Skip to main content
Top
Published in: BMC Oral Health 1/2023

Open Access 01-12-2023 | Artificial Intelligence | Research

Artificial intelligence in the diagnosis of dental diseases on panoramic radiographs: a preliminary study

Authors: Junhua Zhu, Zhi Chen, Jing Zhao, Yueyuan Yu, Xiaojuan Li, Kangjian Shi, Fan Zhang, Feifei Yu, Keying Shi, Zhe Sun, Nengjie Lin, Yuanna Zheng

Published in: BMC Oral Health | Issue 1/2023

Login to get access

Abstract

Background

Artificial intelligence (AI) has been introduced to interpret the panoramic radiographs (PRs). The aim of this study was to develop an AI framework to diagnose multiple dental diseases on PRs, and to initially evaluate its performance.

Methods

The AI framework was developed based on 2 deep convolutional neural networks (CNNs), BDU-Net and nnU-Net. 1996 PRs were used for training. Diagnostic evaluation was performed on a separate evaluation dataset including 282 PRs. Sensitivity, specificity, Youden’s index, the area under the curve (AUC), and diagnostic time were calculated. Dentists with 3 different levels of seniority (H: high, M: medium, L: low) diagnosed the same evaluation dataset independently. Mann-Whitney U test and Delong test were conducted for statistical analysis (ɑ=0.05).

Results

Sensitivity, specificity, and Youden’s index of the framework for diagnosing 5 diseases were 0.964, 0.996, 0.960 (impacted teeth), 0.953, 0.998, 0.951 (full crowns), 0.871, 0.999, 0.870 (residual roots), 0.885, 0.994, 0.879 (missing teeth), and 0.554, 0.990, 0.544 (caries), respectively. AUC of the framework for the diseases were 0.980 (95%CI: 0.976–0.983, impacted teeth), 0.975 (95%CI: 0.972–0.978, full crowns), and 0.935 (95%CI: 0.929–0.940, residual roots), 0.939 (95%CI: 0.934–0.944, missing teeth), and 0.772 (95%CI: 0.764–0.781, caries), respectively. AUC of the AI framework was comparable to that of all dentists in diagnosing residual roots (p > 0.05), and its AUC values were similar to (p > 0.05) or better than (p < 0.05) that of M-level dentists for diagnosing 5 diseases. But AUC of the framework was statistically lower than some of H-level dentists for diagnosing impacted teeth, missing teeth, and caries (p < 0.05). The mean diagnostic time of the framework was significantly shorter than that of all dentists (p < 0.001).

