Skip to main content
Top

29-04-2024 | Artificial Intelligence | Technical Developments

Automated abdominal CT contrast phase detection using an interpretable and open-source artificial intelligence algorithm

Authors: Eduardo Pontes Reis, Louis Blankemeier, Juan Manuel Zambrano Chaves, Malte Engmann Kjeldskov Jensen, Sally Yao, Cesar Augusto Madid Truyts, Marc H. Willis, Scott Adams, Edson Amaro Jr, Robert D. Boutin, Akshay S. Chaudhari

Published in: European Radiology

Login to get access

Abstract

Objectives

To develop and validate an open-source artificial intelligence (AI) algorithm to accurately detect contrast phases in abdominal CT scans.

Materials and methods

Retrospective study aimed to develop an AI algorithm trained on 739 abdominal CT exams from 2016 to 2021, from 200 unique patients, covering 1545 axial series. We performed segmentation of five key anatomic structures—aorta, portal vein, inferior vena cava, renal parenchyma, and renal pelvis—using TotalSegmentator, a deep learning-based tool for multi-organ segmentation, and a rule-based approach to extract the renal pelvis. Radiomics features were extracted from the anatomical structures for use in a gradient-boosting classifier to identify four contrast phases: non-contrast, arterial, venous, and delayed. Internal and external validation was performed using the F1 score and other classification metrics, on the external dataset “VinDr-Multiphase CT”.

Results

The training dataset consisted of 172 patients (mean age, 70 years ± 8, 22% women), and the internal test set included 28 patients (mean age, 68 years ± 8, 14% women). In internal validation, the classifier achieved an accuracy of 92.3%, with an average F1 score of 90.7%. During external validation, the algorithm maintained an accuracy of 90.1%, with an average F1 score of 82.6%. Shapley feature attribution analysis indicated that renal and vascular radiodensity values were the most important for phase classification.

Conclusion

An open-source and interpretable AI algorithm accurately detects contrast phases in abdominal CT scans, with high accuracy and F1 scores in internal and external validation, confirming its generalization capability.

Clinical relevance statement

Contrast phase detection in abdominal CT scans is a critical step for downstream AI applications, deploying algorithms in the clinical setting, and for quantifying imaging biomarkers, ultimately allowing for better diagnostics and increased access to diagnostic imaging.

