Skip to main content
Top
Published in: BMC Oral Health 1/2023

Open Access 01-12-2023 | Artificial Intelligence | Research

Detection of the pathological exposure of pulp using an artificial intelligence tool: a multicentric study over periapical radiographs

Authors: A. Altukroni, A. Alsaeedi, C. Gonzalez-Losada, J. H. Lee, M. Alabudh, M. Mirah, S. El-Amri, O. Ezz El-Deen

Published in: BMC Oral Health | Issue 1/2023

Login to get access

Abstract

Background

Introducing artificial intelligence (AI) into the medical field proved beneficial in automating tasks and streamlining the practitioners’ lives. Hence, this study was conducted to design and evaluate an AI tool called Make Sure Caries Detector and Classifier (MSc) for detecting pathological exposure of pulp on digital periapical radiographs and to compare its performance with dentists.

Methods

This study was a diagnostic, multi-centric study, with 3461 digital periapical radiographs from three countries and seven centers. MSc was built using Yolov5-x model, and it was used for exposed and unexposed pulp detection. The dataset was split into a train, validate, and test dataset; the ratio was 8–1-1 to prevent overfitting. 345 images with 752 labels were randomly allocated to test MSc. The performance metrics used to test MSc performance included mean average precision (mAP), precision, F1 score, recall, and area under receiver operating characteristic curve (AUC). The metrics used to compare the performance with that of 10 certified dentists were: right diagnosis exposed (RDE), right diagnosis not exposed (RDNE), false diagnosis exposed (FDE), false diagnosis not exposed (FDNE), missed diagnosis (MD), and over diagnosis (OD).

Results

MSc achieved a performance of more than 90% in all metrics examined: an average precision of 0.928, recall of 0.918, F1-score of 0.922, and AUC of 0.956 (P<.05). The results showed a higher mean of 1.94 for all right (correct) diagnosis parameters in MSc group, while a higher mean of 0.64 for all wrong diagnosis parameters in the dentists group (P<.05).

