Skip to main content
Top
Published in: BMC Medicine 1/2022

Open Access 01-12-2022 | Artificial Intelligence | Research article

Personalised treatment for cognitive impairment in dementia: development and validation of an artificial intelligence model

Authors: Qiang Liu, Nemanja Vaci, Ivan Koychev, Andrey Kormilitzin, Zhenpeng Li, Andrea Cipriani, Alejo Nevado-Holgado

Published in: BMC Medicine | Issue 1/2022

Login to get access

Abstract

Background

Donepezil, galantamine, rivastigmine and memantine are potentially effective interventions for cognitive impairment in dementia, but the use of these drugs has not been personalised to individual patients yet. We examined whether artificial intelligence-based recommendations can identify the best treatment using routinely collected patient-level information.

Methods

Six thousand eight hundred four patients aged 59–102 years with a diagnosis of dementia from two National Health Service (NHS) Foundation Trusts in the UK were used for model training/internal validation and external validation, respectively. A personalised prescription model based on the Recurrent Neural Network machine learning architecture was developed to predict the Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA) scores post-drug initiation. The drug that resulted in the smallest decline in cognitive scores between prescription and the next visit was selected as the treatment of choice. Change of cognitive scores up to 2 years after treatment initiation was compared for model evaluation.

Results

Overall, 1343 patients with MMSE scores were identified for internal validation and 285 [21.22%] took the drug recommended. After 2 years, the reduction of mean [standard deviation] MMSE score in this group was significantly smaller than the remaining 1058 [78.78%] patients (0.60 [0.26] vs 2.80 [0.28]; P = 0.02). In the external validation cohort (N = 1772), 222 [12.53%] patients took the drug recommended and reported a smaller MMSE reduction compared to the 1550 [87.47%] patients who did not (1.01 [0.49] vs 4.23 [0.60]; P = 0.01). A similar performance gap was seen when testing the model on patients prescribed with AChEIs only.