Key Points

  • Digital Imaging and Communications in Medicine labels are inaccurate for determining the abdominal CT scan phase.
  • AI provides great help in accurately discriminating the contrast phase.
  • Accurate contrast phase determination aids downstream AI applications and biomarker quantification.
Literature
1.
go back to reference Kammerer S, Höink AJ, Wessling J et al (2015) Abdominal and pelvic CT: Is positive enteric contrast still necessary? Results of a retrospective observational study. Eur Radiol 25:669–678CrossRefPubMed Kammerer S, Höink AJ, Wessling J et al (2015) Abdominal and pelvic CT: Is positive enteric contrast still necessary? Results of a retrospective observational study. Eur Radiol 25:669–678CrossRefPubMed
5.
go back to reference Schieda N, Nguyen K, Thornhill RE, McInnes MDF, Wu M, James N (2020) Importance of phase enhancement for machine learning classification of solid renal masses using texture analysis features at multi-phasic CT. Abdom Radiol (NY) 45:2786–2796CrossRefPubMed Schieda N, Nguyen K, Thornhill RE, McInnes MDF, Wu M, James N (2020) Importance of phase enhancement for machine learning classification of solid renal masses using texture analysis features at multi-phasic CT. Abdom Radiol (NY) 45:2786–2796CrossRefPubMed
6.
7.
go back to reference Boutin RD, Kaptuch JM, Bateni CP, Chalfant JS, Yao L (2016) Influence of IV contrast administration on CT measures of muscle and bone attenuation: implications for sarcopenia and osteoporosis evaluation. AJR Am J Roentgenol 207:1046–1054CrossRefPubMed Boutin RD, Kaptuch JM, Bateni CP, Chalfant JS, Yao L (2016) Influence of IV contrast administration on CT measures of muscle and bone attenuation: implications for sarcopenia and osteoporosis evaluation. AJR Am J Roentgenol 207:1046–1054CrossRefPubMed
8.
go back to reference Pickhardt PJ, Lauder T, Pooler BD et al (2016) Effect of IV contrast on lumbar trabecular attenuation at routine abdominal CT: correlation with DXA and implications for opportunistic osteoporosis screening. Osteoporos Int 27:147–152CrossRefPubMed Pickhardt PJ, Lauder T, Pooler BD et al (2016) Effect of IV contrast on lumbar trabecular attenuation at routine abdominal CT: correlation with DXA and implications for opportunistic osteoporosis screening. Osteoporos Int 27:147–152CrossRefPubMed
9.
go back to reference Rühling S, Navarro F, Sekuboyina A et al (2022) Automated detection of the contrast phase in MDCT by an artificial neural network improves the accuracy of opportunistic bone mineral density measurements. Eur Radiol 32:1465–1474CrossRefPubMed Rühling S, Navarro F, Sekuboyina A et al (2022) Automated detection of the contrast phase in MDCT by an artificial neural network improves the accuracy of opportunistic bone mineral density measurements. Eur Radiol 32:1465–1474CrossRefPubMed
10.
go back to reference Jang S, Graffy PM, Ziemlewicz TJ, Lee SJ, Summers RM, Pickhardt PJ (2019) Opportunistic osteoporosis screening at routine abdominal and thoracic CT: normative L1 trabecular attenuation values in more than 20 000 adults. Radiology 291:360–367CrossRefPubMed Jang S, Graffy PM, Ziemlewicz TJ, Lee SJ, Summers RM, Pickhardt PJ (2019) Opportunistic osteoporosis screening at routine abdominal and thoracic CT: normative L1 trabecular attenuation values in more than 20 000 adults. Radiology 291:360–367CrossRefPubMed
11.
12.
go back to reference Na S, Sung YS, Ko Y et al (2022) Development and validation of an ensemble artificial intelligence model for comprehensive imaging quality check to classify body parts and contrast enhancement. BMC Med Imaging 22:87CrossRefPubMedPubMedCentral Na S, Sung YS, Ko Y et al (2022) Development and validation of an ensemble artificial intelligence model for comprehensive imaging quality check to classify body parts and contrast enhancement. BMC Med Imaging 22:87CrossRefPubMedPubMedCentral
13.
go back to reference Muhamedrahimov R, Bar A, Laserson J, Akselrod-Ballin A, Elnekave E (2022) Using machine learning to identify intravenous contrast phases on computed tomography. Comput Methods Programs Biomed 215:106603CrossRefPubMed Muhamedrahimov R, Bar A, Laserson J, Akselrod-Ballin A, Elnekave E (2022) Using machine learning to identify intravenous contrast phases on computed tomography. Comput Methods Programs Biomed 215:106603CrossRefPubMed
14.
go back to reference Blankemeier L, Yao L, Long J et al (2024) Skeletal muscle area on CT: determination of an optimal height scaling power and testing for mortality risk prediction. AJR Am J Roentgenol 222:e2329889CrossRefPubMed Blankemeier L, Yao L, Long J et al (2024) Skeletal muscle area on CT: determination of an optimal height scaling power and testing for mortality risk prediction. AJR Am J Roentgenol 222:e2329889CrossRefPubMed
15.
go back to reference Chartrand G, Cheng PM, Vorontsov E et al (2017) Deep learning: a primer for radiologists. Radiographics 37:2113–2131CrossRefPubMed Chartrand G, Cheng PM, Vorontsov E et al (2017) Deep learning: a primer for radiologists. Radiographics 37:2113–2131CrossRefPubMed
16.
go back to reference Fuentes-Orrego JM, Pinho D, Kulkarni NM, Agrawal M, Ghoshhajra BB, Sahani DV (2014) New and evolving concepts in CT for abdominal vascular imaging. Radiographics 34:1363–1384CrossRefPubMed Fuentes-Orrego JM, Pinho D, Kulkarni NM, Agrawal M, Ghoshhajra BB, Sahani DV (2014) New and evolving concepts in CT for abdominal vascular imaging. Radiographics 34:1363–1384CrossRefPubMed
18.
go back to reference Gauriau R, Bridge C, Chen L et al (2020) Using DICOM metadata for radiological image series categorization: a feasibility study on large clinical brain MRI datasets. J Digit Imaging 33:747–762CrossRefPubMedPubMedCentral Gauriau R, Bridge C, Chen L et al (2020) Using DICOM metadata for radiological image series categorization: a feasibility study on large clinical brain MRI datasets. J Digit Imaging 33:747–762CrossRefPubMedPubMedCentral
20.
go back to reference Wasserthal J, Breit H-C, Meyer MT et al (2023) TotalSegmentator: robust segmentation of 104 anatomic structures in CT images. Radiol Artif Intell 5:e230024CrossRefPubMedPubMedCentral Wasserthal J, Breit H-C, Meyer MT et al (2023) TotalSegmentator: robust segmentation of 104 anatomic structures in CT images. Radiol Artif Intell 5:e230024CrossRefPubMedPubMedCentral
21.
go back to reference Chowdhary CL, Acharjya DP (2020) Segmentation and feature extraction in medical imaging: a systematic review. Procedia Comput Sci 167:26–36CrossRef Chowdhary CL, Acharjya DP (2020) Segmentation and feature extraction in medical imaging: a systematic review. Procedia Comput Sci 167:26–36CrossRef
22.
go back to reference Van Timmeren JE, Cester D, Tanadini-Lang S, Alkadhi H, Baessler B (2020) Radiomics in medical imaging—“how-to” guide and critical reflection. Insights Imaging 11:91CrossRefPubMedPubMedCentral Van Timmeren JE, Cester D, Tanadini-Lang S, Alkadhi H, Baessler B (2020) Radiomics in medical imaging—“how-to” guide and critical reflection. Insights Imaging 11:91CrossRefPubMedPubMedCentral
23.
go back to reference Chen T, Guestrin C (2016) XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, San Francisco, 13–17 Chen T, Guestrin C (2016) XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, San Francisco, 13–17
24.
go back to reference Dao BT, Nguyen TV, Pham HH, Nguyen HQ (2022) Phase recognition in contrast‐enhanced CT scans based on deep learning and random sampling. Med Phys 49:4518–4528CrossRefPubMed Dao BT, Nguyen TV, Pham HH, Nguyen HQ (2022) Phase recognition in contrast‐enhanced CT scans based on deep learning and random sampling. Med Phys 49:4518–4528CrossRefPubMed
25.
go back to reference Clopper CJ, Pearson ES (1934) The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika 26:404–413CrossRef Clopper CJ, Pearson ES (1934) The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika 26:404–413CrossRef
Metadata
Title
Automated abdominal CT contrast phase detection using an interpretable and open-source artificial intelligence algorithm
Authors
Eduardo Pontes Reis
Louis Blankemeier
Juan Manuel Zambrano Chaves
Malte Engmann Kjeldskov Jensen
Sally Yao
Cesar Augusto Madid Truyts
Marc H. Willis
Scott Adams
Edson Amaro Jr
Robert D. Boutin
Akshay S. Chaudhari
Publication date
29-04-2024
Publisher
Springer Berlin Heidelberg
Published in
European Radiology
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-024-10769-6