Conclusions

The designed MSc tool proved itself reliable in the detection and differentiating between exposed and unexposed pulp in the internally validated model. It also showed a better performance for the detection of exposed and unexposed pulp when compared to the 10 dentists’ consensus.
Appendix
Available only for authorised users
Literature
1.
go back to reference Gil AMC, Gispert AEÁ. General remarks about minimal intervention dentistry. Rev Cubana Estomatol. 2016;53(2):37–44. Gil AMC, Gispert AEÁ. General remarks about minimal intervention dentistry. Rev Cubana Estomatol. 2016;53(2):37–44.
2.
go back to reference Leite AF, Vasconcelos KF, Willems H, Jacobs R. Radiomics and machine learning in oral healthcare. Proteomics Clin Appl. 2020;14(3):e1900040. Leite AF, Vasconcelos KF, Willems H, Jacobs R. Radiomics and machine learning in oral healthcare. Proteomics Clin Appl. 2020;14(3):e1900040.
3.
go back to reference Lee JH, Kim DH, Jeong SN, Choi SH. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. J Dent. 2018;77:106–11. Lee JH, Kim DH, Jeong SN, Choi SH. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. J Dent. 2018;77:106–11.
4.
go back to reference Estay J, Bersezio C, Arias R, Fernández E, Oliveira Junior OB, Ferrarezi de Andrade M. Effect of Clinical Experience on Accuracy and Reliability of Radiographic Caries Detection. Int J Odontostomatol. 2017;3:347–52.CrossRef Estay J, Bersezio C, Arias R, Fernández E, Oliveira Junior OB, Ferrarezi de Andrade M. Effect of Clinical Experience on Accuracy and Reliability of Radiographic Caries Detection. Int J Odontostomatol. 2017;3:347–52.CrossRef
5.
go back to reference Diniz MB, Rodrigues JA, Neuhaus KW, Cordeiro RC, Lussi A. Influence of examiner's clinical experience on the reproducibility and accuracy of radiographic examination in detecting occlusal caries. Clin Oral Investig. 2010;14(5):515–23. Diniz MB, Rodrigues JA, Neuhaus KW, Cordeiro RC, Lussi A. Influence of examiner's clinical experience on the reproducibility and accuracy of radiographic examination in detecting occlusal caries. Clin Oral Investig. 2010;14(5):515–23.
6.
go back to reference Shams N, Panahandeh N, Aghababa H, Shams B, Hemati E. Effects of education and experience on detection of proximal caries on digital radiographs. Oral Radiol. 2015;32(3):154–9. Shams N, Panahandeh N, Aghababa H, Shams B, Hemati E. Effects of education and experience on detection of proximal caries on digital radiographs. Oral Radiol. 2015;32(3):154–9.
7.
go back to reference Zheng L, Wang H, Mei L, Chen Q, Zhang Y, Zhang H. Artificial intelligence in digital cariology: a new tool for the diagnosis of deep caries and pulpitis using convolutional neural networks. Ann Transl Med. 2021;9:763.CrossRefPubMedPubMedCentral Zheng L, Wang H, Mei L, Chen Q, Zhang Y, Zhang H. Artificial intelligence in digital cariology: a new tool for the diagnosis of deep caries and pulpitis using convolutional neural networks. Ann Transl Med. 2021;9:763.CrossRefPubMedPubMedCentral
8.
go back to reference Esteva A, Robicquet A, Ramsundar B, Kuleshov V, DePristo M, Chou K, et al. A guide to deep learning in healthcare. Nat Med. 2019;1:24–9.CrossRef Esteva A, Robicquet A, Ramsundar B, Kuleshov V, DePristo M, Chou K, et al. A guide to deep learning in healthcare. Nat Med. 2019;1:24–9.CrossRef
9.
go back to reference Bejnordi B Ehteshami, Veta M, van P Johannes Diest, van B Ginneken, Karssemeijer N, Litjens G, et al. Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer. JAMA. 2017;318(22):2199–210.CrossRef Bejnordi B Ehteshami, Veta M, van P Johannes Diest, van B Ginneken, Karssemeijer N, Litjens G, et al. Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer. JAMA. 2017;318(22):2199–210.CrossRef
10.
