar C, Coroller TP, Grossmann P, Zeleznik R, Kumar A, et al. Deep learning for lung cancer prognostication: a retrospective multi-cohort radiomics study. PLoS Med. 2018;15(11): e1002711.PubMedPubMedCentralCrossRef
216.
go back to reference Finn CB, Sharpe JE, Tong JK, Kaufman EJ, Wachtel H, Aarons CB, et al. Development of a machine learning model to identify colorectal cancer stage in medicare claims. JCO Clin Cancer Inform. 2023;7: e2300003.PubMedCrossRef Finn CB, Sharpe JE, Tong JK, Kaufman EJ, Wachtel H, Aarons CB, et al. Development of a machine learning model to identify colorectal cancer stage in medicare claims. JCO Clin Cancer Inform. 2023;7: e2300003.PubMedCrossRef
217.
go back to reference Kleppe A, Skrede OJ, De Raedt S, Hveem TS, Askautrud HA, Jacobsen JE, et al. A clinical decision support system optimising adjuvant chemotherapy for colorectal cancers by integrating deep learning and pathological staging markers: a development and validation study. Lancet Oncol. 2022;23(9):1221–32.PubMedCrossRef Kleppe A, Skrede OJ, De Raedt S, Hveem TS, Askautrud HA, Jacobsen JE, et al. A clinical decision support system optimising adjuvant chemotherapy for colorectal cancers by integrating deep learning and pathological staging markers: a development and validation study. Lancet Oncol. 2022;23(9):1221–32.PubMedCrossRef
218.
go back to reference Bertsimas D, Margonis GA, Sujichantararat S, Boerner T, Ma Y, Wang J, et al. Using artificial intelligence to find the optimal margin width in hepatectomy for colorectal cancer liver metastases. JAMA Surg. 2022;157(8): e221819.PubMedPubMedCentralCrossRef Bertsimas D, Margonis GA, Sujichantararat S, Boerner T, Ma Y, Wang J, et al. Using artificial intelligence to find the optimal margin width in hepatectomy for colorectal cancer liver metastases. JAMA Surg. 2022;157(8): e221819.PubMedPubMedCentralCrossRef
219.
go back to reference Skrede OJ, De Raedt S, Kleppe A, Hveem TS, Liestøl K, Maddison J, et al. Deep learning for prediction of colorectal cancer outcome: a discovery and validation study. Lancet (London, England). 2020;395(10221):350–60.PubMedCrossRef Skrede OJ, De Raedt S, Kleppe A, Hveem TS, Liestøl K, Maddison J, et al. Deep learning for prediction of colorectal cancer outcome: a discovery and validation study. Lancet (London, England). 2020;395(10221):350–60.PubMedCrossRef
220.
go back to reference Deng S, Ding J, Wang H, Mao G, Sun J, Hu J, et al. Deep learning-based radiomic nomograms for predicting Ki67 expression in prostate cancer. BMC Cancer. 2023;23(1):638.PubMedPubMedCentralCrossRef Deng S, Ding J, Wang H, Mao G, Sun J, Hu J, et al. Deep learning-based radiomic nomograms for predicting Ki67 expression in prostate cancer. BMC Cancer. 2023;23(1):638.PubMedPubMedCentralCrossRef
221.
go back to reference Saito S, Sakamoto S, Higuchi K, Sato K, Zhao X, Wakai K, et al. Machine-learning predicts time-series prognosis factors in metastatic prostate cancer patients treated with androgen deprivation therapy. Sci Rep. 2023;13(1):6325.PubMedPubMedCentralCrossRef Saito S, Sakamoto S, Higuchi K, Sato K, Zhao X, Wakai K, et al. Machine-learning predicts time-series prognosis factors in metastatic prostate cancer patients treated with androgen deprivation therapy. Sci Rep. 2023;13(1):6325.PubMedPubMedCentralCrossRef
222.
go back to reference Lee C, Light A, Alaa A, Thurtle D, van der Schaar M, Gnanapragasam VJ. Application of a novel machine learning framework for predicting non-metastatic prostate cancer-specific mortality in men using the Surveillance, Epidemiology, and End Results (SEER) database. Lancet Digital health. 2021;3(3):e158–65.PubMedCrossRef Lee C, Light A, Alaa A, Thurtle D, van der Schaar M, Gnanapragasam VJ. Application of a novel machine learning framework for predicting non-metastatic prostate cancer-specific mortality in men using the Surveillance, Epidemiology, and End Results (SEER) database. Lancet Digital health. 2021;3(3):e158–65.PubMedCrossRef
223.