Conclusions

It was possible to identify the most effective drug for the real-world treatment of cognitive impairment in dementia at an individual patient level. Routine care patients whose prescribed medications were the best fit according to the model had better cognitive performance after 2 years.
Appendix
Available only for authorised users
Literature
6.
go back to reference Moore A, Patterson C, Lee L, Vedel I, Bergman H. Fourth Canadian Consensus Conference on the Diagnosis and Treatment of Dementia: recommendations for family physicians. Can Fam Physician. 2014;60(5):433–8.PubMedPubMedCentral Moore A, Patterson C, Lee L, Vedel I, Bergman H. Fourth Canadian Consensus Conference on the Diagnosis and Treatment of Dementia: recommendations for family physicians. Can Fam Physician. 2014;60(5):433–8.PubMedPubMedCentral
8.
go back to reference Seibert M, Mühlbauer V, Holbrook J, Voigt-Radloff S, Brefka S, Dallmeier D, et al. Efficacy and safety of pharmacotherapy for Alzheimer’s disease and for behavioural and psychological symptoms of dementia in older patients with moderate and severe functional impairments: a systematic review of controlled trials. Alzheimers Res Ther. 2021;13(1):1–20. https://doi.org/10.1186/s13195-021-00867-8.CrossRef Seibert M, Mühlbauer V, Holbrook J, Voigt-Radloff S, Brefka S, Dallmeier D, et al. Efficacy and safety of pharmacotherapy for Alzheimer’s disease and for behavioural and psychological symptoms of dementia in older patients with moderate and severe functional impairments: a systematic review of controlled trials. Alzheimers Res Ther. 2021;13(1):1–20. https://​doi.​org/​10.​1186/​s13195-021-00867-8.CrossRef
11.
go back to reference Sepehrband F, Barisano G, Sheikh-Bahaei N, Choupan J, Cabeen RP, Crawford MS, et al. Alteration of perivascular spaces in early cognitive decline: neuroimaging/optimal neuroimaging measures for early detection. Alzheimers Dement. 2020;16(S5):e045605. https://doi.org/10.1002/alz.045605.CrossRef Sepehrband F, Barisano G, Sheikh-Bahaei N, Choupan J, Cabeen RP, Crawford MS, et al. Alteration of perivascular spaces in early cognitive decline: neuroimaging/optimal neuroimaging measures for early detection. Alzheimers Dement. 2020;16(S5):e045605. https://​doi.​org/​10.​1002/​alz.​045605.CrossRef
13.
go back to reference Erdoğan O, Esme M, Balci C, Rafatov S, Cankurtaran M, Yavuz BB, et al. Identification of genomic biomarkers with machine learning for early and differential diagnosis of late-onset Alzheimer’s disease (LOAD). Alzheimers Dement. 2020;16(S2):e042558. https://doi.org/10.1002/alz.042558.CrossRef Erdoğan O, Esme M, Balci C, Rafatov S, Cankurtaran M, Yavuz BB, et al. Identification of genomic biomarkers with machine learning for early and differential diagnosis of late-onset Alzheimer’s disease (LOAD). Alzheimers Dement. 2020;16(S2):e042558. https://​doi.​org/​10.​1002/​alz.​042558.CrossRef
15.
go back to reference Kumar S, Oh I, Schindler S, Lai AM, Payne PR, Gupta A. Machine learning for modeling the progression of Alzheimer disease dementia using clinical data: a systematic literature review. JAMIA Open. 2021;4(3):ooab052.CrossRef Kumar S, Oh I, Schindler S, Lai AM, Payne PR, Gupta A. Machine learning for modeling the progression of Alzheimer disease dementia using clinical data: a systematic literature review. JAMIA Open. 2021;4(3):ooab052.CrossRef
16.
go back to reference Amini S, Zhang L, Hao B, Gupta A, Song M, Karjadi C, et al. An artificial intelligence-assisted method for dementia detection using images from the clock drawing test. J Alzheimers Dis. 2021;(Preprint):1–9. Amini S, Zhang L, Hao B, Gupta A, Song M, Karjadi C, et al. An artificial intelligence-assisted method for dementia detection using images from the clock drawing test. J Alzheimers Dis. 2021;(Preprint):1–9.
17.
go back to reference Zhang Z, Jiang Y, Cao X, Yang X, Zhu C, Li Y, et al. Deep learning based gait analysis for contactless dementia detection system from video camera. IEEE Int Symp Circuits Syst Proc. 2021; IEEE. Zhang Z, Jiang Y, Cao X, Yang X, Zhu C, Li Y, et al. Deep learning based gait analysis for contactless dementia detection system from video camera. IEEE Int Symp Circuits Syst Proc. 2021; IEEE.
19.
go back to reference Ozdemir D, Cibulka J, Stepankova O, Holmerova I. Design and implementation framework of social assistive robotics for people with dementia-a scoping review. Health Technol (Berl). 2021:1–12. Ozdemir D, Cibulka J, Stepankova O, Holmerova I. Design and implementation framework of social assistive robotics for people with dementia-a scoping review. Health Technol (Berl). 2021:1–12.
24.
go back to reference Denis M. U.K. clinical record interactive search (CRIS). Alzheimers Dement. 2017;13(7). Denis M. U.K. clinical record interactive search (CRIS). Alzheimers Dement. 2017;13(7).
36.