Conclusions

The AI framework based on BDU-Net and nnU-Net demonstrated high specificity on diagnosing impacted teeth, full crowns, missing teeth, residual roots, and caries with high efficiency. The clinical feasibility of AI framework was preliminary verified since its performance was similar to or even better than the dentists with 3–10 years of experience. However, the AI framework for caries diagnosis should be improved.
Literature
1.
go back to reference Collaborators GBDOD, Bernabe E, Marcenes W, Hernandez CR, Bailey J, Abreu LG, Alipour V, Amini S, Arabloo J, Arefi Z, et al. Global, Regional, and national levels and Trends in Burden of oral conditions from 1990 to 2017: a systematic analysis for the global burden of Disease 2017 study. J Dent Res. 2020;99(4):362–73.CrossRef Collaborators GBDOD, Bernabe E, Marcenes W, Hernandez CR, Bailey J, Abreu LG, Alipour V, Amini S, Arabloo J, Arefi Z, et al. Global, Regional, and national levels and Trends in Burden of oral conditions from 1990 to 2017: a systematic analysis for the global burden of Disease 2017 study. J Dent Res. 2020;99(4):362–73.CrossRef
2.
go back to reference Global oral health. Status report: towards universal health coverage for oral health by 2030. Executive summary. Geneva: World Health Organization; 2022. Licence: CC BY-NC-SA 3.0 IGO. Global oral health. Status report: towards universal health coverage for oral health by 2030. Executive summary. Geneva: World Health Organization; 2022. Licence: CC BY-NC-SA 3.0 IGO.
3.
go back to reference Keenan JR, Keenan AV. Accuracy of dental radiographs for caries detection. Evid Based Dent. 2016;17(2):43.PubMedCrossRef Keenan JR, Keenan AV. Accuracy of dental radiographs for caries detection. Evid Based Dent. 2016;17(2):43.PubMedCrossRef
4.
go back to reference Fourcade A, Khonsari RH. Deep learning in medical image analysis: a third eye for doctors. J Stomatol Oral Maxillofac Surg. 2019;120(4):279–88.PubMedCrossRef Fourcade A, Khonsari RH. Deep learning in medical image analysis: a third eye for doctors. J Stomatol Oral Maxillofac Surg. 2019;120(4):279–88.PubMedCrossRef
5.
go back to reference Nguyen TT, Larrivée N, Lee A, Bilaniuk O, Durand R. Use of artificial intelligence in dentistry: current clinical trends and research advances. J Can Dent Assoc. 2021;87:l7.PubMed Nguyen TT, Larrivée N, Lee A, Bilaniuk O, Durand R. Use of artificial intelligence in dentistry: current clinical trends and research advances. J Can Dent Assoc. 2021;87:l7.PubMed
6.
go back to reference Svenson B, Stahlnacke K, Karlsson R, Falt A. Dentists’ use of digital radiographic techniques: part I - intraoral X-ray: a questionnaire study of swedish dentists. Acta Odontol Scand. 2018;76(2):111–8.PubMedCrossRef Svenson B, Stahlnacke K, Karlsson R, Falt A. Dentists’ use of digital radiographic techniques: part I - intraoral X-ray: a questionnaire study of swedish dentists. Acta Odontol Scand. 2018;76(2):111–8.PubMedCrossRef
7.
go back to reference Chen YW, Stanley K, Att W. Artificial intelligence in dentistry: current applications and future perspectives. Quintessence Int. 2020;51(3):248–57.PubMed Chen YW, Stanley K, Att W. Artificial intelligence in dentistry: current applications and future perspectives. Quintessence Int. 2020;51(3):248–57.PubMed
8.
9.
go back to reference Schwendicke F, Golla T, Dreher M, Krois J. Convolutional neural networks for dental image diagnostics: a scoping review. J Dent. 2019;91:103226.PubMedCrossRef Schwendicke F, Golla T, Dreher M, Krois J. Convolutional neural networks for dental image diagnostics: a scoping review. J Dent. 2019;91:103226.PubMedCrossRef
11.