go back to reference Nimgaonkar V, Krishna V, Krishna V, Tiu E, Joshi A, Vrabac D, et al. Development of an artificial intelligence-derived histologic signature associated with adjuvant gemcitabine treatment outcomes in pancreatic cancer. Cell Report Med. 2023;4(4): 101013.CrossRef Nimgaonkar V, Krishna V, Krishna V, Tiu E, Joshi A, Vrabac D, et al. Development of an artificial intelligence-derived histologic signature associated with adjuvant gemcitabine treatment outcomes in pancreatic cancer. Cell Report Med. 2023;4(4): 101013.CrossRef
224.
go back to reference Li J, Huang L, Liao C, Liu G, Tian Y, Chen S. Two machine learning-based nomogram to predict risk and prognostic factors for liver metastasis from pancreatic neuroendocrine tumors: a multicenter study. BMC Cancer. 2023;23(1):529.PubMedPubMedCentralCrossRef Li J, Huang L, Liao C, Liu G, Tian Y, Chen S. Two machine learning-based nomogram to predict risk and prognostic factors for liver metastasis from pancreatic neuroendocrine tumors: a multicenter study. BMC Cancer. 2023;23(1):529.PubMedPubMedCentralCrossRef
225.
go back to reference Aung TN, Shafi S, Wilmott JS, Nourmohammadi S, Vathiotis I, Gavrielatou N, et al. Objective assessment of tumor infiltrating lymphocytes as a prognostic marker in melanoma using machine learning algorithms. EBioMedicine. 2022;82: 104143.PubMedPubMedCentralCrossRef Aung TN, Shafi S, Wilmott JS, Nourmohammadi S, Vathiotis I, Gavrielatou N, et al. Objective assessment of tumor infiltrating lymphocytes as a prognostic marker in melanoma using machine learning algorithms. EBioMedicine. 2022;82: 104143.PubMedPubMedCentralCrossRef
226.
go back to reference Guan X, Lu N, Zhang J. Computed tomography-based deep learning nomogram can accurately predict lymph node metastasis in gastric cancer. Dig Dis Sci. 2023;68(4):1473–81.PubMedCrossRef Guan X, Lu N, Zhang J. Computed tomography-based deep learning nomogram can accurately predict lymph node metastasis in gastric cancer. Dig Dis Sci. 2023;68(4):1473–81.PubMedCrossRef
227.
go back to reference Zhang X, Gleber-Netto FO, Wang S, Martins-Chaves RR, Gomez RS, Vigneswaran N, et al. Deep learning-based pathology image analysis predicts cancer progression risk in patients with oral leukoplakia. Cancer Med. 2023;12(6):7508–18.PubMedPubMedCentralCrossRef Zhang X, Gleber-Netto FO, Wang S, Martins-Chaves RR, Gomez RS, Vigneswaran N, et al. Deep learning-based pathology image analysis predicts cancer progression risk in patients with oral leukoplakia. Cancer Med. 2023;12(6):7508–18.PubMedPubMedCentralCrossRef
228.
go back to reference Singh T, Malik G, Someshwar S, Le HTT, Polavarapu R, Chavali LN, et al. Machine learning heuristics on gingivobuccal cancer gene datasets reveals key candidate attributes for prognosis. Genes. 2022;13(12):2379.PubMedPubMedCentralCrossRef Singh T, Malik G, Someshwar S, Le HTT, Polavarapu R, Chavali LN, et al. Machine learning heuristics on gingivobuccal cancer gene datasets reveals key candidate attributes for prognosis. Genes. 2022;13(12):2379.PubMedPubMedCentralCrossRef
229.
go back to reference Cricelli I, Marconi E, Lapi F. Clinical decision support system (CDSS) in primary care: from pragmatic use to the best approach to assess their benefit/risk profile in clinical practice. Curr Med Res Opin. 2022;38(5):827–9.PubMedCrossRef Cricelli I, Marconi E, Lapi F. Clinical decision support system (CDSS) in primary care: from pragmatic use to the best approach to assess their benefit/risk profile in clinical practice. Curr Med Res Opin. 2022;38(5):827–9.PubMedCrossRef
230.