go back to reference Wang X, Peng Y, Lu L, Lu Z, Bagheri M, Summers RM. Chestx-ray8: hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. Honolulu: IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2017. p. 3462–71. Wang X, Peng Y, Lu L, Lu Z, Bagheri M, Summers RM. Chestx-ray8: hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. Honolulu: IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2017. p. 3462–71.
11.
go back to reference Strodthoff N, Strodthoff C. Detecting and interpreting myocardial infarction using fully convolutional neural networks. Physiol Meas. 2019;1:15001.CrossRef Strodthoff N, Strodthoff C. Detecting and interpreting myocardial infarction using fully convolutional neural networks. Physiol Meas. 2019;1:15001.CrossRef
12.
go back to reference Thrall JH, Li X, Li Q, Cruz C, Do S, Dreyer K. Artificial Intelligence and Machine Learning in Radiology: Opportunities, Challenges, Pitfalls, and Criteria for Success. J Am Coll Radiol. 2018;15(3 Pt B):504–8.CrossRefPubMed Thrall JH, Li X, Li Q, Cruz C, Do S, Dreyer K. Artificial Intelligence and Machine Learning in Radiology: Opportunities, Challenges, Pitfalls, and Criteria for Success. J Am Coll Radiol. 2018;15(3 Pt B):504–8.CrossRefPubMed
13.
go back to reference Bluemke DA, Moy L, Bredella MA, Ertl-Wagner BB, Fowler KJ, Goh VJ, Halpern EF, Hess CP, Schiebler ML, Weiss CR. Assessing radiology research on artificial intelligence: a brief guide for authors, reviewers, and readers-from the radiology editorial board. Radiology. 2020;294(3):487–9. Bluemke DA, Moy L, Bredella MA, Ertl-Wagner BB, Fowler KJ, Goh VJ, Halpern EF, Hess CP, Schiebler ML, Weiss CR. Assessing radiology research on artificial intelligence: a brief guide for authors, reviewers, and readers-from the radiology editorial board. Radiology. 2020;294(3):487–9.
14.
go back to reference Do S, Song KD, Chung JW. Basics of Deep Learning: A Radiologist’s Guide to Understanding Published Radiology Articles on Deep Learning. Korean J Radiol. 2020;1:33–41.CrossRef Do S, Song KD, Chung JW. Basics of Deep Learning: A Radiologist’s Guide to Understanding Published Radiology Articles on Deep Learning. Korean J Radiol. 2020;1:33–41.CrossRef
15.
go back to reference Soffer S, Ben-Cohen A, Shimon O, Amitai MM, Greenspan H, Klang E. Convolutional Neural Networks for Radiologic Images: A Radiologist’s Guide. Radiology. 2019;3:590–606.CrossRef Soffer S, Ben-Cohen A, Shimon O, Amitai MM, Greenspan H, Klang E. Convolutional Neural Networks for Radiologic Images: A Radiologist’s Guide. Radiology. 2019;3:590–606.CrossRef
16.
go back to reference Hung K, Montalvao C, Tanaka R, Kawai T, Bornstein MM. The use and performance of artificial intelligence applications in dental and maxillofacial radiology: A systematic review. Dentomaxillofac Radiol. 2020;1:20190107.CrossRef Hung K, Montalvao C, Tanaka R, Kawai T, Bornstein MM. The use and performance of artificial intelligence applications in dental and maxillofacial radiology: A systematic review. Dentomaxillofac Radiol. 2020;1:20190107.CrossRef
17.
go back to reference Nagi R, Aravinda K, Rakesh N, Gupta R, Pal A, Mann AK. Clinical applications and performance of intelligent systems in dental and maxillofacial radiology: A review. Imaging Sci Dent. 2020;2:81–92.CrossRef Nagi R, Aravinda K, Rakesh N, Gupta R, Pal A, Mann AK. Clinical applications and performance of intelligent systems in dental and maxillofacial radiology: A review. Imaging Sci Dent. 2020;2:81–92.CrossRef
18.
go back to reference Geetha V, Aprameya KS, Hinduja DM. Dental caries diagnosis in digital radiographs using back-propagation neural network. Heal Inf Sci Syst. 2020;1:8.CrossRef Geetha V, Aprameya KS, Hinduja DM. Dental caries diagnosis in digital radiographs using back-propagation neural network. Heal Inf Sci Syst. 2020;1:8.CrossRef
19.
go back to reference Devito KL, de Souza BF, Felippe Filho WN. An artificial multilayer perceptron neural network for diagnosis of proximal dental caries. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008;6:879–84.CrossRef Devito KL, de Souza BF, Felippe Filho WN. An artificial multilayer perceptron neural network for diagnosis of proximal dental caries. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008;6:879–84.CrossRef