go back to reference Terlemez A, Tassoker M, Kizilcakaya M, Gulec M. Comparison of cone-beam computed tomography and panoramic radiography in the evaluation of maxillary sinus pathology related to maxillary posterior teeth: do apical lesions increase the risk of maxillary sinus pathology? Imaging Sci Dent. 2019;49(2):115–22.PubMedPubMedCentralCrossRef Terlemez A, Tassoker M, Kizilcakaya M, Gulec M. Comparison of cone-beam computed tomography and panoramic radiography in the evaluation of maxillary sinus pathology related to maxillary posterior teeth: do apical lesions increase the risk of maxillary sinus pathology? Imaging Sci Dent. 2019;49(2):115–22.PubMedPubMedCentralCrossRef
12.
go back to reference Lee JH, Han SS, Kim YH, Lee C, Kim I. Application of a fully deep convolutional neural network to the automation of tooth segmentation on panoramic radiographs. Oral Surg Oral Med Oral Pathol Oral Radiol. 2020;129(6):635–42.PubMedCrossRef Lee JH, Han SS, Kim YH, Lee C, Kim I. Application of a fully deep convolutional neural network to the automation of tooth segmentation on panoramic radiographs. Oral Surg Oral Med Oral Pathol Oral Radiol. 2020;129(6):635–42.PubMedCrossRef
13.
14.
go back to reference Tuzoff DV, Tuzova LN, Bornstein MM, Krasnov AS, Kharchenko MA, Nikolenko SI, Sveshnikov MM, Bednenko GB. Tooth detection and numbering in panoramic radiographs using convolutional neural networks. Dentomaxillofac Radiol. 2019;48(4):20180051.PubMedPubMedCentralCrossRef Tuzoff DV, Tuzova LN, Bornstein MM, Krasnov AS, Kharchenko MA, Nikolenko SI, Sveshnikov MM, Bednenko GB. Tooth detection and numbering in panoramic radiographs using convolutional neural networks. Dentomaxillofac Radiol. 2019;48(4):20180051.PubMedPubMedCentralCrossRef
15.
go back to reference Ishibashi K, Ariji Y, Kuwada C, Kimura M, Hashimoto K, Umemura M, Nagao T, Ariji E. Efficacy of a deep leaning model created with the transfer learning method in detecting sialoliths of the submandibular gland on panoramic radiography. Oral Surg Oral Med Oral Pathol Oral Radiol. 2022;133(2):238–44.PubMedCrossRef Ishibashi K, Ariji Y, Kuwada C, Kimura M, Hashimoto K, Umemura M, Nagao T, Ariji E. Efficacy of a deep leaning model created with the transfer learning method in detecting sialoliths of the submandibular gland on panoramic radiography. Oral Surg Oral Med Oral Pathol Oral Radiol. 2022;133(2):238–44.PubMedCrossRef
16.
go back to reference De Araujo Faria V, Azimbagirad M, Viani Arruda G, Fernandes Pavoni J, Cezar Felipe J, Dos Santos E, Murta Junior LO. Prediction of radiation-related dental caries through pyRadiomics features and artificial neural network on panoramic radiography. J Digit Imaging. 2021;34(5):1237–48.PubMedPubMedCentralCrossRef De Araujo Faria V, Azimbagirad M, Viani Arruda G, Fernandes Pavoni J, Cezar Felipe J, Dos Santos E, Murta Junior LO. Prediction of radiation-related dental caries through pyRadiomics features and artificial neural network on panoramic radiography. J Digit Imaging. 2021;34(5):1237–48.PubMedPubMedCentralCrossRef
17.
go back to reference Watanabe H, Ariji Y, Fukuda M, Kuwada C, Kise Y, Nozawa M, Sugita Y, Ariji E. Deep learning object detection of maxillary cyst-like lesions on panoramic radiographs: preliminary study. Oral Radiol. 2021;37(3):487–93.PubMedCrossRef Watanabe H, Ariji Y, Fukuda M, Kuwada C, Kise Y, Nozawa M, Sugita Y, Ariji E. Deep learning object detection of maxillary cyst-like lesions on panoramic radiographs: preliminary study. Oral Radiol. 2021;37(3):487–93.PubMedCrossRef
18.
go back to reference Aliaga I, Vera V, Vera M, García E, Pedrera M, Pajares G. Automatic computation of mandibular indices in dental panoramic radiographs for early osteoporosis detection. Artif Intell Med. 2020;103:101816.PubMedCrossRef Aliaga I, Vera V, Vera M, García E, Pedrera M, Pajares G. Automatic computation of mandibular indices in dental panoramic radiographs for early osteoporosis detection. Artif Intell Med. 2020;103:101816.PubMedCrossRef
19.