go back to reference Yun HJ, Kim HJ, Kim SY, Lee YS, Lim CY, Chang HS, et al. Adequacy and effectiveness of watson for oncology in the treatment of thyroid carcinoma. Front Endocrinol. 2021;12: 585364.CrossRef Yun HJ, Kim HJ, Kim SY, Lee YS, Lim CY, Chang HS, et al. Adequacy and effectiveness of watson for oncology in the treatment of thyroid carcinoma. Front Endocrinol. 2021;12: 585364.CrossRef
231.
go back to reference Yu SH, Kim MS, Chung HS, Hwang EC, Jung SI, Kang TW, et al. Early experience with Watson for Oncology: a clinical decision-support system for prostate cancer treatment recommendations. World J Urol. 2021;39(2):407–13.PubMedCrossRef Yu SH, Kim MS, Chung HS, Hwang EC, Jung SI, Kang TW, et al. Early experience with Watson for Oncology: a clinical decision-support system for prostate cancer treatment recommendations. World J Urol. 2021;39(2):407–13.PubMedCrossRef
232.
go back to reference Liu C, Liu X, Wu F, Xie M, Feng Y, Hu C. Using artificial intelligence (watson for oncology) for treatment recommendations amongst chinese patients with lung cancer: feasibility study. J Med Internet Res. 2018;20(9): e11087.PubMedPubMedCentralCrossRef Liu C, Liu X, Wu F, Xie M, Feng Y, Hu C. Using artificial intelligence (watson for oncology) for treatment recommendations amongst chinese patients with lung cancer: feasibility study. J Med Internet Res. 2018;20(9): e11087.PubMedPubMedCentralCrossRef
233.
go back to reference Liu Y, Huo X, Li Q, Li Y, Shen G, Wang M, et al. Watson for oncology decision system for treatment consistency study in breast cancer. Clin Exper Med. 2022;23(5):1649–57.CrossRef Liu Y, Huo X, Li Q, Li Y, Shen G, Wang M, et al. Watson for oncology decision system for treatment consistency study in breast cancer. Clin Exper Med. 2022;23(5):1649–57.CrossRef
234.
go back to reference Somashekhar SP, Sepúlveda MJ, Puglielli S, Norden AD, Shortliffe EH, Rohit Kumar C, et al. Watson for Oncology and breast cancer treatment recommendations: agreement with an expert multidisciplinary tumor board. Ann Oncol: Off J Eur Soci Med Oncol. 2018;29(2):418–23.CrossRef Somashekhar SP, Sepúlveda MJ, Puglielli S, Norden AD, Shortliffe EH, Rohit Kumar C, et al. Watson for Oncology and breast cancer treatment recommendations: agreement with an expert multidisciplinary tumor board. Ann Oncol: Off J Eur Soci Med Oncol. 2018;29(2):418–23.CrossRef
235.
go back to reference Zhang T, Tan T, Wang X, Gao Y, Han L, Balkenende L, et al. RadioLOGIC, a healthcare model for processing electronic health records and decision-making in breast disease. Cell Reports Medicine. 2023;4(8): 101131.PubMedPubMedCentralCrossRef Zhang T, Tan T, Wang X, Gao Y, Han L, Balkenende L, et al. RadioLOGIC, a healthcare model for processing electronic health records and decision-making in breast disease. Cell Reports Medicine. 2023;4(8): 101131.PubMedPubMedCentralCrossRef
236.
go back to reference Chen RJ, Lu MY, Williamson DFK, Chen TY, Lipkova J, Noor Z, et al. Pan-cancer integrative histology-genomic analysis via multimodal deep learning. Cancer Cell. 2022;40(8):865-78.e6.PubMedPubMedCentralCrossRef Chen RJ, Lu MY, Williamson DFK, Chen TY, Lipkova J, Noor Z, et al. Pan-cancer integrative histology-genomic analysis via multimodal deep learning. Cancer Cell. 2022;40(8):865-78.e6.PubMedPubMedCentralCrossRef
237.
go back to reference Thirunavukarasu AJ, Ting DSJ, Elangovan K, Gutierrez L, Tan TF, Ting DSW. Large language models in medicine. Nature Med. 2023;29(8):1930–40.PubMedCrossRef Thirunavukarasu AJ, Ting DSJ, Elangovan K, Gutierrez L, Tan TF, Ting DSW. Large language models in medicine. Nature Med. 2023;29(8):1930–40.PubMedCrossRef
238.