20.
go back to reference Yu Y, Li Y, Li Y-J, Wang JM, Lin DH, Ye WP. Tooth decay diagnosis using back propagation neural network. Dalian: In proceedings of the 2006 international conference on machine learning and cybernetics; 2006. p. 3956–9. Yu Y, Li Y, Li Y-J, Wang JM, Lin DH, Ye WP. Tooth decay diagnosis using back propagation neural network. Dalian: In proceedings of the 2006 international conference on machine learning and cybernetics; 2006. p. 3956–9.
21.
go back to reference Li W, Kuang W, Li Y, Li YJ, Ye WP: Clinical X-ray image based tooth decay diagnosis using SVM. Proceedings of international conference on machine learning and cybernetics. 2007:1616–19. Li W, Kuang W, Li Y, Li YJ, Ye WP: Clinical X-ray image based tooth decay diagnosis using SVM. Proceedings of international conference on machine learning and cybernetics. 2007:1616–19.
22.
go back to reference Ali RB, Ejbali R, Zaied M. Detection and classification of dental caries in x-ray images using deep neural networks. International conference on software engineering advances. 2016:223–7. Ali RB, Ejbali R, Zaied M. Detection and classification of dental caries in x-ray images using deep neural networks. International conference on software engineering advances. 2016:223–7.
23.
go back to reference Singh P, Sehgal P. Automated caries detection based on radon transformation and DCT. 2017 8th international conference on computing, communication and networking technologies (ICCCNT). 2017:1–6. Singh P, Sehgal P. Automated caries detection based on radon transformation and DCT. 2017 8th international conference on computing, communication and networking technologies (ICCCNT). 2017:1–6.
24.
go back to reference Bossuyt PM, Reitsma JB, Bruns DE, Bruns DE, Glasziou PP, Irwig L, et al. STARD 2015: An updated list of essential items for reporting diagnostic accuracy studies1. Radiology. 2015;3:826–32.CrossRef Bossuyt PM, Reitsma JB, Bruns DE, Bruns DE, Glasziou PP, Irwig L, et al. STARD 2015: An updated list of essential items for reporting diagnostic accuracy studies1. Radiology. 2015;3:826–32.CrossRef
25.
go back to reference Schwendicke F, Singh T, Lee JH, Gaudin R, Chaurasia A, Wiegand T, Uribe S, Krois J. IADR e-oral health network and the ITU WHO focus group AI for Health. Artificial intelligence in dental research: Checklist for authors, reviewers, readers. J Dent. 2021;107:103610. Schwendicke F, Singh T, Lee JH, Gaudin R, Chaurasia A, Wiegand T, Uribe S, Krois J. IADR e-oral health network and the ITU WHO focus group AI for Health. Artificial intelligence in dental research: Checklist for authors, reviewers, readers. J Dent. 2021;107:103610.
26.
go back to reference Kim JE, Nam NE, Shim JS, Jung YH, Cho BH, Hwang JJ. Transfer learning via deep neural networks for implant fixture system classification using periapical radiographs. J Clin Med. 2020;9(4):1117. Kim JE, Nam NE, Shim JS, Jung YH, Cho BH, Hwang JJ. Transfer learning via deep neural networks for implant fixture system classification using periapical radiographs. J Clin Med. 2020;9(4):1117.
27.
go back to reference Sur J, Bose S, Khan F, Dewangan D, Sawriya E, Roul A. Knowledge, attitudes, and perceptions regarding the future of artificial intelligence in oral radiology in India: A survey. Imaging Sci Dent. 2020;3:193.CrossRef Sur J, Bose S, Khan F, Dewangan D, Sawriya E, Roul A. Knowledge, attitudes, and perceptions regarding the future of artificial intelligence in oral radiology in India: A survey. Imaging Sci Dent. 2020;3:193.CrossRef
28.
go back to reference Lian L, Zhu T, Zhu F, Zhu H. Deep learning for caries detection and classification. Diagnostics (Basel). 2021;11(9):1672. Lian L, Zhu T, Zhu F, Zhu H. Deep learning for caries detection and classification. Diagnostics (Basel). 2021;11(9):1672.