go back to reference Warin K, Limprasert W, Suebnukarn S, Inglam S, Jantana P, Vicharueang S. Assessment of deep convolutional neural network models for mandibular fracture detection in panoramic radiographs. Int J Oral Maxillofac Surg. 2022;51(11):1488–94.PubMedCrossRef Warin K, Limprasert W, Suebnukarn S, Inglam S, Jantana P, Vicharueang S. Assessment of deep convolutional neural network models for mandibular fracture detection in panoramic radiographs. Int J Oral Maxillofac Surg. 2022;51(11):1488–94.PubMedCrossRef
20.
go back to reference Farman AG. There are good reasons for selecting panoramic radiography to replace the intraoral full-mouth series. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2002;94(6):653–4.PubMedCrossRef Farman AG. There are good reasons for selecting panoramic radiography to replace the intraoral full-mouth series. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2002;94(6):653–4.PubMedCrossRef
21.
go back to reference Bekiroglu N, Mete S, Ozbay G, Yalcinkaya S, Kargul B. Evaluation of panoramic radiographs taken from 1,056 turkish children. Niger J Clin Pract. 2015;18(1):8–12.PubMed Bekiroglu N, Mete S, Ozbay G, Yalcinkaya S, Kargul B. Evaluation of panoramic radiographs taken from 1,056 turkish children. Niger J Clin Pract. 2015;18(1):8–12.PubMed
22.
go back to reference Vinayahalingam S, Goey RS, Kempers S, Schoep J, Cherici T, Moin DA, Hanisch M. Automated chart filing on panoramic radiographs using deep learning. J Dent. 2021;115:103864.PubMedCrossRef Vinayahalingam S, Goey RS, Kempers S, Schoep J, Cherici T, Moin DA, Hanisch M. Automated chart filing on panoramic radiographs using deep learning. J Dent. 2021;115:103864.PubMedCrossRef
23.
go back to reference Zadrożny Ł, Regulski P, Brus-Sawczuk K, Czajkowska M, Parkanyi L, Ganz S, Mijiritsky E. Artificial Intelligence Application in Assessment of panoramic radiographs. Diagnostics (Basel). 2022;12(1):224.PubMedCrossRef Zadrożny Ł, Regulski P, Brus-Sawczuk K, Czajkowska M, Parkanyi L, Ganz S, Mijiritsky E. Artificial Intelligence Application in Assessment of panoramic radiographs. Diagnostics (Basel). 2022;12(1):224.PubMedCrossRef
24.
go back to reference Basaran M, Celik O, Bayrakdar IS, Bilgir E, Orhan K, Odabas A, Aslan AF, Jagtap R. Diagnostic charting of panoramic radiography using deep-learning artificial intelligence system. Oral Radiol. 2022;38(3):363–9.PubMedCrossRef Basaran M, Celik O, Bayrakdar IS, Bilgir E, Orhan K, Odabas A, Aslan AF, Jagtap R. Diagnostic charting of panoramic radiography using deep-learning artificial intelligence system. Oral Radiol. 2022;38(3):363–9.PubMedCrossRef
25.
go back to reference Zhang F, Zhu J, Hao P, Wu F, Zheng Y. BDU-net: toward accurate segmentation of dental image using border guidance and feature map distortion. Int J Imaging Syst Technol. 2022;32(4):1221–30.CrossRef Zhang F, Zhu J, Hao P, Wu F, Zheng Y. BDU-net: toward accurate segmentation of dental image using border guidance and feature map distortion. Int J Imaging Syst Technol. 2022;32(4):1221–30.CrossRef
26.
go back to reference Majkowska A, Mittal S, Steiner DF, Reicher JJ, McKinney SM, Duggan GE, Eswaran K, Cameron Chen PH, Liu Y, Kalidindi SR, et al. Chest Radiograph Interpretation with Deep Learning Models: Assessment with Radiologist-adjudicated reference Standards and Population-adjusted evaluation. Radiology. 2020;294(2):421–31.PubMedCrossRef Majkowska A, Mittal S, Steiner DF, Reicher JJ, McKinney SM, Duggan GE, Eswaran K, Cameron Chen PH, Liu Y, Kalidindi SR, et al. Chest Radiograph Interpretation with Deep Learning Models: Assessment with Radiologist-adjudicated reference Standards and Population-adjusted evaluation. Radiology. 2020;294(2):421–31.PubMedCrossRef
27.
go back to reference Isensee F, Jaeger PF, Kohl SA, Petersen J, Maier-Hein KH. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat Methods. 2021;18(2):203–11.PubMedCrossRef Isensee F, Jaeger PF, Kohl SA, Petersen J, Maier-Hein KH. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat Methods. 2021;18(2):203–11.PubMedCrossRef