go back to reference Sundström A, Westerlund O, Kotyrlo E. Marital status and risk of dementia: a nationwide population-based prospective study from Sweden. BMJ Open. 2016;6(1):e008565.CrossRef Sundström A, Westerlund O, Kotyrlo E. Marital status and risk of dementia: a nationwide population-based prospective study from Sweden. BMJ Open. 2016;6(1):e008565.CrossRef
37.
go back to reference Zhang Z, Liu H. Choi S-wE. Marital loss and risk of dementia: do race and gender matter. Soc Sci Med. 2021;275:113808.CrossRef Zhang Z, Liu H. Choi S-wE. Marital loss and risk of dementia: do race and gender matter. Soc Sci Med. 2021;275:113808.CrossRef
40.
go back to reference Arevalo-Rodriguez I, Smailagic N, i Figuls MR, Ciapponi A, Sanchez-Perez E, Giannakou A, et al. Mini-Mental State Examination (MMSE) for the detection of Alzheimer’s disease and other dementias in people with mild cognitive impairment (MCI). Cochrane Database Syst Rev. 2015;3. https://doi.org/10.1002/14651858.CD010783.pub2. Arevalo-Rodriguez I, Smailagic N, i Figuls MR, Ciapponi A, Sanchez-Perez E, Giannakou A, et al. Mini-Mental State Examination (MMSE) for the detection of Alzheimer’s disease and other dementias in people with mild cognitive impairment (MCI). Cochrane Database Syst Rev. 2015;3. https://​doi.​org/​10.​1002/​14651858.​CD010783.​pub2.
41.
go back to reference Davis DH, Creavin ST, Yip JL, Noel-Storr AH, Brayne C, Cullum S. Montreal Cognitive Assessment for the detection of dementia. Cochrane Database Syst Rev. 2021;7(7). Davis DH, Creavin ST, Yip JL, Noel-Storr AH, Brayne C, Cullum S. Montreal Cognitive Assessment for the detection of dementia. Cochrane Database Syst Rev. 2021;7(7).
53.
go back to reference Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, et al. TensorFlow: large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv. 2016:160304467. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, et al. TensorFlow: large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv. 2016:160304467.
57.
go back to reference Cui C-C, Sun Y, Wang X-Y, Zhang Y, Xing Y. The effect of anti-dementia drugs on Alzheimer disease-induced cognitive impairment: a network meta-analysis. Medicine (Baltimore). 2019;98(27):e16091.CrossRef Cui C-C, Sun Y, Wang X-Y, Zhang Y, Xing Y. The effect of anti-dementia drugs on Alzheimer disease-induced cognitive impairment: a network meta-analysis. Medicine (Baltimore). 2019;98(27):e16091.CrossRef
58.
go back to reference Whitehead A, Perdomo C, Pratt RD, Birks J, Wilcock GK, Evans JG. Donepezil for the symptomatic treatment of patients with mild to moderate Alzheimer’s disease: a meta-analysis of individual patient data from randomised controlled trials. Int J Geriatr Psychiatry. 2004;19(7):624–33. https://doi.org/10.1002/gps.1133.CrossRefPubMed Whitehead A, Perdomo C, Pratt RD, Birks J, Wilcock GK, Evans JG. Donepezil for the symptomatic treatment of patients with mild to moderate Alzheimer’s disease: a meta-analysis of individual patient data from randomised controlled trials. Int J Geriatr Psychiatry. 2004;19(7):624–33. https://​doi.​org/​10.​1002/​gps.​1133.CrossRefPubMed
59.
go back to reference Knight R, Khondoker M, Magill N, Stewart R, Landau S. A systematic review and meta-analysis of the effectiveness of acetylcholinesterase inhibitors and memantine in treating the cognitive symptoms of dementia. Dement Geriatr Cogn Disord. 2018;45(3-4):131–51. https://doi.org/10.1159/000486546.CrossRefPubMed Knight R, Khondoker M, Magill N, Stewart R, Landau S. A systematic review and meta-analysis of the effectiveness of acetylcholinesterase inhibitors and memantine in treating the cognitive symptoms of dementia. Dement Geriatr Cogn Disord. 2018;45(3-4):131–51. https://​doi.​org/​10.​1159/​000486546.CrossRefPubMed
68.
71.
go back to reference Levine SZ, Yoshida K, Goldberg Y, Samara M, Cipriani A, Efthimiou O, et al. Linking the Mini-Mental State Examination, the Alzheimer’s Disease Assessment Scale–Cognitive Subscale and the Severe Impairment Battery: evidence from individual participant data from five randomised clinical trials of donepezil. Evid Based Ment Health. 2021;24(2):56–61. https://doi.org/10.1136/ebmental-2020-300184.CrossRefPubMed Levine SZ, Yoshida K, Goldberg Y, Samara M, Cipriani A, Efthimiou O, et al. Linking the Mini-Mental State Examination, the Alzheimer’s Disease Assessment Scale–Cognitive Subscale and the Severe Impairment Battery: evidence from individual participant data from five randomised clinical trials of donepezil. Evid Based Ment Health. 2021;24(2):56–61. https://​doi.​org/​10.​1136/​ebmental-2020-300184.CrossRefPubMed
Metadata
Title
Personalised treatment for cognitive impairment in dementia: development and validation of an artificial intelligence model
Authors
Qiang Liu
Nemanja Vaci
Ivan Koychev
Andrey Kormilitzin
Zhenpeng Li
Andrea Cipriani
Alejo Nevado-Holgado
Publication date
01-12-2022
Publisher
BioMed Central
Published in
BMC Medicine / Issue 1/2022
Electronic ISSN: 1741-7015
DOI
https://doi.org/10.1186/s12916-022-02250-2

Other articles of this Issue 1/2022

BMC Medicine 1/2022 Go to the issue