go back to reference Kehl KL, Xu W, Lepisto E, Elmarakeby H, Hassett MJ, Van Allen EM, et al. Natural language processing to ascertain cancer outcomes from medical oncologist notes. JCO Clin Canc Inform. 2020;4:680–90.CrossRef Kehl KL, Xu W, Lepisto E, Elmarakeby H, Hassett MJ, Van Allen EM, et al. Natural language processing to ascertain cancer outcomes from medical oncologist notes. JCO Clin Canc Inform. 2020;4:680–90.CrossRef
239.
go back to reference Savova GK, Danciu I, Alamudun F, Miller T, Lin C, Bitterman DS, et al. Use of natural language processing to extract clinical cancer phenotypes from electronic medical records. Can Res. 2019;79(21):5463–70.CrossRef Savova GK, Danciu I, Alamudun F, Miller T, Lin C, Bitterman DS, et al. Use of natural language processing to extract clinical cancer phenotypes from electronic medical records. Can Res. 2019;79(21):5463–70.CrossRef
240.
go back to reference Remedios D, Remedios A. Transformers, codes and labels: large language modelling for natural language processing in clinical radiology. Eur Radiol. 2023;33(6):4226–7.PubMedCrossRef Remedios D, Remedios A. Transformers, codes and labels: large language modelling for natural language processing in clinical radiology. Eur Radiol. 2023;33(6):4226–7.PubMedCrossRef
241.
go back to reference Tan R, Lin Q, Low GH, Lin R, Goh TC, Chang CCE, et al. Inferring cancer disease response from radiology reports using large language models with data augmentation and prompting. J Am Med Inform Assoc: JAMIA. 2023;30(10):1657–64.PubMedPubMedCentralCrossRef Tan R, Lin Q, Low GH, Lin R, Goh TC, Chang CCE, et al. Inferring cancer disease response from radiology reports using large language models with data augmentation and prompting. J Am Med Inform Assoc: JAMIA. 2023;30(10):1657–64.PubMedPubMedCentralCrossRef
242.
go back to reference Rahsepar AA, Tavakoli N, Kim GHJ, Hassani C, Abtin F, Bedayat A. How AI responds to common lung cancer questions: ChatGPT vs google bard. Radiology. 2023;307(5): e230922.PubMedCrossRef Rahsepar AA, Tavakoli N, Kim GHJ, Hassani C, Abtin F, Bedayat A. How AI responds to common lung cancer questions: ChatGPT vs google bard. Radiology. 2023;307(5): e230922.PubMedCrossRef
243.
go back to reference Yeo YH, Samaan JS, Ng WH, Ting PS, Trivedi H, Vipani A, et al. Assessing the performance of ChatGPT in answering questions regarding cirrhosis and hepatocellular carcinoma. Clin Mol Hepatol. 2023;29(3):721–32.PubMedPubMedCentralCrossRef Yeo YH, Samaan JS, Ng WH, Ting PS, Trivedi H, Vipani A, et al. Assessing the performance of ChatGPT in answering questions regarding cirrhosis and hepatocellular carcinoma. Clin Mol Hepatol. 2023;29(3):721–32.PubMedPubMedCentralCrossRef
244.
go back to reference Zhu L, Mou W, Chen R. Can the ChatGPT and other large language models with internet-connected database solve the questions and concerns of patient with prostate cancer and help democratize medical knowledge? J Transl Med. 2023;21(1):269.PubMedPubMedCentralCrossRef Zhu L, Mou W, Chen R. Can the ChatGPT and other large language models with internet-connected database solve the questions and concerns of patient with prostate cancer and help democratize medical knowledge? J Transl Med. 2023;21(1):269.PubMedPubMedCentralCrossRef
245.
246.
go back to reference van der Laak J, Litjens G, Ciompi F. Deep learning in histopathology: the path to the clinic. Nat Med. 2021;27(5):775–84.PubMedCrossRef van der Laak J, Litjens G, Ciompi F. Deep learning in histopathology: the path to the clinic. Nat Med. 2021;27(5):775–84.PubMedCrossRef
247.
go back to reference Kelly CJ, Karthikesalingam A, Suleyman M, Corrado G, King D. Key challenges for delivering clinical impact with artificial intelligence. BMC Med. 2019;17(1):195.PubMedPubMedCentralCrossRef Kelly CJ, Karthikesalingam A, Suleyman M, Corrado G, King D. Key challenges for delivering clinical impact with artificial intelligence. BMC Med. 2019;17(1):195.PubMedPubMedCentralCrossRef
248.