28.
go back to reference Canny J. A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell. 1986;8(6):679–98.PubMedCrossRef Canny J. A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell. 1986;8(6):679–98.PubMedCrossRef
29.
go back to reference Revilla-Leon M, Gomez-Polo M, Vyas S, Barmak BA, Ozcan M, Att W, Krishnamurthy VR. Artificial intelligence applications in restorative dentistry: a systematic review. J Prosthet Dent. 2021;128(5):867–75.PubMedCrossRef Revilla-Leon M, Gomez-Polo M, Vyas S, Barmak BA, Ozcan M, Att W, Krishnamurthy VR. Artificial intelligence applications in restorative dentistry: a systematic review. J Prosthet Dent. 2021;128(5):867–75.PubMedCrossRef
30.
go back to reference Hajian-Tilaki K. Sample size estimation in diagnostic test studies of biomedical informatics. J Biomed Inform. 2014;48:193–204.PubMedCrossRef Hajian-Tilaki K. Sample size estimation in diagnostic test studies of biomedical informatics. J Biomed Inform. 2014;48:193–204.PubMedCrossRef
31.
go back to reference Chen YW, Chi LY, Lee OK. Associations between aging and second molar diseases in patients having adjacent impacted third molar extraction. J Formos Med Assoc. 2021;120(1 Pt 2):380–7.PubMedCrossRef Chen YW, Chi LY, Lee OK. Associations between aging and second molar diseases in patients having adjacent impacted third molar extraction. J Formos Med Assoc. 2021;120(1 Pt 2):380–7.PubMedCrossRef
32.
go back to reference Ezoddini AF, Sheikhha MH, Ahmadi H. Prevalence of dental developmental anomalies: a radiographic study. Community Dent Health. 2007;24(3):140–4.PubMed Ezoddini AF, Sheikhha MH, Ahmadi H. Prevalence of dental developmental anomalies: a radiographic study. Community Dent Health. 2007;24(3):140–4.PubMed
33.
go back to reference Guo J, Ban JH, Li G, Wang X, Feng XP, Tai BJ, Hu Y, Lin HC, Wang B, Si Y, et al. Status of tooth loss and denture restoration in chinese adult population: findings from the 4th national oral Health Survey. Chin J Dent Res. 2018;21(4):249–57.PubMed Guo J, Ban JH, Li G, Wang X, Feng XP, Tai BJ, Hu Y, Lin HC, Wang B, Si Y, et al. Status of tooth loss and denture restoration in chinese adult population: findings from the 4th national oral Health Survey. Chin J Dent Res. 2018;21(4):249–57.PubMed
34.
go back to reference Bilge NH, Yesiltepe S, Torenek Agirman K, Caglayan F, Bilge OM. Investigation of prevalence of dental anomalies by using digital panoramic radiographs. Folia Morphol (Warsz). 2018;77(2):323–8.PubMedCrossRef Bilge NH, Yesiltepe S, Torenek Agirman K, Caglayan F, Bilge OM. Investigation of prevalence of dental anomalies by using digital panoramic radiographs. Folia Morphol (Warsz). 2018;77(2):323–8.PubMedCrossRef
35.
go back to reference Wachinger C, Reuter M, Klein T. DeepNAT: deep convolutional neural network for segmenting neuroanatomy. NeuroImage. 2018;170:434–45.PubMedCrossRef Wachinger C, Reuter M, Klein T. DeepNAT: deep convolutional neural network for segmenting neuroanatomy. NeuroImage. 2018;170:434–45.PubMedCrossRef
36.
go back to reference Gimenez T, Piovesan C, Braga MM, Raggio DP, Deery C, Ricketts DN, Ekstrand KR, Mendes FM. Visual inspection for Caries detection: a systematic review and Meta-analysis. J Dent Res. 2015;94(7):895–904.PubMedCrossRef Gimenez T, Piovesan C, Braga MM, Raggio DP, Deery C, Ricketts DN, Ekstrand KR, Mendes FM. Visual inspection for Caries detection: a systematic review and Meta-analysis. J Dent Res. 2015;94(7):895–904.PubMedCrossRef
37.
go back to reference Vinayahalingam S, Kempers S, Limon L, Deibel D, Maal T, Hanisch M, Bergé S, Xi T. Classification of caries in third molars on panoramic radiographs using deep learning. Sci Rep. 2021;11(1):12609.PubMedPubMedCentralCrossRef Vinayahalingam S, Kempers S, Limon L, Deibel D, Maal T, Hanisch M, Bergé S, Xi T. Classification of caries in third molars on panoramic radiographs using deep learning. Sci Rep. 2021;11(1):12609.PubMedPubMedCentralCrossRef
38.
go back to reference Thurzo A, Urbanová W, Novák B, Czako L, Siebert T, Stano P, Mareková S, Fountoulaki G, Kosnáčová H, Varga I. Where is the Artificial Intelligence Applied in Dentistry? Systematic review and literature analysis. Healthc (Basel). 2022;10(7):1269.CrossRef Thurzo A, Urbanová W, Novák B, Czako L, Siebert T, Stano P, Mareková S, Fountoulaki G, Kosnáčová H, Varga I. Where is the Artificial Intelligence Applied in Dentistry? Systematic review and literature analysis. Healthc (Basel). 2022;10(7):1269.CrossRef
39.
go back to reference Putra RH, Doi C, Yoda N, Astuti ER, Sasaki K. Current applications and development of artificial intelligence for digital dental radiography. Dentomaxillofac Radiol. 2022;51(1):20210197.PubMedPubMedCentralCrossRef Putra RH, Doi C, Yoda N, Astuti ER, Sasaki K. Current applications and development of artificial intelligence for digital dental radiography. Dentomaxillofac Radiol. 2022;51(1):20210197.PubMedPubMedCentralCrossRef
40.
go back to reference Mazurowski MA, Buda M, Saha A, Bashir MR. Deep learning in radiology: an overview of the concepts and a survey of the state of the art with focus on MRI. J Magn Reson Imaging. 2019;49(4):939–54.PubMedCrossRef Mazurowski MA, Buda M, Saha A, Bashir MR. Deep learning in radiology: an overview of the concepts and a survey of the state of the art with focus on MRI. J Magn Reson Imaging. 2019;49(4):939–54.PubMedCrossRef
41.
go back to reference Thurzo A, Strunga M, Urban R, Surovková J, Afrashtehfar KI. Impact of artificial intelligence on dental education: a review and guide for curriculum update. Educ Sci. 2023;13(2):150.CrossRef Thurzo A, Strunga M, Urban R, Surovková J, Afrashtehfar KI. Impact of artificial intelligence on dental education: a review and guide for curriculum update. Educ Sci. 2023;13(2):150.CrossRef
42.
go back to reference Liang H, Tsui BY, Ni H, Valentim CCS, Baxter SL, Liu G, Cai W, Kermany DS, Sun X, Chen J, et al. Evaluation and accurate diagnoses of pediatric diseases using artificial intelligence. Nat Med. 2019;25(3):433–8.PubMedCrossRef Liang H, Tsui BY, Ni H, Valentim CCS, Baxter SL, Liu G, Cai W, Kermany DS, Sun X, Chen J, et al. Evaluation and accurate diagnoses of pediatric diseases using artificial intelligence. Nat Med. 2019;25(3):433–8.PubMedCrossRef
43.
go back to reference Debray TP, Vergouwe Y, Koffijberg H, Nieboer D, Steyerberg EW, Moons KG. A new framework to enhance the interpretation of external validation studies of clinical prediction models. J Clin Epidemiol. 2015;68(3):279–89.PubMedCrossRef Debray TP, Vergouwe Y, Koffijberg H, Nieboer D, Steyerberg EW, Moons KG. A new framework to enhance the interpretation of external validation studies of clinical prediction models. J Clin Epidemiol. 2015;68(3):279–89.PubMedCrossRef
44.
go back to reference Kelly CJ, Karthikesalingam A, Suleyman M, Corrado G, King D. Key challenges for delivering clinical impact with artificial intelligence. BMC Med. 2019;17(1):1–9.CrossRef Kelly CJ, Karthikesalingam A, Suleyman M, Corrado G, King D. Key challenges for delivering clinical impact with artificial intelligence. BMC Med. 2019;17(1):1–9.CrossRef
Metadata
Title
Artificial intelligence in the diagnosis of dental diseases on panoramic radiographs: a preliminary study
Authors
Junhua Zhu
Zhi Chen
Jing Zhao
Yueyuan Yu
Xiaojuan Li
Kangjian Shi
Fan Zhang
Feifei Yu
Keying Shi
Zhe Sun
Nengjie Lin
Yuanna Zheng
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Oral Health / Issue 1/2023
Electronic ISSN: 1472-6831
DOI
https://doi.org/10.1186/s12903-023-03027-6

Other articles of this Issue 1/2023

BMC Oral Health 1/2023 Go to the issue