29.
go back to reference Prados-Privado M, Villalón JG, Martínez-Martínez CH, Ivorra C, Prados-Frutos JC. Dental caries diagnosis and detection using neural networks: A systematic review. J Clin Med. 2020;11:1–13. Prados-Privado M, Villalón JG, Martínez-Martínez CH, Ivorra C, Prados-Frutos JC. Dental caries diagnosis and detection using neural networks: A systematic review. J Clin Med. 2020;11:1–13.
30.
go back to reference Schwendicke F, Samek W, Krois J. Artificial Intelligence in Dentistry: Chances and Challenges. J Dent Res. 2020;7:769–74.CrossRef Schwendicke F, Samek W, Krois J. Artificial Intelligence in Dentistry: Chances and Challenges. J Dent Res. 2020;7:769–74.CrossRef
31.
go back to reference Berdouses ED, Koutsouri GD, Tripoliti EE, Matsopoulos GK, Oulis CJ, Fotiadis DI. A computer-aided automated methodology for the detection and classification of occlusal caries from photographic color images. Comput Biol Med. 2015;119–35. Berdouses ED, Koutsouri GD, Tripoliti EE, Matsopoulos GK, Oulis CJ, Fotiadis DI. A computer-aided automated methodology for the detection and classification of occlusal caries from photographic color images. Comput Biol Med. 2015;119–35.
32.
go back to reference Kühnisch J, Meyer O, Hesenius M, Hickel R, Gruhn V. Caries detection on intraoral images using artificial intelligence. J Dent Res. 2022;101(2):158–65. Kühnisch J, Meyer O, Hesenius M, Hickel R, Gruhn V. Caries detection on intraoral images using artificial intelligence. J Dent Res. 2022;101(2):158–65.
33.
go back to reference Mandrekar JN. Receiver operating characteristic curve in diagnostic test assessment. J Thorac Oncol Off Publ Int Assoc Study Lung Cancer. 2010;9:1315–6. Mandrekar JN. Receiver operating characteristic curve in diagnostic test assessment. J Thorac Oncol Off Publ Int Assoc Study Lung Cancer. 2010;9:1315–6.
34.
go back to reference Prajapati SA, Nagaraj R, Mitra S. Classification of dental diseases using CNN and transfer learning. Proceedings of the 2017 5th International Symposium on Computational and Business Intelligence (ISCBI), Dubai, United Arab Emirates. 2017:70–4. Prajapati SA, Nagaraj R, Mitra S. Classification of dental diseases using CNN and transfer learning. Proceedings of the 2017 5th International Symposium on Computational and Business Intelligence (ISCBI), Dubai, United Arab Emirates. 2017:70–4.
35.
go back to reference Cantu AG, Gehrung S, Krois J, Chaurasia A, Rossi JG, Gaudin R, Elhennawy K, Schwendicke F. Detecting caries lesions of different radiographic extension on bitewings using deep learning. J Dent. 2020;100:103425. Cantu AG, Gehrung S, Krois J, Chaurasia A, Rossi JG, Gaudin R, Elhennawy K, Schwendicke F. Detecting caries lesions of different radiographic extension on bitewings using deep learning. J Dent. 2020;100:103425.
36.
go back to reference Burnham KP, Anderson DR. Model Selection and Multimodel Inference. New York, NY, USA: Springer; 2004. (978-0-387-95364-9.CrossRef Burnham KP, Anderson DR. Model Selection and Multimodel Inference. New York, NY, USA: Springer; 2004. (978-0-387-95364-9.CrossRef
37.
go back to reference Mutasa S, Sun S, Ha R. Understanding artificial intelligence based radiology studies: What is overfitting? Clin Imaging. 2020;65:96-9. Mutasa S, Sun S, Ha R. Understanding artificial intelligence based radiology studies: What is overfitting? Clin Imaging. 2020;65:96-9.
Metadata
Title
Detection of the pathological exposure of pulp using an artificial intelligence tool: a multicentric study over periapical radiographs
Authors
A. Altukroni
A. Alsaeedi
C. Gonzalez-Losada
J. H. Lee
M. Alabudh
M. Mirah
S. El-Amri
O. Ezz El-Deen
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Oral Health / Issue 1/2023
Electronic ISSN: 1472-6831
DOI
https://doi.org/10.1186/s12903-023-03251-0

Other articles of this Issue 1/2023

BMC Oral Health 1/2023 Go to the issue