go back to reference Bae S, Choi H, Lee DS. Discovery of molecular features underlying the morphological landscape by integrating spatial transcriptomic data with deep features of tissue images. Nucleic Acids Res. 2021;49(10): e55.PubMedPubMedCentralCrossRef Bae S, Choi H, Lee DS. Discovery of molecular features underlying the morphological landscape by integrating spatial transcriptomic data with deep features of tissue images. Nucleic Acids Res. 2021;49(10): e55.PubMedPubMedCentralCrossRef
249.
go back to reference Weidener L, Fischer M. Teaching AI ethics in medical education: a scoping review of current literature and practices. Perspectives on medical education. 2023;12(1):399–410.PubMedPubMedCentralCrossRef Weidener L, Fischer M. Teaching AI ethics in medical education: a scoping review of current literature and practices. Perspectives on medical education. 2023;12(1):399–410.PubMedPubMedCentralCrossRef
250.
go back to reference Tian Y, Wang S, Xiong J, Bi R, Zhou Z, Bhuiyan MZA. Robust and privacy-preserving decentralized deep federated learning training: focusing on digital healthcare applications. In: IEEE/ACM Transactions on computational biology and bioinformatics. 2023;pp. Tian Y, Wang S, Xiong J, Bi R, Zhou Z, Bhuiyan MZA. Robust and privacy-preserving decentralized deep federated learning training: focusing on digital healthcare applications. In: IEEE/ACM Transactions on computational biology and bioinformatics. 2023;pp.
251.
go back to reference Kumar R, Kumar J, Khan AA, Zakria, Ali H, Bernard CM, et al. Blockchain and homomorphic encryption based privacy-preserving model aggregation for medical images. Comput Med Imag Graph: Off J Comput Med Imag Soci. 2022;102:102139.CrossRef Kumar R, Kumar J, Khan AA, Zakria, Ali H, Bernard CM, et al. Blockchain and homomorphic encryption based privacy-preserving model aggregation for medical images. Comput Med Imag Graph: Off J Comput Med Imag Soci. 2022;102:102139.CrossRef
252.
go back to reference Ali A, Almaiah MA, Hajjej F, Pasha MF, Fang OH, Khan R, et al. An Industrial IoT-based blockchain-enabled secure searchable encryption approach for healthcare systems using neural network. Sensors (Basel, Switzerland). 2022;22(2):572.PubMedPubMedCentralCrossRef Ali A, Almaiah MA, Hajjej F, Pasha MF, Fang OH, Khan R, et al. An Industrial IoT-based blockchain-enabled secure searchable encryption approach for healthcare systems using neural network. Sensors (Basel, Switzerland). 2022;22(2):572.PubMedPubMedCentralCrossRef
253.
go back to reference Freeman K, Geppert J, Stinton C, Todkill D, Johnson S, Clarke A, et al. Use of artificial intelligence for image analysis in breast cancer screening programmes: systematic review of test accuracy. BMJ (Clinical research ed). 2021;374: n1872.PubMed Freeman K, Geppert J, Stinton C, Todkill D, Johnson S, Clarke A, et al. Use of artificial intelligence for image analysis in breast cancer screening programmes: systematic review of test accuracy. BMJ (Clinical research ed). 2021;374: n1872.PubMed
254.
go back to reference Mathios D, Johansen JS, Cristiano S, Medina JE, Phallen J, Larsen KR, et al. Detection and characterization of lung cancer using cell-free DNA fragmentomes. Nat Commun. 2021;12(1):5060.PubMedPubMedCentralCrossRef Mathios D, Johansen JS, Cristiano S, Medina JE, Phallen J, Larsen KR, et al. Detection and characterization of lung cancer using cell-free DNA fragmentomes. Nat Commun. 2021;12(1):5060.PubMedPubMedCentralCrossRef
Metadata
Title
Novel research and future prospects of artificial intelligence in cancer diagnosis and treatment
Authors
Chaoyi Zhang
Jin Xu
Rong Tang
Jianhui Yang
Wei Wang
Xianjun Yu
Si Shi
Publication date
01-12-2023
Publisher
BioMed Central
Published in
Journal of Hematology & Oncology / Issue 1/2023
Electronic ISSN: 1756-8722
DOI
https://doi.org/10.1186/s13045-023-01514-5

Other articles of this Issue 1/2023

Journal of Hematology & Oncology 1/2023 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine